
Received 12 December 2024, accepted 24 December 2024, date of publication 31 December 2024, date of current version 10 January 2025.

Digital Object Identifier 10.1109/ACCESS.2024.3525000

Data Augmentation-Based Enhancement for
Efficient Network Traffic Classification
CHANG-YUI SHIN 1, YANG-SEO CHOI2, AND MYUNG-SUP KIM 3, (Member, IEEE)
1C4ISR System Development Quality Team, Defense Agency for Technology and Quality, Daejeon 35409, South Korea
2Department of Cyber Security Research Division, Electronics and Telecommunications Research Institute, Daejeon 34129, South Korea
3Department of Computer Convergence Software, Korea University, Sejong 30019, South Korea

Corresponding author: Myung-Sup Kim (tmskim@korea.ac.kr)

This work was supported in part by the ‘‘Regional Innovation Strategy (RIS)’’ through the National Research Foundation of Korea (NRF),
Ministry of Education (MOE) under Grant 2021RIS-004; and in part by the Institute of Information and Communications Technology
Planning and Evaluation (IITP), Development of Security Monitoring Technology Based Network Behavior Against Encrypted Cyber
Threats in Information and Communication Technology (ICT) Convergence Environment, Korean Government under Grant 00235509.

ABSTRACT The necessity of Network traffic classification is becoming increasingly significant as
users’ applications and devices become more diverse and prevalent. As encryption becomes the norm
for security reasons, the traffic classification problem is not easily solved. In this work, we provide an
inductive counterevidence to the vague belief that deep learning models can perform well and outperform
tree-based machine learning models in all aspects across domains, especially in the network traffic clas-
sification domain. We address the problem of finding an efficient encrypted traffic classification method
in resource-constrained situations in the network traffic classification domain by limiting the scope of our
research. Using the first packet, we converted packet headers and encrypted partial payloads into tabular data
through a standardized format. We used them as the same inputs for lightweight deep learning and tree-based
machine learning models, analyzed their performance, and identified efficient models. Next, we improved
the performance of the previously selected efficient traffic classifier through data augmentation methods.
Augmentation was performed to a degree that did not significantly damage the original data distribution
so that the augmented dataset’s class distribution did not interfere with model learning. We applied
two fundamentally contrasting methods to augment traffic data, depending on whether the basis of data
augmentation is individual data or the entire data. Data augmentation increased the accuracy of the machine
learningmodel by 0.26%, which complemented themachine learningmodel’s performance in network traffic
classification and made the machine learning model outperform the lightweight deep learning model.

INDEX TERMS Network traffic classification, data augmentation, generative adversarial networks, tabular,
robustness.

I. INTRODUCTION
In recent years, the rise of on-demand services from mobile
devices, including wearables and vehicles, has led to an
extreme increase in the amount of data being sent and
received across online networks worldwide. In this situation,
Network Traffic Classification (NTC) technology is receiving
more attention due to its growing importance in secu-
rity, intelligent network management, and stable services.
As time goes by, the need for NTC is further highlighted

The associate editor coordinating the review of this manuscript and

approving it for publication was Kashif Sharif .

by its potential to improve the quality of experience from
a user perspective and to positively impact service qual-
ity and automation from a network service management
perspective [1].

Chronologically, the earliest NTC at the starting point
was developed based on ports, which did not have good
results in terms of accuracy and reliability [2], [3]. The sub-
sequent exponential growth of applications using random or
non-standard port numbers further reduced the reliability of
traffic classification, leading to the emergence of payload-
based approaches. However, the Deep Packet Inspection
(DPI) method [4] of inspecting the payload soon also became

6006

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 13, 2025

https://orcid.org/0000-0002-8410-0177
https://orcid.org/0000-0002-3809-2057
https://orcid.org/0000-0001-7214-6568

C.-Y. Shin et al.: Data Augmentation-Based Enhancement for Efficient Network Traffic Classification

a problem as the payload of network traffic was increas-
ingly encrypted to enhance personal security [5], [6]. As the
packet payload that is the subject of NTC is encrypted, it is
being redefined as Encrypted Network Traffic Classifica-
tion [7], [8], [9], [10]. Gradually, the percentage and share
of encrypted network traffic have proliferated over the past
few years and are expected to continue to do so [11]. The
newly entered flow statistics-based methods [12], [13] are
to find reasonable statistical characteristics of network traf-
fic based on flow-level measurements (i.e., packet lengths,
packet inter-arrival time, flow duration, etc.) empirically.

Feature selection and feature engineering based on
researchers’ empirical factors appear to be in place to opti-
mize the overall performance metrics of encrypted traffic
classification. Empirical features for network traffic classi-
fication have been applied in line with the evolution of the
model. In such cases, it has been common to apply sim-
ple statistical features [14], raw bytes [15], mutual arrival
time [16], payload size [17], [18] to traditional machine learn-
ing models (C4.5, decision trees, naive Bayes, etc.) or deep
learning models like neural networks based on MLP (Multi-
Layer Perceptron) [19]. One-dimensional or two-dimensional
Convolutional Neural Network (CNN) models [20], [21]
have also been added to its scope of application. In fact,
from this time, depending on the logical concept of process-
ing network traffic established by the researcher, network
traffic was applied to CNN models specialized in image
feature classification or Recurrent Neural Network (RNN)
models specialized in time series data processing [22], [23].
There have also been useful approaches that blend the
strengths of CNN and RNN models [24]. In recent years,
Transformer [25] models and Bidirectional Encoder Rep-
resentations from Transformers (BERT) [26] models have
emerged that guarantee significant performance, represented
by positional embedding and self-attention mechanisms,
which continue to expand into the optional area ofmultimodal
inputs [9], [27], [28], [29].

Despite the massive computational time required, using
DL models with good performance is widespread in various
fields. However, in the control domain of network man-
agement, tasks such as traffic classification and congestion
control may be more feasible to make management deci-
sions within milliseconds to ensure quality of experience. So,
while automated decision-making is important, efficient and
immediate processing times may be a priority. Furthermore,
a solution tailored to specific tasks may be essential since
resources are often limited in distributed environments. Even
if the deep learningmodel has a slight performance advantage
over the machine learning model [30], it can be proper not to
use only performance as a criterion to determine whether it is
usable in resource-constrained environments.

For a more objective comparative case study of the
above subject, we will refer to our past work to our
past work [9] to transform the input stage of another
lightweight BERT model to the NTC domain to improve

its performance and efficiency. In other words, we will
apply transfer learning, packet embedding, and Compar-
ative Learning to BERT to compare the basic BERT
model and other lightweight models, such as Distil-
BERT, regarding performance and efficiency. We also
designed to extend the adaptation of ALBERT, based
on another well-known Transformer model, which shows
substantial performance among deep learning models in
Sections IV and V.

Deep learning models are a highly superior approach to
problem-solving in many areas, including computer vision
and natural language processing, where they can outperform
machine learning models regarding results. In recent years,
deep learning models have achieved remarkable results in
the above fields and other fields requiring multimodal inputs,
and its effectiveness has dramatically increased the social
attention on deep learning. In many cases, deep learning out-
performs traditional machine learning approaches. However,
for tabular data, tree-basedmachine learning approaches such
as eXtreme Gradient Boosting (XGBoost) [31] and Light
Graient-Boosting Machine (LigthGBM) dominate [32], [33].

Although there is a lot of research on encrypted network
traffic classification, they can be divided into two categories
based on the materials (i.e., inputs into the model) used
for classification. They can be categorized into those focus-
ing on first-packet classification [9] and those dealing with
post-analysis of complete packet traces, which include flow
statistics and time-related features. Most of them focus on
classifying flows after observing several initial packets (i.e.,
flows or several packets) rather than the first packet [34].

As datasets are not immune to the problem of data suffi-
ciency, there are approaches to introducing new synthetic data
through data augmentation to help models learn and perform
better. The tendency to apply data augmentation methods
started in the image domain and has expanded to various
fields and, more recently, to the NTC domain. Through the
augmented data, the robustness of models increases by broad-
ening their coverage, as it can represent data patterns not
present in the original dataset [1], [35], [36], [37]. Regardless
of the choice of model, the above means that there is a neces-
sity and possibility for different approaches to the robustness
of learning models. For many classification tasks based on
supervised learning, data containing relatively insufficient
classes due to quantitative differences between classes can
have a negative impact on learning. Therefore, it can be a
countermeasure to improve learning effectiveness by ensur-
ing adequate data augmentation in relation to the original
class distribution [38].
In this paper, we transformed the packet header and some

payloads of NTC domain data into a standardized tabular
format. We experimented with model robustness by applying
data augmentation techniques to NTC using two methods,
jittering and GAN, which have contextual differences in
augmentation. We generated synthetic data sets that increase
the robustness of the model while maintaining the labels

VOLUME 13, 2025 6007

C.-Y. Shin et al.: Data Augmentation-Based Enhancement for Efficient Network Traffic Classification

accurately [35]. Then, we tested on the augmented data using
one of the efficient models selected through performance
comparison experiments with deep learning and machine
learning models. We also presented sophisticated analysis on
the augmented data based on the experiments.

The proposed data augmentation methods in this paper
have three main contributions that are dominant in NTC
problems.
• Data Augmentation-Based Enhancement.To support
realistic usability with limited resources in the encrypted
network traffic classification problem, the basic step was
to preprocess each packet header and partial payload into
a standardized tabular format and use them as inputs for
the model. Machine learning models require relatively
less input data than deep learning models. Therefore,
it is noteworthy that we performed comparative analysis
with lightweight deep learning and machine learning
models using only the public header information and
the encrypted partial payload. Through various models
and experiments, we showed that applying the machine
learning model is more usable and superior to using
time-consuming deep learning in resource-constrained
situations. This is a remarkable result compared to stud-
ies [39] and [40] that rely heavily on encrypted portions
for performance, efficiency, and usability. Data augmen-
tation increased the accuracy of the machine learning
model by 0.26%, making it outperform the lightweight
deep learning model.

• Two Contrasting Data Augmentation.The raw data
that a model can learn from often contains imbalanced
classes, and this minority class can negatively impact
model learning. Therefore, we used data augmentation
to alleviate the learning problem caused by unbalanced
data. Two opposing data augmentation methods were
presented when enhancing model robustness using data
augmentation. The robustness and performance of the
model were improved by directly transforming the data
to augment the data and by augmenting it using a model
trained in the entire data. Unlike the combinatorial
method [1] or the resampling method that creates a new
flow by combining packets extracted from existing flows
in the NTC field, new data was created and augmented.
Two contrasting data augmentationmethods showed dif-
ferent effects on data across traffic types and application
types.

The paper is organized as follows. Section II contains
related work which is used to solve the problems of encrypted
network traffic classification. Section III describes the per-
formed work. Section IV describes the baseline of classifi-
cation models. Section V describes the obtained results and
analyzes them. Section VI provides a discussion. Section VII
contains conclusions.

II. REALTED WORKS
As mentioned before, payload encryption of network
traffic rendered existing traffic classification and traffic

identification methods, including port-based methods and
DPI techniques, stale and unusable. Port-based methods
classify traffic by utilizing the correspondence between spe-
cific ports and protocols, but it became ineffective due to
the widespread utilization of proxy port forwarding and
dynamic port usage. And DPI became faded techniques to
analyze entire IP packets into constituent units to distin-
guish traffic data. Since signature extraction and further
analysis had been limited in the payload of encrypted
packets, DPI was also unusable for traffic classification.
As encryption of payloads prevails for security purposes, the
subsequent contents have included encrypted payloads as a
baseline.

The following parts sequentially describe the existing
works. Machine learning and deep learning models for
network traffic classification are presented sequentially in
conjunction with input data. There are studies related to
insufficient data for learningwith class imbalance and various
methodological studies to improve the learning performance
of the model.

A. INPUT DATA AND MODELS FOR NTC
Network traffic data that has been preprocessed according to
various research perspectives (Raw data or selective parts of
it, statistical features, cropped parts of intact packets reshaped
into arbitrary image sizes, natural language processing of
each byte, etc.) can be input to adequate machine learning
or deep learning models. Machine learning models have an
inherent limitation in that the amount of input data is limited
to produce valid results through model learning. The input
data satisfying the limitation of machine learning models
have been raw byte values on a single packet or selective sta-
tistical values based on the flow [17], [41]. The representative
feature selection algorithms are forward selection, backward
elimination, and stepwise [42]. However, researchers in flow
statistics mostly define empirical feature sets and use those
values as inputs to models. Therefore, while most machine
learning models focus on the statistical value of flow, deep
learning models selectively focus on the whole first packet or
flow [17], [43].

It is common to include deep learning models as part of
machine learning models in a taxonomic sense. However, this
paper focuses on the distinction between tree-based machine
learning models, which do not have the structure of a neural
network, and deep learning. As aforementioned, there are
more notable differences in the amount of input available
for each model. Therefore, it will be defined as a separate
object in this paper. Deep learning models also accept tabular
inputs, and one of their main advantages is that they can be
structured to handle multimodal inputs. These multimodal
inputs can include images, text, audio, or other types of
data [32]. On the other hand, machine learning models based
on tree-based methods, compared to deep learning models,
are limited to processing tabular data with a limited num-
ber of columns and cannot easily incorporate other types of
data.

