
Received 14 August 2023, accepted 31 August 2023, date of publication 4 September 2023, date of current version 13 September 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3311889

User Behavior Detection Using Multi-Modal
Signatures of Encrypted Network Traffic
JEE-TAE PARK 1, CHANG-YUI SHIN 2, UI-JUN BAEK 1, AND MYUNG-SUP KIM 1
1Department of Computer and Information Science, Korea University, Seoul 30019, South Korea
2C4ISR System Development Quality Team, Defense Agency for Technology and Quality, Daejeon 34327, South Korea

Corresponding author: Myung-Sup Kim (tmskim@korea.ac.kr)

This work was supported in part by the Technology Innovation Program Grant funded by the Ministry of Trade, Industry and Energy
(MOTIE), South Korea, and the Korea Evaluation Institute of Industrial Technology (KEIT) (Development of SaaS SW Management
Platform Based on 5Channel Discovery Technology for IT Cost Saving) under Grant 20008902; and in part by the Regional Innovation
Strategy (RIS) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) under Grant
2021RIS-004.

ABSTRACT With the development of the network environment and the emergence of new applications,
network traffic has become increasingly complex. This paper focuses on user behavior detection based
on encrypted traffic analysis. User behavior information plays a critical role in network management and
security, leading to extensive research in this domain. This paper introduces two main contributions. Firstly,
we present a categorizationmethod for application types and a behavior definition approach for user behavior
detection research. This enables consistent behavior definition for each application type, facilitating objective
performance comparison with other studies in the field. Secondly, a behavior detection method based on
multi-modal signatures is introduced. The multi-modal signatures represent the multiple signatures extracted
from encrypted traffic, including header, SNI, and PSD signatures, which are subsequently defined as a rule.
To validate the effectiveness of our proposed method, we conducted 4 experiments on 5 SaaS applications.
As a result of the experiments, the proposed method achieves an F-measure of 94∼99% and can detect
other types of application behaviors with high performance. As this study conducts user behavior detection
research based on encrypted traffic analysis, the proposed method can be applied to other research areas that
utilize encrypted traffic.

INDEX TERMS User behavior detection, encrypted traffic classification, multi-modal signature, signature-
based traffic analysis.

I. INTRODUCTION
A. RESEARCH BACKGROUND
Various applications are occurring due to the development
of network environments and technology. Network traf-
fic classification research is important in network service,
cost management, and security. Network traffic classifica-
tion varies depending on the level at which it is classified,
and most studies have been conducted at the application
level. The classification of application traffic has been
extensively studied, focusing on services, applications, and
processes [1], [2], [3]. Traffic classification methods can

The associate editor coordinating the review of this manuscript and

approving it for publication was Hosam El-Ocla .

generally be categorized into traditional, signature-based, and
learning-based analysis methods [5].

Traditional traffic classification methods include port-
based and payload-based analysis methods [4], [5], [6], [7].
The port-based method was performed for applications using
fixed port numbers and is not used now because most applica-
tions use dynamic ports. The payload-based method utilizes
the payload content of the packet and derives high clas-
sification accuracy [30], [31], [32]. However, it cannot be
applied because the payload contents are encrypted by the
application of encrypted traffic [16]. Recently, packets in the
TLS (Transport Layer Security) handshake process that is not
encrypted before encrypted communication are being used
[15]. During the TLS Handshake process, research on utiliz-
ing SNI (Server Name Indication) information is conducted

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

97353

https://orcid.org/0000-0002-8515-6164
https://orcid.org/0000-0002-8410-0177
https://orcid.org/0000-0002-4358-7839
https://orcid.org/0000-0002-3809-2057
https://orcid.org/0000-0002-8202-7762


J.-T. Park et al.: User Behavior Detection Using Multi-Modal Signatures of Encrypted Network Traffic

since the web address information of the destination server is
shown in the SNI field in the Client Hello packet.

The signature-based method analyzes common character-
istics of traffic generated from target applications and defines
them as signatures [5], [6], [7], [8]. The signature-based
analysis methods can be defined in various ways according
to traffic characteristics, including header, payload, statistics,
and behavior signatures [9], [10]. This method has derived
high detection accuracy in the past. However, as traffic
patterns become more complex and encrypted, the perfor-
mance of the method of applying a single signature degraded.
In addition, there is a problem in that the process of generating
a signature is very complicated and consumes time and effort
[10], [11], [12], [13].

