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Abstract                                                                             
 

Due to the rapid advancement of the internet and online applications, network traffic classification has become 
a crucial topic in the field of network management. Recently, many traffic classification methods based on AI, 
particularly deep learning, have been proposed. However, these methods often focus solely on altering the 
hierarchical structure of deep learning models and do not consider the shape of the incoming traffic data. We 
propose a classification method that utilizes various input shapes that can be derived from fixed-length packet 
bytes. Our proposed approach achieves superior classification performance compared to previous research that 
only utilized two-dimensional square-like input shapes and one-dimensional linear input formats from publicly 
available datasets.1 
 
 
Topics: traffic classification, traffic identification, convolutional neural network, DL-based classification. 
 
 
 
Introduction and background 

Traffic classification is a key technology in network traffic monitoring and analysis, involving grouping similar 
or related traffic and classifying it into predefined categories. This technique serves various crucial purposes. 
Firstly, it aims to troubleshoot network issues, such as locating faulty network devices, hardware/software 
misconfigurations, and points of packet loss within the network. Secondly, it ensures the overall acceptability of 
applications by managing quality of service (QoS), including bandwidth resources and cloud service usage. 
Thirdly, it plays a pivotal role in network security, enabling the distinction between normal and malicious traffic 
for security measurement and intrusion detection. Historically, widely used traffic classification methods include 
port-based classification and payload-based classification. However, these methods face limitations due to the 
application of dynamic ports and payload encryption. Although machine learning-based classification methods 
have been actively proposed, they fall short in analyzing the diverse traffic patterns in complex network 
environments. Recently, AI, especially deep learning-based classification methods, have gained attention. High-
performance models based on Convolutional Neural Networks (CNN), which have shown remarkable 
performance in computer vision, have been applied in research.  

 
Paper No. Category DL Method Features Shapes 

[1] 2018 IDS CNN Header, Payload Sqaure 
[2] 2019 APP TC CNN Payload Sqaure 
[3] 2020 APP TC CNN Header, Payload Sqaure 
[4] 2021 APP TC CNN, LSTM Header Linear 
[5] 2022 APP TC CNN Header  Linear 

Table 1: CNN-based TC studies 
 

CNN is widely utilized for traffic classification in deep learning. It involves truncating packets to a fixed length 
before entering the learning model. These truncated packets are then transformed into 2D square-shaped or 1D 
linear-shaped vectors. Previous research has predominantly focused on reshaping raw packet bytes into 2D 
matrices resembling squares. From these matrices, spatial features are extracted for network traffic classification 
using CNN. These studies are consolidated in Table 1. Our investigation reveals the historical predominance of 
the two-dimensional square-like input shape. However, a recent shift has occurred towards the consistent 
adoption of 1-D linear input shapes. This shift is presumably informed by empirical studies indicating superior 
performance of linear input shape-based traffic classification models compared to their square-like counterparts 
[6]. Notably, the distinct characteristic of raw packet bytes is their lack of clear adjacency among data points, 
unlike conventional images where pixel relationships are evident. Unfortunately, most studies have not 
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adequately addressed the consideration of input shapes derived from raw packet bytes. In light of this gap, we 
propose an innovative traffic classification approach that capitalizes on various input shapes derived from fixed-
length packet bytes. Our proposed method begins with the assumption that there may be alternative models that 
better represent packets than linear or rectangular shapes. Furthermore, the combination of various perspectives 
looking at the same input can be expected to have a similar effect to using ensemble techniques.Our method's 
efficacy is assessed using the publicly accessible ISCX VPN-non VPN 2016 dataset. Impressively, our approach 
outperforms prior research in classification performance. This holds true for both 2D square input shapes and 
1D linear input shapes. 

 
Goals, proposed method, novelty 

 We propose a method to extract distinctive features of packets through various input shapes that can be 
derived from fixed-length packet bytes, which are not limited to the aforementioned square-like or linear shapes. 
Assuming a fixed packet length of 784 bytes, there are a total of 15 possible shapes that can be extracted from 
it, as detailed in Table 2. The number of shapes is equal to the number of divisors of the packet length, and since 
the last shapes represent the same structure as the first shapes, it is excluded. Therefore, the final count of 
shapes is 14, which is one less than the number of divisors. 