6008 VOLUME 13, 2025

C.-Y. Shin et al.: Data Augmentation-Based Enhancement for Efficient Network Traffic Classification

1) MACHINE LEARNING-BASED METHODS
The Authors in [44] presented the results of a study that
applied unsupervised learning based on K-means using sta-
tistical properties that they judged to be relevant in the flow
(e.g., number of packets, duration, packet arrival time devi-
ation, length of the first ten packets, etc.). Their clustering
model achieved only 86% accuracy using statistical proper-
ties. Furthermore, the following research results [45], [46]
should not be underestimated, which show that NTC based
on flow statistics also has problems. Flow statistics-based
features can vary considerably depending on the structural
characteristics of the group-level network. In the case of bidi-
rectional Internet traffic, the tolerance of the characteristics is
not general. It can vary over time, as the usage characteristics
of the terminal users are variable and dependent on unstable
temporary events.

However, there is notable research that attempts a new
approach to flow data, moving beyond the statistical
properties of flow data [47]. The authors in [48] stud-
ied a high-performance online classification method using
zero-length packets for TCP data. Based on their findings,
zero-length packets have no payload and contain only TCP
control information. They constructed information about
application-specific fingerprint sequences in application pro-
tocol data units based on zero-length packets and classified
the traffic using the specific decision tree algorithm. Conse-
quently, they achieved 97% accuracy. Their research, based
on application-specific fingerprint sequences, is noteworthy
because it can be used to find essential classification grounds
even from packets without payloads.

These research results indicate that results can vary greatly
depending on the perspective of the researchers who obtain
the features input to the machine learning model.

2) DEEP LEARNING-BASED METHODS
Asmentioned in the previous part, depending on the direction
in which the researcher needs to deal with the data, the
data is preprocessed in a form suitable for the input data,
and then input to the selected model (i.e., machine learn-
ing model, CNN model for image [49], Long Short-Term
Memory (LSTM) model time series data [50], etc.). General
classification problems of other domains indicate that while
domain-specific (i.e., image or language understanding) solu-
tion perspectives are important, the NTC domain allows for
more flexibility in approach.

The authors in [24] used a convolutional layer to obtain
the inherent field characteristics of each packet from a spa-
tial structure and an LSTM layer to treat the previously
extracted features from a time series perspective. Therefore,
we found that they did not deal with single-packet data from
a time series perspective. The authors in [24] simultaneously
designed a deep learning model that used spatial construction
of packet bytes and time series characteristics of flow using
a combination of CNN and RNN. Their focus was on each
packet and flow. They used CNN to render network traffic

data as an associated image. They designed the structure of
the CNN-LSTMconnectionmodel by converting packets into
images, extracting structural features through CNN, and then
connecting the extracted information to an LSTM network
so that the time series characteristics of the flow are simulta-
neously reflected in the model. With the CNN-LSTM linked
model, they achieved 96.32% accuracy.

Another noteworthy research implemented each classifier
based on three models and compared their performances.
The three models are MLP, Stacked AutoEncoder (SAE), and
CNN [51]. The authors focused on raw packets. It was not
designated whether the raw packet was the first. To use them
as inputs for eachmodel, they preprocessed the size of the raw
packet of each application to 1,480 bytes. Packets shorter than
1,480 bytes were padded with ‘0 × 00’, and packets longer
than that were cut off. Although all models performed well,
it was unavoidable that the best-performing SAE model was
extremely large, consisting of over 1.3M parameters.

The authors in [40] proposed ET-BERT, which uses the
Masked BURST Model and the Same-origin BURST Pre-
diction structure, referring to the structure of BERT, which
is based on the Transformer layer. ET-BERT presented
results on packets and flow, respectively. This model was
pre-trained with many unlabeled data and fine-tuned with a
few task-specific labeled data. The F1 values of the service
and application classification results, performed on the single
packet basis of the ISCX VPN-nonVPN 2016 dataset (ISCX-
VPN2016) [52], reached 98.90% and 99.37%, respectively.
However, the ET-BERT model only focused on packet-level
features and did not consider byte-level features of encrypted
traffic, so it could not escape the disadvantage that it needed to
perform the pre-training process of a general large language
model and had an enormous computational and resource
burden.

Given the excessive number of parameters in deep learn-
ing models, the size of stored models, and network device
resource constraints, the continuous need to extract signif-
icantly relevant features and reduce model complexity to
make deep learning-based network solutions suitable for
production-grade has been raised [53]. In [9], we adaptedDis-
tilBERT, which uses the natural language processing mech-
anism, to the NTC domain. We used the above-compressed
model to classify using reduced features, which consist of
lightweight 63-byte packets with headers and partial pay-
loads. We compared the results of the first packet with
those of the flows. Furthermore, we applied Comparative
Learning to process four multi-attribute packets simultane-
ously by removing feature redundancy. The F1 score of
the service and application classification results, performed
on the packet basis of the ISCX-VPN2016 dataset, reached
97.0% and 98.1%, respectively. The trained model classified
128 packets per second. Through model and feature reduc-
tion, we provided a starting point for proposing a feasible
solution even under resource constraints. The reason for
using only 63 bytes as input is that the BERT-based natural

VOLUME 13, 2025 6009

C.-Y. Shin et al.: Data Augmentation-Based Enhancement for Efficient Network Traffic Classification

language processing model has one of the highest classi-
fication performances using Comparative Learning, which
was experimentally shown in our previous study [9]. Fur-
ther description as to the choice of 63bytes was presented
in Sections III-B and IV-A. Based on the above research
results, we anticipated that a packet-based approach using
a standardized tabular format with only 63 bytes of raw
data could provide sufficient performance results even when
using machine learning models [32]. So, we have designed a
comparison of the results of injecting just 63 bytes of raw data
into various tree-based machine learning models suitable for
tabular data with the performance of the previous lightweight
deep learning models.

In another context, although outside the NTC domain,
research that comprehensively compares deep learning and
machine learning is noteworthy. The authors in [54] revealed
that while deep learning models have achieved tremendous
performance on text and image datasets, their performance
superiority on tabular data is unclear. They provided a notable
reference on tree-based models such as XGBoost, Random
Forests, and several deep learning models through many
datasets and hyperparameter combination trials. Results
showed that tree-based models outperform deep learning
models onmedium-sized data (around 10,000 samples), aside
from the measured superior speed.

The above research result may imply that if the perfor-
mance of deep learning and machine learning models is
almost the same when only tabular data is used as input, pace-
setting research can be needed to improve the performance
and robustness of deep learning models. This may repre-
sent a significant and noteworthy turning point in various
research fields. Hence, to persist and extend their consid-
erable achievement in [54], empirical investigations on the
different inductive biases through comparison of tree-based
machine learning and deep learning models can also be
needed in various fields, including the NTC domain. In this
paper, we have attempted to approach that subject empirically
from the above perspective.

B. INSUFFICIENT AND IMBALANCED DATA
Although not in the NTC domain, there are studies on the
effectiveness of data augmentation for insufficient data in the
computer vision domain. The authors in [36] demonstrated
remarkable performance in traffic sign image classifica-
tion by leveraging data augmentation in the image domain.
Given the limited size of the available training dataset, they
utilizedmore than 20 advancedmulti-technique data augmen-
tation methods to improve the accuracy of traffic sign image
classification. Thismulti-technique data augmentation signif-
icantly improved the performance of deep learning models by
applying controlled transformations to the original dataset,
increasing the training data’s diversity and robustness. The
results of a comparative analysis with the model learned
from the original data set were presented. They showed that
multi-technique data augmentation improved the accuracy
of traffic sign image classification by 2.3%, revealing that

data augmentation was effective in improving the model’s
performance. Their data augmentation methods, which use
various technologies, have provided notable implications for
a methodologically flexible approach to model improvement
in the NTC field.

The researchers tried data augmentation in the NTC
domain as a new approach [1]. They created each new flow by
selectively extracting individual packets from existing flows
of the same class and then combining them into a flow. They
assumed that the newflowwould behave similarly to the sam-
ples used to combine the flows so that they could be labeled
accordingly. By transforming combinations of existing data,
they changed each flow enough to be considered new data
but still retained the same class. Their approach differs from
ours in that it generates flows by modifying existing packets
directly or through learned models, as their approach is to
create new combinations based on existing data.

The authors in [55] analyzed the problem of learning from
imbalanced data (i.e., the imbalanced learning problem) from
various theoretical perspectives. The imbalanced learning
problem has been suggested to be related to the performance
of learning algorithms in situations where data is scarce and
there is severe hierarchical distributional skew. Therefore,
overcoming the imbalanced learning problem suggested the
need for new understanding, algorithms, and tools to trans-
form large amounts of raw data into efficient and actionable
information and knowledge representations. In their work,
representative methods such as sampling methods, cost-
sensitive learning methods [56], and others were presented
methodologically. Since the sampling method maintains the
original data’s uniqueness, unlike data augmentation, it only
calibrates the imbalance of the data. Cost-sensitive learning
methods are functional adjustment techniques in the learn-
ing process of the model and are not related to quantitative
changes in the data.

Care must be taken when adjusting the data distribution by
sampling method, and there are cases where the distribution
has been incorrectly adjusted. For example, considering the
imbalance of class data in ISCX-VPN2016, authors in [51]
adjusted the quantity through random sampling to fit each
class with the same amount. The researchers in the paper
presented that the model’s performance was lower because
the model did not learn as well as the original data, even
though the adjustment was made for the minority class. The
distribution characteristics were too different from those of
the original data set. In [57], researchers have experimented
with the same quantitative configuration to diminish learning
bias in collecting data for each class. As in the previous case,
it cannot be ruled out that the model did not learn properly
for the major class.

The experimental method [58] that brought about positive
effects of oversampling for minority classes differed from
the uniform distribution [59]. A notable aspect of their work
was that they applied the resampling method while main-
taining the imbalanced data distribution ratio and presented
meaningful results. Experimental results show that there are

6010 VOLUME 13, 2025

C.-Y. Shin et al.: Data Augmentation-Based Enhancement for Efficient Network Traffic Classification

two ways to adjust the ratio of training data to alleviate data
distortion. The two methods were uniform sampling, which
ideally samples each class in equal amounts, and hierarchical
sampling, which samples each class to maintain the same
distribution as the original data set. The latter showed better
classification performance than the former. The original data
ratio determined the distribution characteristics of each data
set. The changed proportion of classes with less data through
resampling became an essential element in learning. Changes
in the data distribution from which the model learns also
affected the model’s learning results.

The authors in [38] presented empirical results that inval-
idate the implicit assumption of many studies on classifier
research. That false implicit assumption is that the class
distribution of the training data should match the original
‘‘natural’’ distribution. So, they changed the class distribution
of the training set so that the distribution between theminority
and majority classes changed. As a result, their study showed
that the naturally occurring original class distribution is often
not the best fit for learning and that using a different class
distribution, which is a state where the distribution of a partic-
ular class is not extreme, can lead tomuch better performance.
However, a caveat did not apply when the class distribution of
the altered training set deviated significantly from the original
class distribution. Contrariwise, they also showed that for
natural distributions with extremely small minority class dis-
tributions, the modified distributions perform slightly better
than the original distribution. One important thing to note is
that the performance is good when the training data does not
deviate too much from the original natural distribution and at
the same time is similar. Based on the research results of [38],
we applied data augmentation by selecting a minority class to
make the class distribution natural, but we were careful that
the performance may not improve if the class distribution of
the altered training set deviates significantly from the original
natural class distribution.

C. ROBUST LEARNING
Research on increasing model robustness should begin with a
comprehensive perspective that the overall direction of model
learning comes from data. Among related studies, four repre-
sentative ones are multi-modal learning, multi-task learning,
out-of-distribution sample, and few-shot learning.

1) MULTI-MODAL LEARNING
Researchers have systematically studied the relationship
between deep learning and multi-modal learning in [60]
and [61]. With the remarkable success of deep learning in
the computer vision domain, the direction of deep learning
research is expanding to highlight the advantages related to
more complex multimodal data. These multimodal data sets
are composed of data from various perspectives observing
a single phenomenon. Multimodal data complement other
data at the model training step to support effectively learn
from complex tasks. It is well presented in their works that
the more significant advantage of deep learning is that it

can automatically learn through hierarchical representation
for each modality by manually designing modality-specific
features.

Authors in [62] had analyzed the flow features of encrypted
traffic (e.g., length sequences, message types, statistical fea-
tures, etc.). Although they could achieve good results in some
cases, they concluded that these handcraft-extracted fea-
tures could not apply to each different task individually, and
important information was lost, which could affect the clas-
sification accuracy. To address these issues, they designed a
multimodal-based deep learning framework, which used raw
bytes and length sequences as multimodal inputs. They used
a self-attention mechanism in the model to learn deep rela-
tionships between network packets in bi-flows and applied
unsupervised pre-learning in the learning process. The effec-
tiveness of their multi-modal framework was demonstrated
in 19 applications, showing an accuracy of 99.22%. It was
remarkable that robust learning of the model was achieved
based on the multimodality of the inputs forwarding to the
model.