The learning-based method uses a machine learning
algorithm to extract network traffic characteristics and clas-
sify applications [13], [14], [15], [16]. As machine learning
algorithms gradually diversify and develop, the perfor-
mance of learning-based analysis methods has dramatically
improved, especially showing high detection performance
even for encrypted packets. However, learning-based analysis
methods consume a lot of time and effort to find appropriate
features and models and require a large amount of labeled
data [16], [17], [18].

Recently, several types of research have been conducted
that expand application traffic classification, such as fault
detection, website fingerprinting, user behaviors detection,
and operating systems identification [5]. In this paper,
we focus on user behavior detection.

Information on user behavior plays a crucial role in
network security and management. In terms of network
security, malicious actors can exploit user behavior infor-
mation to analyze the vulnerability of a target network.
They can also misuse authorized user behavior patterns for
malicious activities or unauthorized access to sensitive infor-
mation [33], [34], [35]. Regarding networkmanagement, user
behavior information aids in efficient network optimization,
resource management, and user control [37]. As a result,
various studies have been conducted in the field of network
user behavior detection [19], [20], [21], [22], [23], [24], [25],
[26]. The definition of user behavior varies depending on the
application’s characteristics and the research objectives. For
example, in [20], the authors defined 11 behaviors specific to
KakaoTalk, a messenger application type, including actions
such as joining or leaving a chat room, blocking a user, and
synchronizing friend lists. In [21], the authors focused on
Instagram, a social media and SNS (Social Network Service)
application type, and defined 9 behaviors, such as entering,
logging in, posting, and browsing.

In this paper, we conduct research targeting SaaS (Software
as a Service) applications. SaaS is a cloud-based application
that provides software in a cloud environment over the Inter-
net. SaaS has many advantages, such as easy accessibility,
rapid deployment, and secure security. Enterprises using SaaS
services are gradually increasing, and representative exam-
ples include Microsoft Office 365 and Google Apps. SaaS

FIGURE 1. An example of behavior sequence in SaaS application.

has different characteristics from installed applications. It is
provided as a service in the form of a subscription, and the
cost varies depending on the using service, the number of
users, and the user period. The cost can be reduced if the
user subscribes to an appropriate license. However, excessive
spending may occur if the number of people allowed by the
license subscribed is greater than the number of actual users
or if more services and functions are included in the license
than necessary services. In addition, it is also required to
verify that the person using the license subscribed within
the company is an appropriate user. Therefore, we define
4 behaviors (i.e., Application Start, Login, Logout, and
Application End) for SaaS application usage information.

Since SaaS is provided on the internet and requires a user
authentication process to use the application. The 4 behaviors
have a series of behavior sequences considering these pro-
cesses, which we define as a behavior sequence. The behavior
sequence is shown in Fig. 1. For example, a login is performed
after the application start, and a logout is performed after the
application start and login.

These 4 behaviors, representing the behavior sequence,
can be applied to various SaaS applications, while additional
behaviors can be defined specifically for each application.
For example, in Office 365, additional behaviors such as file
uploads or saving can be defined. Additional behaviors can
be categorized into different types of services and application
types based on the intended usage of the application. How-
ever, in this paper, we did not explore additional behaviors
extensively, as they are less relevant to the primary focus on
usage information.

B. PROBLEM STATEMENTS
In this section, we remark on the problems of user behavior
detection research, including our previous study.

First, it is hard to make objective performance comparisons
in user behavior detection research because each research

97354 VOLUME 11, 2023



J.-T. Park et al.: User Behavior Detection Using Multi-Modal Signatures of Encrypted Network Traffic

defines the behaviors differently. In addition, since there is
no public dataset in this research field, most of the existing
research uses the private dataset of their target application.

Second, most studies use a learning-based traffic analy-
sis method such as machine and deep learning [14], [15].
Learning-based methods are widely used in various research
fields and show high performance [30], [31], [32]. However,
a lot of time and resources are consumed depending on
the model structure and amount of data. In addition, large
amounts of labeled data are required for high-performance
results. However, in real networks, most traffic datasets con-
sist of unlabeled or semi-labeled data, and labeled data is
limited.

