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Abstract— This research focuses on the input shape of CNN-

based application traffic. The previously proposed multi-input 

model CNN classification method classified applications 

through various shapes of features derived from fixed-length 

packets, achieving a higher classification accuracy compared to 

traditional CNNs. However, it had limitations such as 

vulnerability to overfitting despite its high classification 

accuracy and slow inference speed. To overcome these 

challenges, we introduce a lightweight version of the previously 

proposed MISCNN, called MISCNN+. MISCNN+ 

demonstrated approximately 2.9 times faster inference speed 

and a 3.6% improvement in classification accuracy compared to 

the previous version. 
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I. INTRODUCTION 

In recent years, due to the proliferation of various 
applications and services, the field of application traffic 
classification, which is a subdomain of network management, 
has been gaining increasing importance. Application traffic 
classification is the process of categorizing network traffic 
based on the applications or services responsible for 
generating it. Accurate application traffic classification is 
crucial for understanding network traffic patterns and 
optimizing network performance. Network administrators can 
make informed decisions about resource allocation and 
capacity planning by identifying specific applications through 
traffic classification. Application traffic classification finds 
applications in various domains, including network 
optimization, network security, quality of service (QoS) 
assurance, regulatory compliance, billing, and accounting. 

The technology of application traffic classification has 
evolved over time, transitioning from traditional heuristic 
methods to current deep learning-based classification 
techniques. Notably, there has been extensive research into 
CNN-based application traffic classification, with impressive 
research outcomes. However, prior studies in CNN-based 
application traffic classification did not fully consider the 
shape of the input model for CNNs. Depending on the shape 
of the input model and kernel, CNNs can extract features of 
varying shapes. Recognizing this, Baek et al. proposed the 
MISCNN method, which simultaneously learns different 
shapes derived from fixed-length byte sequences. This 
approach achieved a higher classification accuracy compared 
to conventional studies using simple 1D or square-shaped 
models. However, MISCNN had limitations such as high 
computational resource consumption and slow inference 
speed.  

In this paper, we introduce MISCNN+, a lightweight 
version of the existing MISCNN model. MISCNN+ leverages 
Global Average Pooling (GAP) and Global Max Pooling 
(GMP) to extract more generalized features compared to the 
original model, resulting in a 3.6% improvement in 
classification accuracy. Furthermore, by selectively adopting 
and applying only a subset of shapes derived from fixed-
length byte sequences, we significantly reduce computational 
resource consumption. MISCNN+ demonstrates 
approximately 2.9 times faster inference speed compared to 
the previous version.  

The remaining sections of the paper cover related research, 
dataset descriptions, the proposed methodology, experimental 
results, and conclusions. 

II. RELATED WORKS 

TABLE I.  LIST OF INPUT SHAPES USED IN RECENT STUDIES 

# Year Input shape Dimension Input size 

[1] 2021 Linear 1D 784 

[10] 2021 Linear 1D 1480 

[8] 2021 Square 2D (28, 28) 

[6] 2021 Linear 1D 256 

[7] 2022 Linear 1D not provided 

[11] 2022 Linear 1D 1480 

[5] 2022 Linear 1D 1480 

[9] 2022 Square 2D (28, 28) 

[13] 2022 Linear 1D 1500 

 

In this chapter, we investigate the latest CNN-based 
studies using the ISCX VPN-non VPN 2016 dataset and focus 
on the input shape used in these studies. Table 1 presents the 
shape and size of the input used in recent CNN-based 
application traffic classification studies. It is evident that the 
majority of studies have adopted a linear shape, with 
approximately half of them setting the input size close to the 
MTU (Max Transmission Unit). According to comparative 
results from some studies, it has been reported that 1D CNNs 
using a linear shape outperform 2D CNNs using a square 
shape [12, 13]. Furthermore, most studies do not provide 
criteria for determining the shape and size of the input. Some  
studies have indicated the following criteria for determining 
the shape or size: [1] set the shape and size to facilitate 
comparison with previous research, while [8] set the input 
shape to match the input shape of the deep learning backbone 
network. [13] compared the classification results of 1D CNNs  

using a linear shape and 2D CNNs using a square shape. Most 
studies do not consider the input shape or provide criteria for 
selecting the respective shape. However, we have 
experimentally demonstrated that if an appropriate input 



 

 

shape is chosen based on prior research, it can enhance 
classification performance [2]. 