2) MULTI-TASK LEARNING
A primary motivation in the introductive stages of multi-
task learning [63] was to alleviate the problem of having
limited data for each task. In the computer vision and natural
language processing domains, the powerful resources pro-
vided by ‘‘big data’’ have shown that deepmulti-task learning
models can outperform single-task models. The reason why
multi-task learning is effective is because it utilizes more data
across different learning tasks. This contrasts with single-task
models. Multi-task learning becomes more robust as it uses
more data across multiple tasks. Since it can learn universal
representations, it improves knowledge sharing across func-
tions, improving each task’s performance and resulting in less
overfitting on each task.

There is a paper [29] that presents the benefits of extend-
ing from a single-task baseline to a multi-task, multi-modal
architecture in the NTC domain. The authors proposed a
multi-modal, multi-task deep learning approach. By leverag-
ing data heterogeneity, they presented results that surpass the
performance limitations of conventional single-task-based
classification. At the same time, it solved various traffic
classification problems with different modalities. The results
showed a 5-8% performance improvement over single-task,
single-modality approaches. This indicates that multi-task
learning and multi-modal learning act as levers to increase
the learning robustness of the model within an independent
model. The previous study [64] also found that multi-task
learning significantly impacts deep learning models. How-
ever, the magnitude of the change is different compared to
the multi-modal, multi-task deep learning model in [29].

3) OUT-OF-DISTRIBUTION SAMPLE
The uncertainty of a learning model on out-of-distribution
samples occurs both when the model is uncertain about which

VOLUME 13, 2025 6011

C.-Y. Shin et al.: Data Augmentation-Based Enhancement for Efficient Network Traffic Classification

class to choose in label assignment and when the data does
not belong to a pre-learned class. Thus the classification can
be uncertain [11]. Experimentally, the above studies have
shown that the performance of models trained on general data
distribution can be improved by designing them to undergo
an additional step to learn quickly on out-of-distribution
samples. That is, they performed out-of-distribution sample
detection based on score evaluation, and then retrained the
model to improve the robustness of themodel.While they col-
lected out-of-distribution samples through time-consuming
manual work, we applied data augmentation to solve the
related problem in about an hour.

4) FEW-SHOT LEARNING
The ability of an AI model to generalize characteristics of
data by learning from a small amount of data is known as
Few-Shot learning [65], [66], [67]. A generative data aug-
mentation method based on Few-Shot learning theory, which
can effectively capture and reproduce synthetic data with
similar characteristics throughmodels trained on natural data.

TABLE 1. Data type by task.

Few-Shot learning and data augmentation stand for back-
ground and implementationmethods, respectively, and can be
seen as starting with the same motivation other than a theo-
retical role difference. Research results have had significance
in practicality and suggested substantial advantages in two
aspects. First, collecting thousands of labeled data to achieve
reasonable performance on a new task is unnecessary. Easing
the data collection effort and reducing the computational
cost and time spent on preprocessing can ease the effort.
Second, in many domains, data collection is often difficult
or impossible for reasons such as privacy and security. This
may be an alternative to these cases.

III. METHODOLOGY
In the NTC domain, determining the data units to be input into
a classification model can be important, as it involves finding
a form that fits the characteristics inherent in the classification
model. Session data, which consists of all bidirectional trans-
mission and reception packets, and flow data, which means
only unidirectional packets, do not target single packets.
Both types are sequential arrangements of packets rather than
individual features, so they can have the characteristics of
time-series data.

In other words, a single packet is a collection of values that
occurred at the same time and does not have the properties
of time-series data. We reflected the research results [40],

FIGURE 1. Donut chart showing the distribution of network traffic type
data (task 1).

FIGURE 2. Donut chart showing the distribution of internet application
data (task 2).

[68], [69] that experimentally showed that the entire fea-
tures or subsets (i.e., partial packets) of a single packet that
occurred simultaneously in this time unit are also suitable
for traffic classification. The above partial packets have been
transformed into standardized tabular data, allowing for the
simultaneous application of various classification models,
such as machine learning or deep learning models. Based on
the previous perspective, we built our research and applied
it to an efficient machine learning model suitable for tabu-
lar format data. We also compared and analyzed it with a
lightweight deep learning model regarding performance and
efficiency. Furthermore, we have extended it by applying data
augmentation techniques to increase the learning robustness
of the model.

6012 VOLUME 13, 2025

C.-Y. Shin et al.: Data Augmentation-Based Enhancement for Efficient Network Traffic Classification

A. DATASET
The ISCX VPN-nonVPN 2016 dataset (ISCX-VPN2016)
[52] is an open dataset of the University of New Brunswick
and is widely used by other researchers in the NTC field [11],
[20], [21], [40], [41], [56], [69].

We also choose the ISCX-VPN2016 dataset for the open-
ness of our implementation approach to our research process.
The open ISCX-VPN2016 dataset contains both general traf-
fic and VPN traffic. There are six types of network traffic
collected from various applications. They can be categorized
as chat, email, file transfer, P2P, streaming, and VoIP. There
are 15 types of internet applications, such as Facebook and
YouTube. The original ISCX-VPN2016 dataset is seriously
unbalanced. It reflects the characteristics of actual data as
they are, ensuring an open research scope. This paper aims
to study one of the meaningful solutions for utilizing data
in this imbalance. Details of the ISCX-VPN2016 dataset
are available in Table 1 and Table 6. The two types of
task-specific data obtained through the preprocessing step in
Table 1 consist of 27,814 and 134,563.
The class distribution of the two kinds of task-specific

data is shown in Figures 1 and 2. In the following work, all
processes were performed after maintaining the split ratio of
training and test data as 80:20 for independent distribution of
augmentation data. In the following Section V-D, these two
types of training data have been separated from test data and
augmented.

In [70], they also mentioned the class imbalance problem.
The class imbalance problem of a data set is an ongoing issue
and a significant problem for the training of classification
models. The mistake of ignoring or misclassifying a minor-
ity sample while focusing only on the classification of the
primary sample can be made unconsciously. In this work,
we applied two different data augmentation methods with
different methodological frameworks from the perspective of
data augmentation, with a focus on increasing the minority
class. How we dealt with it is described in Section IV-D.

B. DATA REPRESENTATION
1) PREPROCESSING FOR STANDARDIZED FORMAT
We considered it desirable and adapted the method used by
the authors of Deep Packet [21] to reduce the influence of
the length of individual packets and preprocess packets into
a structured form, such as tabular format data. This stan-
dardization locates the related values of their attributes in its
own fixed place. The Ethernet header had been removed. The
UDP header padded the insufficient with zeros to make the
UDP header 20 bytes long, the same size as the TCP header.
IP addresses were masked in the IP header, as specific IPs
can add bias to model training. It removed irrelevant packets,
such as packets with no payload or DNS packets.

Then, the raw packets were converted into byte vectors.
To prevent the learning bias of the model due to packet size,
the excess parts of byte vectors larger than 1,500 bytes were
truncated, and the missing parts of byte vectors smaller than
1,500 bytes were padded with zeros. The byte vectors were

FIGURE 3. The hierarchical structures and the detailed header according
to the TCP/IP protocol.

normalized by dividing each byte by 255. Therefore, each
byte value has been normalized to be between 0 and 255.

2) UNIFYING THE EXTENT OF INPUT FOR ALL MODELS
In the NTC domain, since the Transformer layer-based BERT
series deep learning models can achieve optimal perfor-
mance when using Comparative Learning [9]. Comparative
learning is a structure that trains 4 packets, each consist-
ing of 128 bytes, simultaneously. The structural design that
applies to the Natural Language Processing (NLP) model
within the input range of the BERT series, which is gen-
erally limited to 512 bytes, is described in Section IV-A.
Section IV-A describes the characterization and Comparative
Learning of the ALBERT model in the natural language
processing domain to apply NTC for packet classification.
This characterized structure can be suitable for performance
comparison in terms of experimental results, as it can be
applied to all BERT series models. According to the above,
we used 63 bytes of input for all comparison models, exclud-
ing 65 bytes of structural data out of 128 bytes that are
used to adapt the NLP model. Hereafter, the 63 bytes, the
partial packet, are the first 63 bytes of the first packet of the
flow. Therefore, the partial packet consists of the IP header
(20 bytes), the TCP/UDP header (20 bytes), and the partial
of the encrypted payload (23 bytes), as shown in Figure 3.
This partial packet is the basic unit for data augmentation in
our study and is the basic structure of the data input to all
classification models.

It was thoroughly considered that there would not be a
problem with the sensitivity difference when using input

VOLUME 13, 2025 6013

C.-Y. Shin et al.: Data Augmentation-Based Enhancement for Efficient Network Traffic Classification

data of more than 63 bytes in the classification model. The
experimental basis revealed is described in the Discussion
section of this paper for machine learning models, and it was
confirmed in our previous research [9] for NLP-based deep
learning models.

C. TWO CONTRASTING DATA AUGMENTATION
In terms of data augmentation methodology, flipping, resiz-
ing, cropping, rotating, etc., can be used for image data.
can be used. However, designing similar rules for data in
other domains relies heavily on domain knowledge [71] and
requires a lot of validation effort. Furthermore, augmentation
rules are specific to a particular dataset and may be difficult
to apply to other datasets. Consequentially, it is realistically
very difficult for humans to design and implement all possible
changes.

Because there have not been many approaches to data
augmentation in the NTC domain, there has not been much
development in terms of taxonomy. Therefore, among various
methods in the Taxonomy of the time series domain [37],
the following two were selected. We designed two opposite
augmentation methods to ensure that the classifier is suitable
for directly using the 63-byte tabular format data generated
through augmentation. The former is based on the random
transformation of each data, which can be called the method
of specific sample-driven augmentation. The latter is based
on learning of generative models for overall data, which can
be called the method of entire sample-driven augmentation.

Figure 4 shows the overall flow of improving the robust-
ness of the model through data augmentation. The training
data and test data were separated before the data aug-
mentation process. After that, we chose one of the two
afore-mentioned methods as the data augmentation method.
The combined data consisted of training data and augmented
data generated based on the original training data. That is,
after acquiring augmented data using a generator from train-
ing data, combined data can be obtained by assembling the
augmented data with the original training data. The empirical
verification process should be repeated for the augmented
data by comparing the performance of the combined data
with the original training data. When performing the data
augmentation step in the data augmentation process, we con-
sidered that the model performance could vary significantly
depending on the data augmentation degree of the minority
class, as mentioned in Section II-B. So, to prevent the changes
in the minority class from being too large, we designed it so
that a moderate amount of augmentation is performed mainly
in the lower minority class.

The overall adjusted ratios through augmentation are
detailed in Table 6.

1) ADDING RANDOM NOISE: JITTERING
Specific Sample-Driven Augmentation (SSDA) has been
materialized by adding randomnoise. Jitteringwas chosen for
that. Jittering, a classic but very simple and effective method

FIGURE 4. Diagram showing the cyclical structure of original data
partitioning, augmentation, model learning, and assessment to increase
model robustness by utilizing data augmentation.

Algorithm 1 Jittering
Input: First_63_Bytes, MAX_LEN = 63, NOISE_RATIO = 0.1
Output: First_63_Bytes added with noises
1: functionValues_diff(array)
2: Calculate the i-th discrete difference # out[i]= a[i] - a[i-1]
3: Calculates the mean µ and standard deviation σ of array
4: return elements of array within the range µ− σ ≤ array ≤

µ+ σ
5: end function
6: DIF← Values_diff(First_63_Bytes)
7: µdif ← Compute the mean µ of DIF
8: σdif ← Compute the standard deviation σ of DIF
9: POS← Select a random subset of indices, POS, of size

MAX_LEN × NOISE_RATIO
10: Generate random noise from a normal distribution with mean

µdif and standard deviation σdif , and assign noise to the
positions indicated by POS.

11: Inject the generated noise into First_63_Bytes at the indices
specified by POS.

12: return The modified First_63_Bytes
selectively added noises to each byte

of transformation-based data augmentation [72], [73], was
applied to increase the robustness of individual data values
by varying the amount of variation in the range of each value.
p1 denotes the first single packet which is extracted from
interactive session data. v1 means the actual value of packet
data in bytes.

p1 = (v1 + ε1)+ . . .+ (vn + εn) (1)

In Equation (1), εn is the noise vector is designed to be
optionally added. The optional εn can be zero, or a specific
value that is obtained probabilistically. The vertical selection
range of values for the optional vector, εn, is a random vari-
able based on the mean and standard deviation, which are

6014 VOLUME 13, 2025

C.-Y. Shin et al.: Data Augmentation-Based Enhancement for Efficient Network Traffic Classification

the basic statistics of the range of variation in the selected
data. In addition, the horizontal selection range for each byte
is such that only a small fraction of all bytes is randomly
selected. As the NOISE ratio increases, the proportion of
important features that the model should focus on changes
significantly, which can have a negative impact on learning,
so we set it to 10%. We used the first 63 bytes from the
packet as input to the jittering module to add noise directly to
the data. Afterward, the 63 bytes of generated data are then
retained for use as a tabular format data type in the classifier.
At this time, the label of the generated synthetic data was
specified as the label of the original data entered the jittering
module.