 
Shape. Kernel Size Shape Kernel Size 

(784, 1) (6, 1) (16, 49) (2, 2) 
(392, 2) (6, 1) (14, 56) (2, 2) 
(196 ,4) (4, 1) (8, 98) (1, 4) 
(98, 8) (4, 1) (4, 196) (1, 4) 
(56, 14) (2, 2) (2, 392) (1, 6) 
(49, 16) (2, 2) (1, 784) (1, 6) 
(28, 28) (2, 2)  

Table 2: Shapes that can be derived from a packet with a length of 784 bytes. 

 
Fig.1: Baseline 
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Fig.2: MISCNN scheme 
The baseline model employed in this research comprises a blend of CNN and Gated Recurrent Unit (GRU), 

as depicted in Figure 1. Instead of aggregating them into a single input, utilizing each packet as an individual 
input ensures optimized performance. Consequently, the baseline processes multiple packets and subsequently 
consolidates them into a unified output at the GRU layer. To extract features from each packet-based input, a 
residual block is strategically positioned [7]. Each residual block is composed of three Convolution Layers, 
followed by the insertion of a Batch Normalization layer after every convolution operation, facilitating adjustment 
of output mean and variance. MISCNN is underpinned by a straightforward yet potent concept. Prior to entering 
the initial residual block, the input is partitioned into multiple shapes. The count of shapes for each input 
corresponds to the number of divisors in the packet vector size, denoted as 'n'. For instance, the frequently 
employed 7841 input configuration in earlier studies encompasses 15 distinct shapes (784*1, 392*2, 196*4, … , 
1*784). At this juncture, the shape 1*784 is excluded due to its structural similarity to the shape 7*841 (though 
shapes like 2*392 and 392*2 differ noticeably). A overview of the MISCNN architecture is illustrated in Figure 2. 
These reshaping techniques find limited application in the realm of image recognition and computer vision, as 
they compromise the 2D spatial information of neighboring (vertical, horizontal) pixels inherent in typical images. 
On the contrary, since raw packets lack 2D spatial information, reshaping methods can be explored, enabling 
the training model to perceive the same input from diverse perspectives.  

 
Experiments, results, analysis of the results 

For evaluation, we employ the publicly accessible ISCX VPN-nonVPN 2016 dataset. This dataset, denoted as 
"ISCX VPN-nonVPN 2016," comprises raw pcap files featuring diverse applications, which we utilize to evaluate 
classification performance [6]. It encompasses human-generated traffic of varied types, coupled with information 
on the correlated applications. This data is garnered from both regular sessions and sessions encapsulated via 
VPN. This setup permits us to assign a three-view label (specifically, encapsulation, traffic type, and application) 
to any segmentation of raw network traffic, effectively forming a generic TC object. Each of these three-view 
labels corresponds to a distinct TC task that must be addressed. Each task is employed within our proposed 
model and subjected to comparative experiments. Packets extracted from the raw pcap files are amalgamated 
into flows based on the 5-tuple attributes (source IP, destination IP, source port, destination port, protocol) and 
reconstructed into bidirectional flows, taking directionality into account. Notably, nearly 60 percent of the 
aggregated two-way flows consist of only one UDP packet, leading to disruptions in the proper learning process. 
These instances have been filtered out, resulting in 27.8k bidirectional flows. Each flow sample contains the 
initial-k packets from the entire collection. When the number of packets in a flow falls below the pre-defined value 
k, an empty object filled with zeros is appended. The first-n bytes are extracted from the packets within each 
flow. If the packet size is less than the predetermined value n, the remaining vacant space within the packet 
object is zero-padded. The original shape of the packet data is k*1, which is then transformed to a p*q shape 
through the Reshape layer. Details of the hardware and software environment employed during the training 
process are outlined in Table 3. During model compilation, the Learning Rate was set to 25-e5. We employed 
Categorical Cross-entropy as the loss function and utilized the Adam Optimizer. 