III. PRELIMINARIES 

A. Dataset description  

The ISCX VPN-nonVPN 2016 dataset in raw pcap format 
is used to evaluate the classification performance [3]. This 
dataset includes traffic from various applications, covering 
normal sessions and sessions encapsulated over VPN. It 
serves as the basis for evaluating the model's performance in 
three tasks. Firstly, the model is trained to classify whether the 
input traffic was encapsulated over VPN or not (binary 
classification). Secondly, it categorizes the input traffic into 
six categories based on similar application functions. For 
example, Netflix and YouTube are grouped under the 
"Streaming" category. Lastly, the model categorizes the input 
traffic based on the application that generated it. This paper 
specifically focuses on category classification among the three 
tasks. Detailed information about these tasks is provided in 
Table 2. 

TABLE II.  CLASSIFICATION TASK OF ISCX VPN-NONVPN 2016 

Tasks Classes 

Encapsulation VPN, non-VPN 

Category 
VoIP, File Transfer, P2P, 

Streaming, Chat, Email 

Application 

Skype, Torrent, Hangouts, VoIP 
Buster, Facebook, FTPs, SCP, 

Email, Youtube, Vimeo, Spotify, 

Neflix, SFTP, Aim, ICQ 

 

B. Dataset cleaning  

To evaluate the proposed method, the dataset with a PCAP 
extension is preprocessed and fed into a deep learning model 
as input. In order to ensure the effectiveness of the learning 
process, all packets in the dataset are reconstructed into 
bidirectional flows based on the same 5-tuple. However, it 
should be noted that a portion of these reconstructed 
bidirectional flows may not be relevant to the actual 
application functions, posing a challenge for the learning 
process. In addition, incomplete TCP flows (lacking the 3-way 
handshake) were excluded from the dataset to avoid any 
potential interference with the learning of temporal features in 
the packet flow. Following the preprocessing step, a total of 
29.4K bidirectional flows were successfully extracted. 

IV. PROPOSED METHOD 

A. Overview of MISCNN  

The training of the cleaned dataset to create an inference 
model involves two main steps: preprocessing and training, as 
depicted in Figure 1. In the preprocessing step, the input 
PCAP traces are preprocessed to conform to the input 
requirements of the training model. The PCAP traces are 
aggregated into bi-flows based on the 5-tuple of each packet, 
and the packet bytes are converted into real numbers. Given 
that the input to the training model needs to be normalized, we 
either zero-pad the packet byte sequence or truncate the bytes 
to match a predetermined size. Moreover, the number of 
packets within a flow can vary depending on the application's 
behavior. To handle this, we add or remove empty packets to 
align the flow with the predetermined number of packets. In 
the training process, the preprocessed three-dimensional data 
is fed into the model on an instance-by-instance basis. 
Depending on the batch size, multiple instances can be 
simultaneously input and trained. Each instance represents a 
single bi-flow, and the MISCNN scheme extracts multifaceted 
features from each bi-flow. To accomplish this, each packet 
within the input bi-flow is duplicated and reshaped into 
different shapes. The reshaped packets then pass through MIS 
blocks, which are tailored for each input shape, to extract 
spatial features from the packets. The extracted spatial 
features from each packet are concatenated and processed 
through a bi-GRU (bidirectional Gated Recurrent Unit), which 
captures the temporal features of the packets within the flow 
and linearly transforms them into features for final 
classification. These transformed features, acquired through 
the learning process, are employed for the three classification 
tasks: encapsulation, category, and application.   

Within the MISCNN scheme, the MIS block plays a 
crucial role in extracting spatial features from packets with 
varying shapes. Comprised of six residual blocks [4], as 
illustrated in (a) of Figure 2, the MIS block progressively 
increases the number of channels. Beginning with eight 
channels, the block doubles the channel count, eventually 
reaching 64 channels. To manage the abundance of features 
and prevent overfitting, the extracted spatial features are 
condensed and combined through Global Average Pooling 
(GAP), Global Max Pooling (GMP), and a Fully-connected 
(FC) layer. 

 

Fig. 1. Overview of MISCNN+ 



 

 

 

Fig. 2.Overview of MIS block 

B. Ligthening 

There are two methods employed to enhance the 
lightweight nature of the proposed approach.  