2) UTILZING GENERATIVE MODEL: CGAN
Entire Sample-Driven Augmentation (ESDA) has been
materialized by the generative model. Conditional Generative
adversarial Network (CGAN) was chosen for that. CGAN is
a GANmodel that allows researchers to produce data with the
desired labels by adding condition variables during the GAN
training process [74]. It is a unique structure in which two
‘adversarial’ separatemodels are configured to learn together.
These two consist of a generative model G that captures the
properties of the original data, learns them, and then creates
data, and a model D that discriminates whether the samples
created by model G are real or synthetic data.

Since it has been trained under a condition, denoted here
as y, it is possible to obtain the desired data conditional on y.
Therefore, we used label as the y value identically for making
synthetic data by each label thereafter.

min
G
max
D

V (D,G) = Ex∼Pdata(x)[logD(x|y)]

+ Ez∼Pz(z)[log (1-D (G (z | y))] (2)

In Equation (2), E means the general characteristics of
stochastic as a distribution of small values. Pdata (x) denotes
the distribution of training data and Pz (z) denotes the
randomly added noise distribution. The generator learns
Pdata (x) and builds its function based on the combination of
noise distribution and the input conditions, denoted as y.

FIGURE 5. CGAN, which represents a Generator and Discriminator that
perform competitive circular learning depending on conditions.

TABLE 2. Network architecture and hyper parameters of CGAN.

The discriminator builds a probability function that repre-
sents Pdata (x) as a single scalar value. In this case, x also
should be the data with the combined condition. A value
function V (G,D) can be thought of as a learning process that
achieves the simultaneous goal of minimizing the value of
G while maximizing the value of D. Figure 6 illustrates the
general structure of CGAN, which uses labels as conditional
values to generate data according to the labels. In terms of
learning structure, this network is based on the basic structure
of training the generator first and the discriminator afterward.
To elaborate, the generator creates a synthetic sample that
is input with a noise vector and a condition vector. By dis-
tinguishing between this synthetic sample and the original
sample with the condition vector added, a structure is formed
in which the discriminator learns while the generator also
learns at the same time. During a unit epoch, the generator and
the discriminator learn simultaneously for all data through
this competitive structure.

The two samples that form the basis of learning are fake
samples generated by the generator and real samples with
a condition vector added. To keep the size of the NOISE
vector smaller than the size of the partial packets used as input
to train the generator model, which is 63 bytes, we set the
NOISE vector to a much smaller size of 6 bytes. When spec-
ifying the NOISE vector, it should be considered equivalent
to the NOISE ratio of jittering algorithm.

TABLE 3. Size comparison of bert series models.

As the proportion of input noise increases, the proportion
of important features that the model should focus on changes
significantly, which can have a negative impact on learning.
The condition value input to the CGAN is the same as the
label value so that the generation model can generate the
packet data with the required label later. So here we have

VOLUME 13, 2025 6015

C.-Y. Shin et al.: Data Augmentation-Based Enhancement for Efficient Network Traffic Classification

applied 6 types of labels for Task 1 and 15 types of labels for
Task 2 as the condition. As revealed in Table 2, we kept the
neural network structure of the generator and discriminator
simple, with four linear layers symmetrically.

D. PREPARING EXPERIMENTS
Since the two data augmentation methods we chose are
different, the preparation process is different to enable the
data augmentation to be evaluated recursively according to
Figure 5. In the case of CGAN, after the training is completed,
the packet generation model G is saved and used as the gener-
ation network of the data augmentation module in Section V.
We can simply generate synthetic packets according to the
labels of the classes we need to generate. On the other hand,
Jittering needs to create a synthetic packet by inserting ran-
dom noise based on the training data, so we divided the
training data by class and configured it beforehand for use
in the Jittering module.

IV. BASELINE OF CLASSIFICATION MODELS
This paper also places intermediate significance on com-
paring the dominance of computational performance metrics
between machine learning models, including deep learning
models. Therefore, the following describes the theoreti-
cal characteristics of baseline models used in this work.
It includes three BERT-based deep learning models adapted
to NTC and three machine models such as Random Forest,
Extra Tree, and LightGBM.

A. DEEP LEARNING MODELS FOR CLASSIFICATION
1) THREE BERT SERIES MODELS
In a DistillBERT, which was a Transformer-based model
lightened by knowledge distillation [75]. However, the
teacher model itself, which consists of many parameters,
cannot be excluded from the learning process due to the
learning structure between the large teacher model and the
student model, so the learning process cannot be dimin-
ished anymore. Therefore, the ALBERT [76] model based
on the Cross-layer Parameter Sharing Structure of Universal
Transformer [77], which was started from the perspective of
moving away from the extensive parameters of the teacher
model of such knowledge distillation, is much smaller than
the parameter size of the model based on distillation that we
studied before, about one-fifth of the size. The output of each
Transformer layer is fed back into its input, called Cross-layer
Parameter Sharing. It uses a recursively Transformer layer.
ALBERT is a structure that shares all layer parameters, so the
number of parameters does not increase even if the number
of layers increases by sharing all parameters between layers,
such as the Attention layer, feed-forward network layer, etc.

Furthermore, after using Universal Transformer’s Cross
Layer parameter sharing to eliminate the redundancy of the
same layer in the model, ALBERT applied the Factorized
Embedding Parameterization technique to reduce the layers’
size again. In ALBERT, the authors factorized the embedding
parameter into two smaller matrices.

In Equation (3), instead of projecting the one-hot vector
V (Vocabulary size) directly to the H (Hidden state dimen-
sion) vector, they projected it through the low-dimensional E
(word Embedding dimension) vector, which is the embedding
size.

O (V × H)⇒ O (V × E + E × H) (3)

In Table 3, DistilBERT [78] reduces the model and parameter
size by half compared to the original BERT by using knowl-
edge distillation. Using the above two significant weight
reduction methods, the ALBERT model is about one-fifth
smaller in model and parameter size than DistilBERT.

2) ADAPTATION TO NTC DOMAIN
To adapt the ALBERT model based on the natural lan-
guage processing mechanism to the NTC domain, we have
introduced packet-specialized tokenization and Comparative
Learning from our previous work [9] in the front and back
stages of the model, as shown in Figure 1.

As a first step for packet-specialized tokenization, each
byte of the packet corresponds to a word in the natural
language processing domain, so we put a ‘space’ between
each byte value for separation to apply the embedding while
maintaining the value of the individual byte. The next step
was to use the subword tokenizer of BERT for tokenizing,
inserting special tokens CLS and SEP, which typically sep-
arate the start and midpoint of the input data. Furthermore,
we also inserted the STARTER, a special token designed to
separate each packet as a preliminary operation that considers
Comparative Learning.

After packet-specialized tokenization for the first 63 bytes
of the packet, the 128-byte size is composed of 3 bytes of
three special tokens STARTER, CLS, and SEP, 63 bytes of
the input value, and 62 bytes converted to the ‘comma’ string
values between the input values. Comparative learning is a
structure that trains 4 packets, each consisting of 128 bytes,
simultaneously.

The structural design applies to the Natural Language
Processing (NLP) model within the input range of the BERT
series, which is generally limited to 512 bytes. The four
128-byte represented packets were concatenated, simultane-
ously embedded, and passed through the ALBERT model,
and the resulting values were trained and classified using
Comparative Learning at once.

The above three Transformer-based deep learning mod-
els, which are overtly provided online, were used to be
directly fine-tuned through transfer learning. After that, the
three-step structure of packet-specialized tokenization, each
model’s internal processing (BERT, DistilBERT, ALBERT),
and Comparative Learning were designed to be identi-
cally applied to the above three models. An experimental
comparison of learning performance for models reflect-
ing the same mechanisms we designed is presented in
Section V.

6016 VOLUME 13, 2025

C.-Y. Shin et al.: Data Augmentation-Based Enhancement for Efficient Network Traffic Classification

FIGURE 6. An example of ALBERT, a structure that adapts the NLP
mechanism of the BERT series model to the NTC domain. The sequential
three-stage structure (packet-specialized tokenization, model internal
processing, and comparative learning).

B. MACHINE LEARINIG MODELS FOR CLASSIFICATION
1) RANDOM FOREST
Random Forest [79], as the name suggests, is a method
that extracts results by ensemble and prevents the creation
of duplicate decision trees through ‘random’ as much as
possible.Di = {e1, e2, · · · , ei−1, ei means the data have i
number of elements. The ei denotes the i-th element of data.
When the data has n finite elements, bootstrap is executed
to create new datasets, Dn, by selecting ei. At that time,
ei is extracted as often as n, with replacement sampling
(allowing for duplication). When Dn are generated using n
number of Datasets respectively, DT n denotes n number of
decision trees. The DT n has a n-type of shape depending on
the different n number of data sets. The n predicted values
are aggregated through DT n, and classification is performed
through voting. To sum up, an important part of RF is ran-
domly extracting ei through restoration sampling to create
new datasets, Dn. Through this process, Random Forest has
reduced bias and variance.

2) EXTRA TREE
Extremely Randomized Trees (Extra Tree) [80] are charac-
terized by adding randomness when splitting. To explain in
comparison, the Random Forest finds the best part among
the randomly selected features and continuously splits them.

When focusing on features, while Random Forest only
considers randomly selected features, Extra Tree added ran-
domness when splitting. As an ensuing process, finding
the point with the highest information gain and splitting is
the same as Random Forest. Reflecting the random charac-
teristic in feature selection, it reduces bias by configuring
the tree shape differently and forming an ensemble. It also
reduces variation by randomly selecting features and splitting
them.

3) LightGBM
LightGBM [81] has achieved the effect of reducing the size
of the dataset and the effect of feature engineering through
new algorithms called Gradient-based One-Side Sampling
and Exclusive Feature Bundling and has greatly increased the
execution speed. As the name suggests, Gradient Boosting
Decision Tree utilizes Gradient Boosting in the process of
creating a Decision Tree. LightGBM is one of several solu-
tions proposed to efficiently construct a Gradient Boosting
Decision Tree.

The boosting technique is a method that intensively learns
the parts that were not learned well in the previous stage at
each stage. In the process of increasing the branches of the
tree, the gradient is calculated, and the leaves are split at
the part where the loss function can be reduced the most.
In addition, at each stage, a tree is created that intensively
learns data that was not learned well in the previous stage.
The part that takes the most time and resources in the process
of creating a Gradient Boosting Decision Tree is the part
of finding the split point. This is because all values of the
corresponding feature must be sorted, and which part of all
possible split points best classifies the data.

Since checking all the split points in this way is inefficient,
to efficiently construct Gradient Boosting Decision Tree,
LightGBM uses two algorithms named Gradient-based One-
Side Sampling and Exclusive Feature Bundling. Gradient-
based One-Side Sampling is an algorithm that reduces the
number of instances, which are samples in the dataset. The
basic assumption of Gradient-based One-Side Sampling is
that the larger the gradient of an instance, the greater the
influence and the less learned the instance is. A large gradient
of an instance means that changes in the values (elements)
that make up the instance can bring about a large change in
the loss function.

They consider such instances as instances that the model
has not learned enough, and therefore we reduced the num-
ber of samples in the dataset by including such instances.
When learning a tree, it calculates all the information gains
corresponding to each split point and splits the point with
the largest information gain. They proved that there is an
upper bound on the difference in information gain between
the reduced dataset and the original dataset.

Exclusive Feature Bundling is an algorithm that reduces
the number of features in the dataset. Exclusive Feature
Bundling is a method to reduce the number of features by
grouping mutually exclusive variables into a single bucket

VOLUME 13, 2025 6017

C.-Y. Shin et al.: Data Augmentation-Based Enhancement for Efficient Network Traffic Classification

under the assumption that high-dimensional data is sparse.
Here, ‘‘mutually exclusive variables’’ refer to variables that
do not have non-zero values at the same time. Since there are
few completely mutually exclusive variables, a condition that
allows a certain amount of conflict (the number of instances
that are not mutually exclusive) was added. This is called
random polluting, and they proved that there is an upper
bound on the difference in results when random polluting is
applied, so that even if a certain level of conflict is allowed,
there is no significant degradation in performance.

V. EXPERIMENT RESULTS AND ANALYSIS
A. RESOURCES AND METRICS
The implementation details have been described in Table 4.
BERT, DistilBERT, and ALBERT classification models are
based on the Transformer layers. Including the above deep
learning model, the MLP-based CGAN, used for data aug-
mentation, utilized GPUs. The three tree-based classification
models (LightGBM, Random Forest, and Extra Tree) and the
Jittering module, the generative model used for data augmen-
tation, utilized the CPU. At the beginning of the experiment,
we used the Pycaret library to perform basic performance
tests on the machine learning models.

After that, we experimented with the Scikit-learn library to
tune the hyperparameters of each machine learning model to
elevate their performance.

Accuracy =
TP+ TN

(TP+ FN + FP+ TN)
(4)

Recall =
TP

(TP+ FN)
(5)

Precision =
TP

(TP+ FP)
(6)

F1 score =
(2× Recall × Precision)

(Recall + Precision)
(7)

TABLE 4. Configuration of experimental resources.