 
 List Specification 

Hardwar
e 

CPU Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz 
GPU NVIDIA GP102 [TITAN Xp] 
RAM 120G 

Software Nvidia Driver 440.33.01 
CuDNN cuDNN/7.6 for cuda 10.1 
Cuda cuda/10.1 
Python cuda/10.1 
Keras keras 2.4.0 

Table 3: Shapes that can be derived from a packet with a length of 784 bytes. 
 

In order to assess the efficacy of the proposed approach, we conducted a comparative analysis between 
MISCNN, four prior studies, and baseline models across three distinct TC tasks. The resulting comparison 
outcomes are detailed in Table 4. Notably, MISCNN exhibited superior performance compared to its 
predecessors. Across the three tasks, it displayed notable improvements – a 4.83% enhancement in the 
Encapsulation task, a surpassing of 10% in the Category task, and a commendable 7% advancement in the 
Application task, widely regarded as the most challenging. Remarkably, the F-measure displayed substantial 
growth when contrasted with previous studies. Another salient point is that the Baseline's performance also 
exceeded that of earlier TC models. The Baseline, enriched with the skip-connection technique that has 
demonstrated excellence in the domain of image recognition and computer vision, exhibited superior 
performance in two metrics compared to previous TC models. This substantiates the utility of the skip-connection 
technique within the TC domain. Lastly, it is worth noting that the 1D CNN-based TC model more effectively 
extracts traffic characteristics compared to its 2D CNN-based counterpart, aligning with findings from prior 
investigations. 
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 Encapsulation (%) Traffic Type (%) Application (%) 
 Acc F1 Acc F1 Acc F1 
1D-CNN [6] 87.4 83.5 73.1 71.1 72.7 61.3 
1D-CNN [8] 82.3 76.2 56.0 54.7 56.5 40.8 
2D-CNN [8] 87.4 83.5 71.8 69.7 71.4 59.2 
Distiller [9] 93.7 91.9 80.7 78.7 77.6 66.4 
Baseline(1D) 97.4 95.2 91.2 91.3 81.0 78.7 
Baseline(2D) 94.1 94.0 87.2 85.2 78.0 77.6 
MISCNN 98.5 98.5 93.5 93.2 85 85.2 
MISCNN (gain) 4.8 6.6 12 14.4 7.3 18.8 

Table 4: comparison of MISCNN with previous studies 
 
Conclusion 

In this paper, we introduce a deep learning scheme aimed at comprehensively analyzing packets from multiple 
perspectives using diverse shapes derived from a single input. Our focus is on packet data, which lacks two-
dimensional spatial information unlike typical images. We propose that reshaping packets into various forms 
offers a means to effectively observe and extract valuable features from raw packets. To validate our approach, 
we evaluate it using the publicly available ISCX VPN-nonVPN 2016 dataset, and we establish a baseline 
incorporating the skip-connection method. Subsequently, we implement the proposed method, termed MISCNN, 
atop the designed baseline, and compare its traffic classification (TC) performance against previous studies. 

Our proposal contributes in three key ways. Firstly, in terms of overall comparison, MISCNN demonstrates a 
remarkable 14% accuracy improvement and an 18% enhancement in f-measure over state-of-the-art TC 
methods. This enhancement underscores that adopting diverse perspectives for packet observation mitigates 
overfitting in TC models and yields substantial performance gains. Secondly, performance comparisons based 
on experimental parameter variations reveal that employing multiple shapes, except for the Encapsulation task, 
contributes to accurate classification. Notably, considering that the Encapsulation task holds less significance 
and versatility in real-world networks compared to other tasks, integrating a broader array of shapes into the TC 
model can prove advantageous in common scenarios. Lastly, we perform comparative experiments within a 
novel dataset that addresses data imbalances, closely resembling real-world network conditions. This attests to 
the practical viability of the proposed MISCNN in actual network environments. 

We also outline three areas for future exploration based on this study. The first pertains to reducing complexity. 
MISCNN, while accurate, can be excessively resource-intensive, limiting its practicality. Secondly, we suggest 
exploring the application of state-of-the-art techniques. Lastly, we plan to conduct research on XAI (Explainable 
AI) to discover improved justifications compared to existing methods. 
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