The first method is to apply Global Average Pooling (GAP) 
and Global Max Pooling (GMP) to the spatial features 
obtained after passing through the MIS block. Global Average 
Pooling calculates the average value of each feature map 
across all spatial locations, providing a feature vector that 
summarizes the information. Similarly, Global Max Pooling 
selects the maximum value from each feature map at every 
spatial location, generating a feature vector that captures the 
most important information. These pooling techniques help 
prevent overfitting, reduce computation, and are less sensitive 
to small spatial transformations compared to other pooling 
methods like max pooling. Additionally, the utilization of 
Fully-Connected layers (FCs) alongside GAP and GMP is 
recommended to mitigate information loss. By incorporating 
small FCs, the approach can achieve significant accuracy 
improvements without a significant increase in computational 
cost. 

The second method involves selectively using a subset of 
shapes in a multi-shape split of the MISCNN scheme. The 
MISCNN method employs filters that extract features from 
multiple models based on a single packet, allowing for a 
detailed representation of the flow. However, overly detailed 
features can lead to overfitting and increased inference time. 
To address this, it is suggested to select only a subset of 
models extracted from a single packet. For instance, when the 
packet size is 784, the number of extractable models can be 
15, which aligns with the number of divisors of the packet size. 
Table 3 not only presents the available models that can be 
extracted from a single packet but also outlines the 
configurations of the Kernel and Strides for the Convolution 
layers applied to each model. 

V. EXPERIMENTS 

A. Metrics setup 

The main evaluation metrics used with the proposed 
methodology are Accuracy, F-measure, which are commonly 
employed in the field of network traffic classification. 
Additionally, in some evaluations, assessment is conducted 
regarding the inference time. 

TABLE III.  CLASSIFICATION TASK OF ISCX VPN-NONVPN 2016 

Input shape Kernel Strides 

(1, 784) (1, 98) (1, 2) 

(2, 392) (1, 49) (1, 2) 

(4, 196) (1, 24) (1, 2) 

(7, 112) (1, 14) (1, 2) 

(8, 98) (1, 12) (1, 2) 

(14, 56) (1, 7) (1, 2) 

(16, 49) (2, 6) (2, 2) 

(28, 28) (3, 3) (2, 2) 

(49, 16) (6, 2) (2, 2) 

(56, 14) (7, 1) (2, 1) 

(98, 8) (12, 1) (2, 1) 

(112, 7) (14, 1) (2, 1) 

(196, 4) (24, 1) (2, 1) 

(392, 2) (49, 1) (2, 1) 

(784, 1) (98, 1) (2, 1) 

 

B. Influence of shape combination 

In this paragraph, we present a comparison of 
classification accuracy and inference time based on different 
combinations of shapes. These combinations consist of up to 
three models, denoted by the central index "m" and the last 
index "z" in the shape array. To conduct the comparison, we 
generated a set of 16 random shape combinations, including 2 
combinations using a single shape (1D or 2D CNN), 8 
combinations using 2 shapes, and 6 combinations using 3 
shapes. The 17th combination at the bottom represents the 
scenario where all shapes are used. Table 4 provides a 
comparison of Accuracy, F1-score, and Inference Time for 
these 17 combinations. 

Based on the experimental results, the model using the 8th 
combination exhibited the highest performance, 
demonstrating approximately 6-7% improvement in Accuracy 
and F1-score compared to the first combination (1D-CNN) 
and the second combination  (2D-CNN). Additionally, it 
showed a 1.3% improvement compared to the third 
combination that combined 1D-CNN and 2D-CNN from a 
previous study [11], as well as approximately 3.5% 
improvement compared to the MISCNN baseline that utilized 
all shapes.  In terms of inference time, the model using the 8th 
combination enabled the classification of 43% fewer flows 
compared to the model based on 2D-CNN within the same 
time. However, considering that classification accuracy is 
generally more important than inference time in the field of 
traffic classification, the trade-off between accuracy and 
inference time is justified. The 7% improvement in accuracy 
and 43% decrease in inference time (when comparing 
combination 8 with combination 2) for the inference model 
are reasonable. Furthermore, when comparing the 8th 
combination with the MISCNN baseline, there is a 3.4% 
improvement in accuracy and a significant 191% 
improvement in inference time.  

C. Influence of applying the GMP layer and GAP layer 

Table 5 illustrates the impact of incorporating the 
GMP/GAP layer on the performance of MISCNN+. By 
combining the results from a FC (fully connected) layer with 
16 units, GMP layer, and GAP layer, we achieve an accuracy 
improvement of 3.6% and an f-measure improvement of 3.3% 
compared to using only the fully connected layer with 32 units. 