In Equation (4) ∼ (7), ‘T’ stands for true, ‘F’ stands for
false, ‘P’ stands for positive, and ‘N’ stands for negative,
i.e., ‘TP’ and ‘TN’ stand for the part of the prediction that
matches the actual value, and ‘FP’ and ‘FN’ stand for the part
of the prediction that differs from the actual value. TP rep-
resents the amount of data where the actual value is in the
positive class and the predicted value is in the positive class.
FP represents the amount of data where the actual value is in

TABLE 5. Performance and TestTime comparison of each model for
task 1.

the negative class and the predicted value is in the positive
class. FN represents the amount of data where the actual
value is in the positive class and the predicted value is in
the negative class. TN represents the amount of data where
the actual value is in the negative class, and the predicted
value is in the negative class. Accuracy is the percentage of
total values that the model correctly classified. Recall is the
proportion of things the model predicted to be true out of
actually true things. Precision is the percentage of what the
model classifies as True that is actually True. The F1 score is
the harmonic mean of precision and recall.

B. PERFORMANCE COMPARISON BETWEEN MODELS
As shown in Table 5, the deep learning model’s learning
performance was reflected by the number of epochs until the
best performance was achieved. In the case of BERT, since
it took 449 seconds for 1 epoch, the total training time was
3 hours and 44 minutes by reflecting the time of 30 epochs.

FIGURE 7. Graphs showing the changes in the loss values of the generator
and discriminator during competitive circular learning over 400 epochs.

DistilBERT took 290 seconds for 1 epoch, so the total train-
ing time was 1 hour and 37 minutes by reflecting 20 epochs.
ALBERT had taken 269 seconds for 1 epoch, so the total

6018 VOLUME 13, 2025

C.-Y. Shin et al.: Data Augmentation-Based Enhancement for Efficient Network Traffic Classification

TABLE 6. Configuration of original training data and augmented data.

training time was 3 hours and 30 minutes by reflecting
47 epochs. On the other hand, LightGBM, Random Forest,
and Extra Tree only took 9.75 seconds, 24.0 seconds, and
17.7 seconds for the whole training process, respectively.
Among the above machine learning models, LightGBM,
which revealed one of the highest accuracies, is slightly lower
than BERT by about 0.05%. Still, the number of classifiable
packets per second is 23,672, which is a significant number
that can overcome the performance disadvantage. Further-
more, while BERT using GPU can classify 98 packets per
second, LightGBM can be evaluated as significantly efficient
in that it shows a speed performance 230 times better than
BERT while only using CPU resources.

Considering efficiency based on hardware resources and
packet classification rate per second as the classifica-
tion model, LightGBM revealed significant performances,
as shown in Table 5. So, hereafter, we have conducted
experiments and analyses on augmented data using only
LightGBM, which has demonstrated superior performance in
terms of efficient time utilization.

C. VISUALIZATION OF CGAN LEARNING PROCESS
In terms of the model’s learning structure, the learning losses
of the generator and the discriminator of the CGAN model
have been revealed to be symmetrical graphs, as shown in
Figure 7. As described in Section III, the discriminator con-
tinuously learns a series of two samples within a batch, which
are composed of a fake sample created by the generator with a

noise vector and a condition vector as input, and a real sample
with a condition vector, based on the batch size unit.

The generator and discriminator were trained in over
400 iterations, building gradual stability. Over the epoch,
while the loss of the generator has approached zero, the loss
of the discriminator has approached 1. It can be evaluated
that the generator and discriminator successfully completed
symmetric learning as planned through the learning process.

D. MODEL ROUBUSTNESS USING AUGMENTED DATA
The original training data of 22,248 and 107,650 for each
task in Table 6 correspond to 80% of the 27,814 and 134,563
obtained in the previous preprocessing phase. Based on the
original training data, the Jittering and CGAN were applied
to proceed with the augmentation of tabular format data [82],
and SSDA data and ESDA data were obtained. As explained
in Section III, the NOISE ratio is commonly applied to both
data augmentation methods, and the ratio was kept at 10%
of the data input. As the noise ratio increased, the range of
variation in the augmented data and the number of empirical
verifications increased.

However, the performance did not necessarily increase
proportionally. Combined data was obtained by assembling
the augmented data with the original training data.

In the data augmentation process, the class selection
for augmentation and the amount of augmentation should
be essential consideration factors affecting performance.
In detail, we considered that when the class distribution of
the training data deviates significantly from the original class
distribution, the performance improvement through the class
distribution change suggested in [38] could no longer be
applicable. Therefore, we selected the number of classes and
applied data augmentation not to deviate from the original
class distribution. For example, when implementing data aug-
mentation in Task 1, the FTP class was maintained so that
its proportion did not deviate significantly from the original
overall class distribution.

FIGURE 8. Donut chart showing the distribution of combined data for
task 1 in Table 6.

VOLUME 13, 2025 6019

C.-Y. Shin et al.: Data Augmentation-Based Enhancement for Efficient Network Traffic Classification

TABLE 7. Performance comparison using LightGBM by 3 types of data and class weight.

FIGURE 9. Donut chart showing the distribution of combined data for
task 2 in Table 6.

The distribution of each data before and after data aug-
mentation can be confirmed visually by Figures 1 and 2 of
the previous Section III-A to Figures 8 and 9 of the current
section. For reference, the augmented data was generated in
approximately 30 minutes. The time it took for ESDA’s gen-
erator model to train using CGAN was less than 30 minutes,
and the total time to create the augmented data for Task
2 was 3.34 seconds and 6.79 seconds for SSDA and ESDA,
respectively. Since data distribution adjustment through data
augmentation is an empirical factor, comparing performance
test results with different distributions can be an essential
means to obtain better results.

As shown in Table 7, the three types of data are the original,
SSDA, and ESDA data. It also contains results of measuring
the performance of two types of tasks. Furthermore, when a
model learns imbalanced data, it can have a negative impact
on the model’s performance due to biased learning. So,
we added experimental results to simultaneously compare the
performance of models learned by reflecting class weights.

In Task 1, the model trained with SSDA data revealed
0.19% higher results in all performance metrics than the
model trained with the original data.

The model that reflected the class weights during the learn-
ing process showed 0.04% lower performance and 0.12%
lower than the model trained with augmented data using
ESDA. In Task 2, the model trained with ESDA data showed
0.26∼ 0.27 higher results in all performance metrics than the
model trained with the original data. The model that reflected
the class weights in the learning process showed a perfor-
mance of about 0.09% higher than the model trained with the
original data and 0.02∼0.03% higher than the model trained
with the augmented data using SSDA. However, it showed a
performance of 0.07∼0.08% lower than the data augmented
with ESDA. The model’s performance reflected class weight
in the learning process showed lower performance than the
superior model, which is among the models learned through
data augmentation (either SSDA or ESDA).

Although not shown in Table 7, models trained by applying
additional class weights to the combined data through data
augmentation showed lower performance. Therefore, the per-
formance of models using combined data in Table 7 did not
reflect class weights.

The results of applying oversampling to each task for
another contrast experiment to compare to class distribution
adjustment are shown in Table 8. For appropriate augmenta-
tion for each task during oversampling, SSDA was applied to
task 1, and ESDA was applied to task 2. Comparing Tables 7
and 8, the accuracy of the oversampling result was 0.9%
lower than that of the result that maintained the appropriate
ratio in Task 1 and 0.8% lower in Task 2. Therefore, it was
confirmed that a better result can be obtained through an
appropriate distribution that does not significantly deviate
from the original data distribution than a distribution due to
oversampling.

The data that constitutes the traffic type of Task 1 is a
class that groups similar services of different applications
into one kind and defines them with the same class label.

6020 VOLUME 13, 2025

C.-Y. Shin et al.: Data Augmentation-Based Enhancement for Efficient Network Traffic Classification

FIGURE 10. (a) Confusion matrix by applying the test data to the LightGBM model, which had been trained with the SSDA-based combined data for
task 1. (b) Confusion matrix by applying the test data to the LightGBM model, which had been trained with the ESDA-based combined data for task 2.

TABLE 8. Performance comparison by oversampling using LightGBM.

Synthetic data generated by SSDA can have variable ranges
based on the properties of individual traffic data. Therefore,
since the data generated by the SSDA method can reflect the
characteristics of the original application, it can be analyzed
that the properties of individual applications do not disappear
because they do not reflect mechanisms directly related to the
application categories generated in taxonomic terms.

However, synthetic data generated using ESDA has vari-
able ranges within the group category where the generative
model learns the characteristics of the unified group category
type of each application traffic to determine the boundary.
The reason for this may be that each class of the synthetic
data of Task 1 generated through CGAN was learned by
grouping them into a unified type according to the condition
value (i.e., label) input when the generator model G of CGAN

was trained. Due to the fundamental difference in how these
two synthetic data are generated, SSDA seems to yield better
results for task 1, data augmentation by traffic type. The
unified network traffic type characteristics of the synthetic
data generated by ESDA have been analyzed to fail to repro-
duce the characteristics of individual traffic. The visualization
analysis of the synthetic data generated by SSDA and ESDA
has been presented in Section V-E.

Figure 10 (a) demonstrates the best performance metrics
of LightGBM trained on SSDA-based Combined data for
Task 1.

Figure 10 (b) demonstrates the best performance metrics
that LightGBM, trained on ESDA-based Combined data for
Task 2. In Figure 10 (a) and (b), each value on the left diagonal
presents the accuracy for each class as a confusion matrix.
Other values on the parallel lines indicate misclassifications
into different classes.

Figure 10 (b) A detailed analysis of the confusion met-
rics reveals that AIM Chat, Email, and ICQ have relatively
low classification performance. The AIM Chat application
was difficult to distinguish from the Hangout application,
the Email application was difficult to differentiate from the
Skype application, and the ICQ application was difficult to
distinguish from the Hangout application. When analyzing
the results of the confusion metrics from the perspective of
investigating the cause, it appeared that the Skype application
had a negative effect on the classification of Email appli-
cations. In addition, the Hangout application had a negative
effect on the classification of ICQ andAIMChat applications.
These similar results were shown in other papers that tested
the performance of classifiers made with CNN [21] and

VOLUME 13, 2025 6021

C.-Y. Shin et al.: Data Augmentation-Based Enhancement for Efficient Network Traffic Classification

FIGURE 11. A graph comparing the feature phase changes of synthetic
data obtained by applying SSDA using one sample packet.

attention mechanisms [27] targeting the ISCX-VPN2016
dataset, in that the three applications had relatively low clas-
sification performance metrics.

The classification result of the model trained on data that
applied ESDA, which adds random noise to the first packet
of 15 applications containing various images, audio, and text
data, is shown in Figure 10 (b), and the result of applying
SSDA is similar. These classification performance results of
each application are identical to those derived from other
researchers’ papers mentioned above. Therefore, we can see
that even when our proposed data augmentation is applied
to the encrypted partial payload in 15 applications with
various modalities, the characteristics of each data did not
deviate significantly. The in-depth analysis of the above part
is reflected in Section V-E. The extent to which the encrypted
partial payload affects the model’s classification results was
reflected in Section VI, Discussion.

E. ANALYSING AUGMENTED DATA
To apply ESDA, the generator obtained by learning CGAN
reflects the application type under the same conditions as
the application label of the original data. Therefore, it was
possible to analyze the similarity by visualizing the grouping
of application distributions using UMAP. On the other hand,
the synthetic data applied with SSDA is obtained by adding
random noise to the individual feature values of the original
packet according to Algorithm 1. Therefore, in addition to the
distribution grouping analysis using UMAP, it was addition-
ally possible to compare the similarity for individual data by
analyzing the cosine similarity.

1) ANALYSING AUGMENTED DATA USING SSDA
Cosine similarity [83], [84] can be used to measure the
similarity between two vectors in the inner product space.
Bymeasuring the cosine of the angle between the two vectors,
we can determine approximately whether they are pointing in
the same direction. In Equation (8), conceptually, ∥x∥ is the

length of the vector. It can be defined as
√
x21+x

2
2 + · · ·+x

2
n

andmeans the Euclidean norm of vector x = (x1, x2, · · · , xn).
Similarly, ∥y∥ is the Euclidean norm of vector y. Because the
similarity(x, y), the cosine of the angle between vectors x and
y, can be obtained.

similarity (x, y) =
x · y
∥x∥ · ∥y∥

(8)

So, the packets before and after the noise were added by the
jittering Algorithm 1 were equally entered as x and y vectors,
respectively.

The resulting values approximated the original data by
about 99.70± 0.05%. Furthermore, Figure 11 illustrates a
graphical representation of phase changes that reveal how
similar the synthetic data generated by each jittering is to
the original partial packet data. As intended in Algorithm 1,
it appears that limiting the range of noise distribution to the
arithmetic deviation range within a feature unit of 63 bytes
and limiting the number of features injected with noise to
within 10% have been applied successfully.

2) ANALYSING AUGMENTED DATA USING ESDA
Uniform Manifold Approximation and Projection (UMAP)
[85] is an algorithm that enables a unique implementation
of the manifold learning technique for dimension reduc-
tion. It was created from a theoretical framework based on
Riemannian geometry and algebraic topology. It also has
practical characteristics in terms of usability because it can be
quickly applied to actual data. When t-distributed Stochastic
Neighbor Embedding (t-SNE) [86], another dimensionality
reduction algorithm embeds dimensions, the waiting time can
be a disadvantage due to the increased computational amount
according to the dimension level. On the other hand, UMAP
is a dimension reduction algorithm with significant usability
for machine learning and deep learning data because it can be
analyzed that there is no computational limitation due to the
increased dimension. So, considering convenience, we used
UMAP to visualize high-dimensional data.

Table 6 presents the original training data for each task,
which was visualized in Figure 12 using UMAP.
Two types of synthetic data created through SSDA and

ESDA with the same amount of original training data were
visualized by applying them to UMAP in Figures 13 and 14,
respectively. In all three Figures 12 ∼ 14, the left side is the
visualized data for Task 1 and the right side is the visualized
data for Task 2.

For Task 1, comparing Figures 12 (a) and 13 (a), the spo-
radic nature of the data tends to be alleviated in SSDA-based
data compared to the original training data. Comparing
Figures 13 (a) and 14 (a), the ESDA-based data has a distribu-
tion form with a single characteristic, the sporadic nature of
the SSDA-based data by class has disappeared. In connection
with the performance analysis in Table 7 above, since the
data by each class in Task 1 are different applications but
are bundles of the same type, it can be visually confirmed
that the characteristics of other applications have disappeared
through ESDA feature generalization. In terms ofmaintaining
the original characteristics of data in a bundle of similar appli-
cations, data augmentation using jittering may be suitable for
Task 1.

For Task 2, comparing Figures 12 (b) and 13 (b), the
sporadic nature of the data has tended to be alleviated in
SSDA-based data compared to the original training data.

6022 VOLUME 13, 2025

C.-Y. Shin et al.: Data Augmentation-Based Enhancement for Efficient Network Traffic Classification

FIGURE 12. (a) The original data distribution of task 1 on a two-dimensional plane using UMAP. (b) The original data distribution of task 2 on a
two-dimensional plane using UMAP.

FIGURE 13. (a) The SSDA-based data distribution of task 1 on a two-dimensional plane using UMAP. (b) The SSDA-based data distribution of task 2 on a
two-dimensional plane using UMAP.

Comparing Figures 13 (b) and 14 (b), the ESDA-based data
showed that the sporadic nature of the data for each of the
15 classes has disappeared and that each of the 15 classes has

its distribution pattern. In connection with the performance
analysis in Table 7 above, it seems that the data for each class
in Task 2 are different applications and that the characteristics

VOLUME 13, 2025 6023

C.-Y. Shin et al.: Data Augmentation-Based Enhancement for Efficient Network Traffic Classification

FIGURE 14. (a) The ESDA-based data distribution of task 1 on a two-dimensional plane using UMAP. (b) The ESDA-based data distribution of task 2 on a
two-dimensional plane using UMAP.

of each of the 15 classes are effectively distinguished and
extracted through ESDA. Applying data augmentation using
a generative model that learns the characteristics of each
application can be relatively suitable for Task 2.

After a numerical analysis of the model’s experimental
result, we extended this to visualize and analyze the data
in a verifiable manner. By visualizing the data augmented
in two opposing ways and the original data, we analyzed
the correlation between the augmentation method and the
model’s performance. The above Correlation Analysis with
Data Visualization provided a more reasonable justification.

VI. DISCUSSION
The approach to the NTC problem can be extended in various
ways depending on the range of input data. In this paper, the
basis of input to the model is packet headers and encrypted
payloads. Also, as aforementioned, the number of features
entering the deep learning model must be the same to be
valuable in comparative experiments with machine learning,
so the input was limited to 63 bytes of low packets. Figure 15
shows the accuracy variation according to the length of the
encrypted payload used as input to various models. It is an
Initial result obtained without manually adjusting hyperpa-
rameters using the Pycaret. 50 to 100 bytes, which correspond
to a portion of the first packet, significantly impact perfor-
mance. Inductive experiments that support meaningful and
diverse results in the NTC domain based on more empirical
factors are needed.

Because the packet header, which acts as structured data
in raw packets, can vary depending on the researcher’s

FIGURE 15. Accuracy variation according to the raw packet length.

perspective. It can be used as it is or differently through
representation. Encrypted payloads may be less valuable than
the representation effort due to being encrypted. In addition,
the results can vary depending on the model’s characteristics,
and the scope of research can expand further when it can be
included in the flow perspective and statistical features.

A. DATA AUGMENTATION AND OUT-OF-DISTRIBUTION
SAMPLES
Table 7 also presents the performance comparison of class
weights. The model’s performance, which reflected the class
weights during the learning process, was lower than the
superior model among the models learned through data aug-
mentation (SSDA or ESDA). As mentioned before, even

6024 VOLUME 13, 2025

C.-Y. Shin et al.: Data Augmentation-Based Enhancement for Efficient Network Traffic Classification

if the learning process includes augmented data, improv-
ing performance is difficult if the class distribution of the
data is significantly different from the original class dis-
tribution [38]. Therefore, it means that we performed data
augmentation to a degree that did not significantly deviate
from the original data distribution so that the class distribu-
tion of the augmented data did not interfere with learning.
Based on the details of our experiment, the distribution of the
augmented data did not distort the distribution of the original
data, as can be seen by comparing Figures 8 and 9 with
Figures 1 and 2. Applying proportional class weights to han-
dle imbalanced data may distort the original class distribution
during the learning process, resulting in inferior performance.
Therefore, data augmentation can be a distinguishing point
because it allows for fine-tuning of the data distribution,
unlike the cost-sensitive learning perspective [85], which
uniformly reflects class weights during the model learning
process.

From the perspective of increasing model robustness,
researchers can also relate their approach to the problem
of out-of-distribution samples [87] when trying to improve
model learning through data augmentation. The most con-
fusing part when trying to augment data is adjusting the
distribution of each class from the perspective of the approach
to the class imbalance problem. A raising adjustment also
increases the range of random noise distributions in the
augmented data, causing the model to overtrain beyond the
appropriate out-of-distribution data. This adjustment may
cause a similar effect to randomly deviating the training data
from the original data distribution, which sometimes resulted
in poor performance [51], and we experienced the same
results in our experiments.

Researchers may overlook that the distribution of the test
data, which has the same distribution range as the original
data, has not changed. This oversight may lead researchers
to augment the training data with more out-of-distribution
samples than necessary. Research into the extent to which
augmented data has appropriate out-of-distribution can be an
ongoing subject of research expansion.

B. LIMITATION AND RANGE OF EXTENSION
Applying data augmentation to increase the robustness of the
model through a new distribution of data is quite encouraging.
Still, it also presents a new challenge to solve. Although
machine learning models generally have the disadvantage
that they cannot be trained jointly by augmenting features
or connecting with deep learning blocks, the data can be
evaluated within seconds when the above data augmentation
is applied to machine learning models. Based on the details
of our experiment, data augmentation applying ESDA used
the deep learning mechanism to create synthetic data, but the
classifier’s performance improvement using the deep learning
model was within 0.05%. In addition, deep learning mod-
els had a constant time delay corresponding to the training
time. The above can be an empirical case corresponding to
the research result [54] that neural networks have difficulty

learning irregular patterns of target functions and that a rota-
tional invariant learning procedure degrades performance.
The same phenomenon can occur when deep learning models
process more non-informative features in tabular format data.
Further in-depth research is needed to approach data and
models from a broader perspective.

VII. CONCLUSION
A. SUMMARY
In this paper, the packet header and some encrypted payloads
(63 bytes) were converted into a standardized tabular form
in the first step. Then, BERT and its lightweight models
(ALBERT, DistilBERT) were adapted to the natural language
processingmechanism in the NTC domain. And Comparative
Learning was applied to test the performance of the deep
learning models with the best performance to obtain excellent
results. Next, the same input was used for tree-based machine
learning models (Random Forest, Extra Tree, LightGBM)
and compared with each other in terms of performance and
effectiveness of the deep learning models. Although the
LightGBMusing the original data was about 0.05% less accu-
rate than BERT, it was possible to classify 230 times more
packets per second. The critical fundamental of the above
is to convert the first packet into a standardized format, i.e.,
a tabular format, regardless of the packet type. It played an
important role in classifying network traffic with a substantial
performance using not a deep learning model but ‘‘efficient’’
machine learning.

To solve the data imbalance problem that can affect the
training performance of these machine learning models,
two opposing data augmentation methodologies (SSDA and
ESDA) were applied to increase data production. Among
them, the former applied jittering that randomly adds noise to
individual data, and the latter applied a generative model of
CGAN that learned the entire data and generated data based
on labels. To positively utilize the factor that data from a
minority class affects the learning of the model, it should not
deviate significantly from the distribution level of the original
data. So, we increased the training data empirically through
a circulating evaluation process.

Since SSDA had created synthetic data based on individual
data of each class, it was effective in augmenting the network
traffic type data of Task 1. As a result, the performance
increased by up to 0.19% compared to the performance of the
model learned with the original training data. Since ESDA
has created synthetic data based on the model that learned
the feature distribution of each class as it is, it was effective
in augmenting the application data of Task 2. As a result,
the performance increased by up to 0.26% compared to the
performance of the model learned with the original training
data. These analysis results were visualized using UMAP, and
a convincing verification of the analysis was possible.

B. FUTURE WORK
In the future, the research on how tree-based models outper-
form deep learning on tabular data in various domains [54]

VOLUME 13, 2025 6025

C.-Y. Shin et al.: Data Augmentation-Based Enhancement for Efficient Network Traffic Classification

seems to be extended to the NTC domain. Therefore, we will
continue to conduct more inductive empirical studies and
evaluations on deep learning using tabular data research in the
NTC domain. Next, we will study how tree-based machine
learning models can detect and internally interpret different
biases in the same data compared to deep learningmodels due
to differences in their internal algorithms. Therefore, we will
construct related modules from a post-hoc explanation per-
spective or apply explanation mechanisms from other studies
to provide a comprehensive understanding of the model and
data from a user perspective. Finally, we will secure a more
diverse open data set to test the general usability of the other
method of network traffic classification and data augmenta-
tion we implement.

REFERENCES
[1] Y. Zion, P. Aharon, R. Dubin, A. Dvir, and C. Hajaj, ‘‘Enhancing encrypted

internet traffic classification through advanced data augmentation tech-
niques,’’ 2024, arXiv:2407.16539.

[2] Y.-D. Lin, C.-N. Lu, Y.-C. Lai, W.-H. Peng, and P.-C. Lin, ‘‘Applica-
tion classification using packet size distribution and port association,’’
J. Netw. Comput. Appl., vol. 32, no. 5, pp. 1023–1030, Sep. 2009, doi:
10.1016/j.jnca.2009.03.001.

[3] A. W. Moore and K. Papagiannaki, ‘‘Toward the accurate identification
of network applications,’’ in Passive and Active Network Measurement
(Lecture Notes in Computer Science), vol. 3431, C. Dovrolis, Ed., Berlin,
Germany: Springer, 2005, pp. 41–54, doi: 10.1007/978-3-540-31966-5_4.

[4] S. Fernandes, R. Antonello, T. Lacerda, A. Santos, D. Sadok, and
T. Westholm, ‘‘Slimming down deep packet inspection systems,’’ in Proc.
IEEE INFOCOM Workshops, Apr. 2009, pp. 1–6, doi: 10.1109/INF-
COMW.2009.5072188.

[5] A. Finamore, M. Mellia, M. Meo, and D. Rossi, ‘‘KISS: Stochastic packet
inspection classifier for UDP traffic,’’ IEEE/ACM Trans. Netw., vol. 18,
no. 5, pp. 1505–1515, Oct. 2010, doi: 10.1109/TNET.2010.2044046.

[6] S. Sen, O. Spatscheck, and D. Wang, ‘‘Accurate, scalable in-network
identification of p2p traffic using application signatures,’’ in Proc. 13th Int.
Conf. World Wide Web. New York, NY, USA: Association for Computing
Machinery, May 2004, pp. 512–521, doi: 10.1145/988672.988742.

[7] M. Abbasi, A. Shahraki, and A. Taherkordi, ‘‘Deep learning for network
traffic monitoring and analysis (NTMA): A survey,’’ Comput. Commun.,
vol. 170, pp. 19–41, Mar. 2021, doi: 10.1016/j.comcom.2021.01.021.

[8] T. Shapira and Y. Shavitt, ‘‘FlowPic: Encrypted internet traffic classi-
fication is as easy as image recognition,’’ in Proc. IEEE INFOCOM
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), Apr. 2019,
pp. 680–687, doi: 10.1109/INFCOMW.2019.8845315.

[9] C.-Y. Shin, J.-T. Park, U.-J. Baek, andM.-S. Kim, ‘‘A feasible and explain-
able network traffic classifier utilizing DistilBERT,’’ IEEE Access, vol. 11,
pp. 70216–70237, 2023, doi: 10.1109/ACCESS.2023.3293105.

[10] P. Zhang, F. Chen, and H. Yue, ‘‘Detection and utilization of
new-type encrypted network traffic in distributed scenarios,’’
Eng. Appl. Artif. Intell., vol. 127, Jan. 2024, Art. no. 107196, doi:
10.1016/j.engappai.2023.107196.