 

 



 

 

TABLE IV.  EFFECT OF SHAPE COMBINATION ON THE PERFORMANCE OF 

THE MISCNN+ 

# 
1st 

shape 

2nd  

shape 

3rd 

shape 

Accu

racy 

F1-

score 

Inference time 

(flows/s) 

1 0   0.906 0.908 1033 

2 m   0.901 0.901 1415 

3 0 m  0.959 0.959 803 

4 0 m+1  0.916 0.917 767 

5 1 m  0.961 0.962 796 

6 1 m+1  0.919 0.921 769 

7 1 m+2  0.916 0.918 693 

8 2 m  0.972 0.97 808 

9 2 m+1  0.934 0.938 707 

10 2 m+2  0.918 0.919 769 

11 0 m+1 z-1 0.924 0.925 627 

12 0 m z-2 0.956 0.956 606 

13 1 m+1 z-1 0.928 0.929 609 

14 1 m z-2 0.926 0.962 654 

15 0 m+1 z-1 0.923 0.924 617 

16 0 m z-2 0.958 0.958 649 

17 
MISCNN 

(all shape used) 
0.938 0.934 277 

 

TABLE V.  THE IMPACT OF APPLYING THE GMP/GAP LAYER ON THE 

PERFORMANCE OF MISCNN+ 

 Accuracy F1-score 

FC(16) + GMP + GAP 0.972 0.97 

FC(32) 0.936 0.937 

D. Influence of applying the GMP layer and GAP layer 

Table 6 presents the performance comparison results 
between MISCNN+ and existing research methods in the field 
of application traffic classification. MISCNN+ achieves a 3.5% 
higher accuracy and a 5.5% higher F-measure compared to the 
existing research methods. 

TABLE VI.  COMPARISON WITH OTHER METHODS 

Method Ref. no Accuracy F-measure 

1D-CNN [14] 0.874 0.835 

2D-CNN [15] 0.874 0.835 

1D-CNN [16] 0.829 0.762 

DISTILLER [1] 0.937 0.915 

MISCNN [2] 0.938 0.934 

MISCNN++ 
(proposed) 

- 0.972 0.97 

VI. CONCLUSION 

This paper introduces the improved Multi Input Shape 
CNN (MISCNN+) method, which can be universally applied 
to CNN-based application traffic classifiers, and proposes two 
enhancements to improve its performance. Existing CNN-
based models for application traffic classification accept only 
one-dimensional or square input vectors, limiting the 
flexibility of input shapes. To address this, we propose 
MISCNN, which combines multiple models derived from 
fixed-length packets to extract features. However, increasing 
the number of shapes can lead to slower inference speed and 
overfitting. To overcome these limitations, we propose two 
enhancements. 

Firstly, we utilize Global Average Pooling (GAP) and 
Global Max Pooling (GMP) to enhance the generalization 
capability of the models. The models with GAP and GMP 
applied achieve a 3.6% improvement in accuracy and a 3.3% 
improvement in F-measure compared to the method that 
aggregates features into the fully connected layer from the 

conventional Residual block. Secondly, instead of using all 
possible shapes derived from fixed-length packets, we select 
a subset of shapes. For instance, if the input packet size is 784 
bytes, there are 15 possible shapes that can be derived, 
corresponding to the number of divisors of the packet size. 
Using all these shapes incurs significant penalties in terms of 
inference time and tends to lead to overfitting. Therefore, in 
this paper, we aim to improve accuracy and inference time by 
selecting only a subset of derived shapes. Experimental results 
show that using a minimum of two shapes significantly 
improves accuracy, resulting in a 6-7% accuracy increase 
compared to the previous studies that used single one-
dimensional or square vector inputs (1D-CNN-based, 2D-
CNN-based). Additionally, the implemented ResNet-based 
backbone network and the inference model with the proposed 
method achieve comparable classification results to state-of-
the-art research, and they can be applied to various model 
structures proposed in other CNN-based classification studies 
without constraints. 

Considering the limitations of the proposed method, 
several future research directions or challenges can be 
identified. Firstly, exploring advanced techniques to optimize 
deep learning models is a promising avenue. Secondly, 
improving the performance of application traffic classification 
in environments where IP headers are not available is a 
significant challenge. Our private experimental results 
demonstrate that the accuracy can decrease by up to 15% 
when the dataset trained without the IP header is used, 
indicating the model's reliance on information within the IP 
layer, particularly server-side addresses. To address this, 
methods that actively utilize payload information in the 
application layer instead of the IP layer can be explored, such 
as extracting new features (statistical features, etc.) or 
incorporating recent deep learning techniques (attention 
mechanisms, etc.). 
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