[11] S. Jorgensen, J. Holodnak, J. Dempsey, K. D. Souza, A. Raghunath,
V. Rivet, N. DeMoes, A. Alejos, and A. Wollaber, ‘‘Extensible machine
learning for encrypted network traffic application labeling via uncertainty
quantification,’’ IEEE Trans. Artif. Intell., vol. 5, no. 1, pp. 420–433,
Jan. 2024, doi: 10.1109/TAI.2023.3244168.

[12] V. Paxson, ‘‘Empirically derived analytic models of wide-area TCP con-
nections,’’ IEEE/ACM Trans. Netw., vol. 2, no. 4, pp. 316–336, Aug. 1994,
doi: 10.1109/90.330413.

[13] C. Dewes, A. Wichmann, and A. Feldmann, ‘‘An analysis of internet chat
systems,’’ in Proc. ACM SIGCOMM Conf. Internet Meas., Miami Beach,
FL, USA, 2003, p. 51, doi: 10.1145/948205.948214.

[14] T. Nguyen and G. Armitage, ‘‘Training on multiple sub-flows to optimise
the use of machine learning classifiers in real-world IP networks,’’ in
Proc. 31st IEEE Conf. Local Comput. Netw., Nov. 2006, pp. 369–376, doi:
10.1109/LCN.2006.322122.

[15] R. Alshammari and A. N. Zincir-Heywood, ‘‘Can encrypted traffic
be identified without port numbers, IP addresses and payload inspec-
tion?’’ Comput. Netw., vol. 55, no. 6, pp. 1326–1350, Apr. 2011, doi:
10.1016/j.comnet.2010.12.002.

[16] T. Auld, A. W. Moore, and S. F. Gull, ‘‘Bayesian neural networks for
internet traffic classification,’’ IEEE Trans. Neural Netw., vol. 18, no. 1,
pp. 223–239, Jan. 2007, doi: 10.1109/TNN.2006.883010.

[17] T. T. T. Nguyen and G. Armitage, ‘‘A survey of techniques for internet
traffic classification using machine learning,’’ IEEE Commun. Sur-
veys Tuts., vol. 10, no. 4, pp. 56–76, 2008, doi: 10.1109/SURV.2008.
080406.

[18] K. Shim, J. Ham, B. D. Sija, andM.Kim, ‘‘Application traffic classification
using payload size sequence signature,’’ Int. J. Netw. Manage., vol. 27,
no. 5, p. 1981, Sep. 2017, doi: 10.1002/nem.1981.

[19] A. Y. Nikravesh, S. A. Ajila, C.-H. Lung, and W. Ding, ‘‘Mobile net-
work traffic prediction using MLP, MLPWD, and SVM,’’ in Proc. IEEE
Int. Congr. Big Data, Jun. 2016, pp. 402–409, doi: 10.1109/BIGDATA-
CONGRESS.2016.63.

[20] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, ‘‘End-to-end encrypted
traffic classification with one-dimensional convolution neural networks,’’
in Proc. IEEE Int. Conf. Intell. Secur. Informat. (ISI), Jul. 2017, pp. 43–48,
doi: 10.1109/ISI.2017.8004872.

[21] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian, ‘‘Deep
packet: A novel approach for encrypted traffic classification using deep
learning,’’ Soft Comput., vol. 24, no. 3, pp. 1999–2012, Feb. 2020, doi:
10.1007/s00500-019-04030-2.

[22] V. Tong, H. A. Tran, S. Souihi, and A. Mellouk, ‘‘A novel QUIC
traffic classifier based on convolutional neural networks,’’ in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Abu Dhabi, United
Arab Emirates, Dec. 2018, pp. 1–6, doi: 10.1109/GLOCOM.2018.
8647128.

[23] X. Ren, H. Gu, and W. Wei, ‘‘Tree-RNN: Tree structural recurrent neural
network for network traffic classification,’’ Exp. Syst. Appl., vol. 167,
Apr. 2021, Art. no. 114363, doi: 10.1016/j.eswa.2020.114363.

[24] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, ‘‘Net-
work traffic classifier with convolutional and recurrent neural networks
for Internet of Things,’’ IEEE Access, vol. 5, pp. 18042–18050, 2017, doi:
10.1109/ACCESS.2017.2747560.

[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. 31st Int.
Conf. Neural Inf. Process. Syst. Red Hook, NY, USA: Curran Associates
Inc., Dec. 2017, pp. 6000–6010.

[26] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[27] W. Zheng, J. Zhong, Q. Zhang, and G. Zhao, ‘‘MTT: An efficient
model for encrypted network traffic classification using multi-task trans-
former,’’ Appl. Intell., vol. 52, no. 9, pp. 10741–10756, Jan. 2022, doi:
10.1007/s10489-021-03032-8.

[28] G. Xie, Q. Li, Y. Jiang, T. Dai, G. Shen, R. Li, R. Sinnott, and S. Xia,
‘‘SAM: Self-attention based deep learning method for online traffic clas-
sification,’’ in Proc. Workshop Netw. Meets AI ML, Aug. 2020, pp. 14–20,
doi: 10.1145/3405671.3405811.

[29] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, ‘‘DISTILLER:
Encrypted traffic classification via multimodal multitask deep learning,’’
J. Netw. Comput. Appl., vols. 183–184, Jun. 2021, Art. no. 102985, doi:
10.1016/j.jnca.2021.102985.

[30] S. O. Arik and T. Pfister, ‘‘TabNet: Attentive interpretable tabular learn-
ing,’’ 2019, arXiv:1908.07442.

[31] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining.
New York, NY, USA: Association for Computing Machinery, Aug. 2016,
pp. 785–794, doi: 10.1145/2939672.2939785.

[32] S. Onishi and S. Meguro, ‘‘Rethinking data augmentation for tabular data
in deep learning,’’ 2023, arXiv:2305.10308.

[33] Y. Zoabi, O. Kehat, D. Lahav, A.Weiss-Meilik, A. Adler, and N. Shomron,
‘‘Predicting bloodstream infection outcome using machine learning,’’ Sci.
Rep., vol. 11, no. 1, p. 20101, Oct. 2021, doi: 10.1038/s41598-021-
99105-2.

[34] P. Jurkiewicz, B. Kadziołka, M. Kantor, J. Domżał, and R. Wójcik,
‘‘Machine learning-based elephant flow classification on the first
packet,’’ IEEE Access, vol. 12, pp. 105744–105760, 2024, doi:
10.1109/ACCESS.2024.3436056.

6026 VOLUME 13, 2025

http://dx.doi.org/10.1016/j.jnca.2009.03.001
http://dx.doi.org/10.1007/978-3-540-31966-5_4
http://dx.doi.org/10.1109/INFCOMW.2009.5072188
http://dx.doi.org/10.1109/INFCOMW.2009.5072188
http://dx.doi.org/10.1109/TNET.2010.2044046
http://dx.doi.org/10.1145/988672.988742
http://dx.doi.org/10.1016/j.comcom.2021.01.021
http://dx.doi.org/10.1109/INFCOMW.2019.8845315
http://dx.doi.org/10.1109/ACCESS.2023.3293105
http://dx.doi.org/10.1016/j.engappai.2023.107196
http://dx.doi.org/10.1109/TAI.2023.3244168
http://dx.doi.org/10.1109/90.330413
http://dx.doi.org/10.1145/948205.948214
http://dx.doi.org/10.1109/LCN.2006.322122
http://dx.doi.org/10.1016/j.comnet.2010.12.002
http://dx.doi.org/10.1109/TNN.2006.883010
http://dx.doi.org/10.1109/SURV.2008.080406
http://dx.doi.org/10.1109/SURV.2008.080406
http://dx.doi.org/10.1002/nem.1981
http://dx.doi.org/10.1109/BIGDATACONGRESS.2016.63
http://dx.doi.org/10.1109/BIGDATACONGRESS.2016.63
http://dx.doi.org/10.1109/ISI.2017.8004872
http://dx.doi.org/10.1007/s00500-019-04030-2
http://dx.doi.org/10.1109/GLOCOM.2018.8647128
http://dx.doi.org/10.1109/GLOCOM.2018.8647128
http://dx.doi.org/10.1016/j.eswa.2020.114363
http://dx.doi.org/10.1109/ACCESS.2017.2747560
http://dx.doi.org/10.1007/s10489-021-03032-8
http://dx.doi.org/10.1145/3405671.3405811
http://dx.doi.org/10.1016/j.jnca.2021.102985
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1038/s41598-021-99105-2
http://dx.doi.org/10.1038/s41598-021-99105-2
http://dx.doi.org/10.1109/ACCESS.2024.3436056

C.-Y. Shin et al.: Data Augmentation-Based Enhancement for Efficient Network Traffic Classification

[35] Q. Wen, L. Sun, F. Yang, X. Song, J. Gao, X. Wang, and H. Xu,
‘‘Time series data augmentation for deep learning: A survey,’’ in Proc.
13th Int. Joint Conf. Artif. Intell., Aug. 2021, pp. 4653–4660, doi:
10.24963/ijcai.2021/631.

[36] J. Dsouza, V. B. Shukla, V. Bhatia, and S. K. Pandey, ‘‘Enhancing classi-
fication of traffic sign using multi-technique data augmentation,’’ in Proc.
IEEE 7th Conf. Inf. Commun. Technol. (CICT), Dec. 2023, pp. 1–8, doi:
10.1109/cict59886.2023.10455608.

[37] B. K. Iwana and S. Uchida, ‘‘An empirical survey of data augmentation for
time series classification with neural networks,’’ PLoS ONE, vol. 16, no. 7,
Jul. 2021, Art. no. e0254841, doi: 10.1371/journal.pone.0254841.

[38] G. M. Weiss and F. Provost, ‘‘The effect of class distribution on classifier
learning: An empirical study,’’ Dept. Comput. Sci., Rutgers Univ., Tech.
Rep.ML-TR-44, p. 26, Aug. 2001. [Online]. Available: https://scholarship.
libraries.rutgers.edu/esploro/outputs/technicalDocumentation/The-effect-
of-class-distribution-on/991031550244404646#details

[39] H. Y. He, Z. Guo Yang, and X. N. Chen, ‘‘PERT: Payload encoding
representation from transformer for encrypted traffic classification,’’ in
Proc. ITU Kaleidoscope, Industry-Driven Digit. Transformation (ITU K),
Dec. 2020, pp. 1–8, doi: 10.23919/ITUK50268.2020.9303204.

[40] X. Lin, G. Xiong, G. Gou, Z. Li, J. Shi, and J. Yu, ‘‘ET-BERT:A contextual-
ized datagram representation with pre-training transformers for encrypted
traffic classification,’’ 2022, arXiv:2202.06335.

[41] Y. Xu, J. Cao, K. Song, Q. Xiang, and G. Cheng, ‘‘FastTraffic:
A lightweight method for encrypted traffic fast classification,’’
Comput. Netw., vol. 235, Nov. 2023, Art. no. 109965, doi:
10.1016/j.comnet.2023.109965.

[42] F. Sohil, M. U. Sohali, and J. Shabbir, ‘‘An introduction to statistical
learning with applications in R: By Gareth James, Daniela Witten, Trevor
Hastie, and Robert Tibshirani, New York, Springer Science and Bus.
Media, 2013, $41.98,’ Stat. Theory Relat. Fields, vol. 6, no. 1, p. 87,
Jan. 2022, doi: 10.1080/24754269.2021.1980261.

[43] S. Rezaei and X. Liu, ‘‘Deep learning for encrypted traffic classification:
An overview,’’ IEEE Commun. Mag., vol. 57, no. 5, pp. 76–81, May 2019,
doi: 10.1109/MCOM.2019.1800819.

[44] A. Vlăduţu, D. Comăneci, and C. Dobre, ‘‘Internet traffic classification
based on flows’ statistical properties with machine learning,’’ Int. J. Netw.
Manage., vol. 27, no. 3, p. 1929, May 2017, doi: 10.1002/nem.1929.

[45] A. C. Gilbert, W. Willinger, and A. Feldmann, ‘‘Scaling analysis of con-
servative cascades, with applications to network traffic,’’ IEEE Trans.
Inf. Theory, vol. 45, no. 3, pp. 971–991, Apr. 1999. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/761336

[46] R. H. Riedi and W. Willinger, ‘‘Toward an improved understanding of net-
work traffic dynamics,’’ in Self-Similar Network Traffic and Performance
Evaluation, 1st ed., K. Park and W. Willinger, Eds., Hoboken, NJ, USA:
Wiley, 2000, pp. 507–530, doi: 10.1002/047120644X.ch20.

[47] J. Zhao, X. Jing, Z. Yan, and W. Pedrycz, ‘‘Network traffic classification
for data fusion: A survey,’’ Inf. Fusion, vol. 72, pp. 22–47, Aug. 2021, doi:
10.1016/j.inffus.2021.02.009.

[48] J. Kampeas, A. Cohen, and O. Gurewitz, ‘‘Traffic classification
based on zero-length packets,’’ IEEE Trans. Netw. Service Man-
age., vol. 15, no. 3, pp. 1049–1062, Sep. 2018. [Online]. Available:
https://ieeexplore.ieee.org/document/8335764

[49] C. Shorten and T.M. Khoshgoftaar, ‘‘A survey on image data augmentation
for deep learning,’’ J. Big Data, vol. 6, no. 1, p. 60, Jul. 2019, doi:
10.1186/s40537-019-0197-0.

[50] J. Zhao and X. He, ‘‘NTAM-LSTM models of network traffic prediction,’’
in Proc. MATEC Web Conf., vol. 355, 2022, p. 02007, doi: 10.1051/mate-
cconf/202235502007.

[51] P. Wang, F. Ye, X. Chen, and Y. Qian, ‘‘Datanet: Deep learning
based encrypted network traffic classification in SDN home gate-
way,’’ IEEE Access, vol. 6, pp. 55380–55391, 2018. [Online]. Available:
https://ieeexplore.ieee.org/document/8473682

[52] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani,
‘‘Characterization of encrypted and VPN traffic using time-related fea-
tures,’’ inProc. 2nd Int. Conf. Inf. Syst. Security Privacy, Rome, Italy, 2016,
pp. 407–414, doi: 10.5220/0005740704070414.

[53] T. Zhang, H. Qiu, M. Mellia, Y. Li, H. Li, and K. Xu, ‘‘Interpreting AI for
networking:Where we are andwhere we are going,’’ IEEECommun.Mag.,
vol. 60, no. 2, pp. 25–31, Feb. 2022, doi: 10.1109/MCOM.001.2100736.

[54] L. Grinsztajn, E. Oyallon, and G. Varoquaux, ‘‘Why do tree-based models
still outperform deep learning on tabular data?’’ 2022, arXiv:2207.08815.

[55] H. He and E. A. Garcia, ‘‘Learning from imbalanced data,’’ IEEE
Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009, doi:
10.1109/TKDE.2008.239.

[56] H. Yao, C. Liu, P. Zhang, S. Wu, C. Jiang, and S. Yu, ‘‘Identification
of encrypted traffic through attention mechanism based long short term
memory,’’ IEEE Trans. Big Data, vol. 8, no. 1, pp. 241–252, Feb. 2022,
doi: 10.1109/TBDATA.2019.2940675.

[57] S. Ahn, J. Kim, S. Y. Park, and S. Cho, ‘‘Explaining deep learning-based
traffic classification using a genetic algorithm,’’ IEEE Access, vol. 9,
pp. 4738–4751, 2021, doi: 10.1109/ACCESS.2020.3048348.

[58] W. Ruoyu, L. Zhen, and Z. Ling, ‘‘A new re-sampling method for network
traffic classification using SML,’’ in Proc. 2nd Int. Conf. Inf. Sci. Eng.,
Dec. 2010, pp. 1735–1738, doi: 10.1109/ICISE.2010.5688893.

[59] N. V. Chawla, K. W. Bowyer, L. O. Hall, andW. P. Kegelmeyer, ‘‘SMOTE:
Synthetic minority over-sampling technique,’’ J. Artif. Intell. Res., vol. 16,
pp. 321–357, Jun. 2002, doi: 10.1613/jair.953.

[60] D. Ramachandram andG.W. Taylor, ‘‘Deepmultimodal learning: A survey
on recent advances and trends,’’ IEEE Signal Process. Mag., vol. 34, no. 6,
pp. 96–108, Nov. 2017, doi: 10.1109/MSP.2017.2738401.

[61] A. Nascita, A. Montieri, G. Aceto, D. Ciuonzo, V. Persico, and
A. Pescapé, ‘‘XAI meets mobile traffic classification: Understanding
and improving multimodal deep learning architectures,’’ IEEE Trans.
Netw. Service Manage., vol. 18, no. 4, pp. 4225–4246, Dec. 2021, doi:
10.1109/TNSM.2021.3098157.

[62] P. Lin, K. Ye, Y. Hu, Y. Lin, and C.-Z. Xu, ‘‘A novel multi-
modal deep learning framework for encrypted traffic classification,’’
IEEE/ACM Trans. Netw., vol. 31, no. 3, pp. 1369–1384, Jun. 2023, doi:
10.1109/TNET.2022.3215507.

[63] Y. Zhang and Q. Yang, ‘‘A survey on multi-task learning,’’ IEEE Trans.
Knowl. Data Eng., vol. 34, no. 12, pp. 5586–5609, Dec. 2022, doi:
10.1109/TKDE.2021.3070203.

[64] J.-T. Park, C.-Y. Shin, U.-J. Baek, and M.-S. Kim, ‘‘Fast and accurate
multi-task learning for encrypted network traffic classification,’’Appl. Sci.,
vol. 14, no. 7, p. 3073, Apr. 2024, doi: 10.3390/app14073073.

[65] Y. Wang, Q. Yao, J. Kwok, and L. M. Ni, ‘‘Generalizing from a few
examples: A survey on few-shot learning,’’ 2024, arXiv:1904.05046.

[66] A. Parnami and M. Lee, ‘‘Learning from few examples: A summary of
approaches to few-shot learning,’’ 2022, arXiv:2203.04291.

[67] Y.-X.Wang, R. Girshick,M. Hebert, and B. Hariharan, ‘‘Low-shot learning
from imaginary data,’’ 2018, arXiv:1801.05401.

[68] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian,
‘‘Traffic classification on the fly,’’ ACM SIGCOMM Comput. Commun.
Rev., vol. 36, no. 2, pp. 23–26, Apr. 2006, doi: 10.1145/1129582.1129589.

[69] G. Xie, Q. Li, and Y. Jiang, ‘‘Self-attentive deep learning method for online
traffic classification and its interpretability,’’ Comput. Netw., vol. 196,
Sep. 2021, Art. no. 108267, doi: 10.1016/j.comnet.2021.108267.

[70] R. Longadge and S. Dongre, ‘‘Class imbalance problem in data mining
review,’’ 2013, arXiv:1305.1707.

[71] B. Sathianarayanan, Y. C. Singh Samant, P. S. Conjeepuram Guruprasad,
V. B. Hariharan, and N. D. Manickam, ‘‘Feature-based augmentation and
classification for tabular data,’’ CAAI Trans. Intell. Technol., vol. 7, no. 3,
pp. 481–491, Sep. 2022, doi: 10.1049/cit2.12123.

[72] T. T. Um, F. M. J. Pfister, D. Pichler, S. Endo, M. Lang, S. Hirche,
U. Fietzek, and D. Kulić, ‘‘Data augmentation of wearable sensor data
for Parkinson’s disease monitoring using convolutional neural networks,’’
in Proc. 19th ACM Int. Conf. Multimodal Interact., Glasgow, U.K.,
Nov. 2017, pp. 216–220, doi: 10.1145/3136755.3136817.

[73] K. Rashid and J. Louis, ‘‘Time-warping: A time series data augmentation
of IMU data for construction equipment activity identification,’’ 2019, doi:
10.22260/ISARC2019/0087.

[74] M. Mirza and S. Osindero, ‘‘Conditional generative adversarial nets,’’
2014, arXiv:1411.1784.

[75] G. Hinton, O. Vinyals, and J. Dean, ‘‘Distilling the knowledge in a neural
network,’’ 2015, arXiv:1503.02531.

[76] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
‘‘ALBERT: A lite BERT for self-supervised learning of language repre-
sentations,’’ 2019, arXiv:1909.11942.

[77] M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and Ł. Kaiser, ‘‘Univer-
sal transformers,’’ 2018, arXiv:1807.03819.

[78] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, ‘‘DistilBERT, a dis-
tilled version of BERT: Smaller, faster, cheaper and lighter,’’ 2019,
arXiv:1910.01108.

VOLUME 13, 2025 6027

http://dx.doi.org/10.24963/ijcai.2021/631
http://dx.doi.org/10.1109/cict59886.2023.10455608
http://dx.doi.org/10.1371/journal.pone.0254841
http://dx.doi.org/10.23919/ITUK50268.2020.9303204
http://dx.doi.org/10.1016/j.comnet.2023.109965
http://dx.doi.org/10.1080/24754269.2021.1980261
http://dx.doi.org/10.1109/MCOM.2019.1800819
http://dx.doi.org/10.1002/nem.1929
http://dx.doi.org/10.1002/047120644X.ch20
http://dx.doi.org/10.1016/j.inffus.2021.02.009
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1051/matecconf/202235502007
http://dx.doi.org/10.1051/matecconf/202235502007
http://dx.doi.org/10.5220/0005740704070414
http://dx.doi.org/10.1109/MCOM.001.2100736
http://dx.doi.org/10.1109/TKDE.2008.239
http://dx.doi.org/10.1109/TBDATA.2019.2940675
http://dx.doi.org/10.1109/ACCESS.2020.3048348
http://dx.doi.org/10.1109/ICISE.2010.5688893
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1109/MSP.2017.2738401
http://dx.doi.org/10.1109/TNSM.2021.3098157
http://dx.doi.org/10.1109/TNET.2022.3215507
http://dx.doi.org/10.1109/TKDE.2021.3070203
http://dx.doi.org/10.3390/app14073073
http://dx.doi.org/10.1145/1129582.1129589
http://dx.doi.org/10.1016/j.comnet.2021.108267
http://dx.doi.org/10.1049/cit2.12123
http://dx.doi.org/10.1145/3136755.3136817
http://dx.doi.org/10.22260/ISARC2019/0087

C.-Y. Shin et al.: Data Augmentation-Based Enhancement for Efficient Network Traffic Classification

[79] Wayback Machine. Accessed: Aug. 21, 2024. [Online]. Available:
https://web.archive.org/web/20160417030218/http://ect.bell-
labs.com/who/tkh/publications/papers/odt.pdf

[80] P. Geurts, D. Ernst, and L. Wehenkel, ‘‘Extremely randomized trees,’’
Mach. Learn., vol. 63, no. 1, pp. 3–42, Apr. 2006, doi: 10.1007/s10994-
006-6226-1.

[81] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T. Y. Liu, ‘‘LightGBM: A highly efficient gradient boosting decision
tree,’’ in Proc. 31st Conf. Neural Inf. Process. Syst. (NIPS). Long
Beach, CA, USA: Curran Associates, 2017. Accessed: Jan. 7, 2025.
[Online]. Available: https://proceedings.neurips.cc/paper/2017/hash/
6449f44a102fde848669bdd9eb6b76fa-Abstract.html

[82] L. Xu,M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni, ‘‘Mod-
eling tabular data using conditional GAN,’’ 2019, arXiv:1907.00503.

[83] A. R. Lahitani, A. E. Permanasari, and N. A. Setiawan, ‘‘Cosine similarity
to determine similarity measure: Study case in online essay assessment,’’
in Proc. 4th Int. Conf. Cyber IT Service Manage., Apr. 2016, pp. 1–6, doi:
10.1109/CITSM.2016.7577578.

[84] H. Steck, C. Ekanadham, and N. Kallus, ‘‘Is cosine-similarity of embed-
dings really about similarity?’’ 2024, arXiv:2403.05440.

[85] L. McInnes, J. Healy, and J. Melville, ‘‘UMAP: Uniformmanifold approx-
imation and projection for dimension reduction,’’ 2020, arXiv:1802.03426.

[86] L. van der Maaten and G. Hinton, ‘‘Viualizing data using t-SNE,’’
J. Mach. Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

[87] S. Liang, Y. Li, and R. Srikant, ‘‘Enhancing the reliability of out-of-
distribution image detection in neural networks,’’ 2017, arXiv:1706.02690.

CHANG-YUI SHIN received the B.S. degree in
operating analysis from Korea Military Academy,
Seoul, in 2003, and the M.S. degree in elec-
tronic computer engineering from Korea Univer-
sity, Seoul, in 2007. Since being commissioned
as an Army Officer, in 2003, his service depart-
ment has been Information Communication with
Korean Army. At the time, he researched the
field of mobile ad-hoc networks. After that,
he became interested in practicalization while

working in related diverse organizations such as weapon system planning,
interoperability, development quality management, and actual operation.
From 2022 to 2024, his doctoral course, he researched internet traffic classi-
fication, networkmanagement, and AI at the Laboratory of Korea University,
Sejong Campus.

YANG-SEO CHOI received the B.S. degree in
computer science fromKangwonNational Univer-
sity, Republic of Korea, in 1996, the M.S. degree
in computer engineering from Sogang University,
Republic of Korea, in 2000, and the Ph.D. degree
in computer engineering fromChungnamNational
University, Republic of Korea, in 2011. Since
2000, he has been with Electronics and Telecom-
munications Research Institute (ETRI), Daejeon,
Republic of Korea, where he is currently working

as a PrincipalMember with the Department of Cyber Security ResearchDivi-
sion. His recent research interests include machine learning based network
traffic analysis, vulnerability analysis, and intelligent cyber/network security.

MYUNG-SUP KIM (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in com-
puter science and engineering from POSTECH,
South Korea, in 1998, 2000, and 2004, respec-
tively. From September 2004 to August 2006,
he was a Postdoctoral Fellow at the Department of
Electrical and Computer Engineering, University
of Toronto, Canada. He joined Korea University,
South Korea, in 2006, where he is currently work-
ing as a Full Professor with the Department of

Computer Convergence Software. His research interests include internet
traffic monitoring and analysis, service and network management, the future
internet, and internet security.

6028 VOLUME 13, 2025

http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/10.1109/CITSM.2016.7577578