Third, signature-based methods have been widely used in
traffic analysis [4], [5], [6], [7], [8], [9]. However, exist-
ing signature-based methods use only one signature based
on analyzed traffic characteristics. A single signature that
considers a single characteristic of traffic degrades detection
performance for encrypted traffic.

Forth, we proposed a rule-based behavior detectionmethod
in previous research [28]. However, there are several prob-
lems in the previous study. In [28], there is a high dependency
on SNI because the rules are generated using only header
and SNI information. Therefore, it is difficult to apply when
there is no common SNI information on the behavior of
the target application. In addition, detection performance is
significantly degraded when the traffic pattern of a target
application changes due to an application update.

C. CONTRIBUTION
The main contribution of this paper can be summarized as
follows:

• Although there are many researches on user behavior
detection, existing researches have respectively defined
user behavior for their purposes. However, it is necessary
to define user behavior consistently for objective verifi-
cation and comparison. In this paper, we categorize the
application types and present a guideline for behavior
definition according to the application type.

• In this paper, we performed traffic analysis for SaaS
applications, and we present a behavior sequence con-
sidering the subscription-type SaaS application charac-
teristics. We verified that behavior sequences affect the
detection performance. As a result of the experiments,
the false detections are reduced compared to cases where
behavior sequence is not considered.

• We propose a rule-based behavior detection system
based on network traffic analysis. Since the SaaS
uses encrypted traffic, the proposed method is per-
formed for encrypted traffic. The proposed method is
a signature-based analysis method in a large category.
Our proposed method improves detection performance
by using multi-modal signatures, defined as a rule.
To verify the proposed method, we conducted several
experiments. We demonstrated the performance of the
proposed method for 5 SaaS applications (i.e., Office

365, Adobe Creative Cloud, Autodesk, Zoom, and
Slack). The proposed method shows high detection per-
formance even when using a small amount of data and
takes less time in each process.

• The proposed method utilizes various signature extrac-
tion algorithms to solve the problems of high SNI
dependence and manual rule generation in our previous
research. We also propose a rule update mechanism,
which is the process of regenerating the rules of the
target application by determining when an update is
required. Rule update mechanism can solve the per-
formance degradation problem for changing traffic
patterns.

The remainder of this paper is organized as follows.
Section II describes the related works, and Section III we
present the categorization of applications and behavior defi-
nition methods suitable for each application type. Section IV
explains the rule-based user behavior detection system and
mechanism in detail. In Section V, we present the experi-
ments to evaluate the proposed method. Finally, we discuss
the concluding remarks and future work in Section VI.

II. RELATED WORK
This section provides related works of encrypted traffic clas-
sification and user behavior detection.

A. ENCRYPTED TRAFFIC CLASSIFICATION
There are various types of applications, such as mobile,
cloud, and IoT, and most of them use encrypted traffic [36].
Applying the encrypted traffic makes traditional traffic anal-
ysis methods inapplicable. Many researchers have utilized
learning-based methods such as machine learning and deep
learning to solve this problem [30], [31], [32].

In [16], Wang et al. proposed an encryption traffic classifi-
cation method based on convolutional neural networks. The
authors validated with the public ISCX VPN-nonVPN traffic
dataset and achieved high performance. In [17], Liu et al.
proposed FS-NET (Flow Sequence Network) by applying the
RNN and multi-layer encoder-decoder structure. To verify
their proposed method, they conducted experiments with
their private dataset and achieved a TPR of 99.14% and
an FPR of 0.05%. In [18], Lotfollahi et al. proposed Deep
Packet, which employed two deep neural network structures,
namely stacked autoencoder and convolution neural network.
They validated with the public ISCX VPN-nonVPN traffic
dataset and achieved an F1 score of 98% in application
identification.

The learning-based method significantly improved detec-
tion performance, even for encrypted traffic. However,
labeled data for network traffic is difficult to obtain, and
appropriate features, parameters, model selection, and pre-
processing are required for high performance.

In this paper, we employ a multi-modal signature-
based traffic analysis method that defines various and
diverse common characteristics of the traffic as signa-
tures. The learning-based traffic analysis method and the

VOLUME 11, 2023 97355



J.-T. Park et al.: User Behavior Detection Using Multi-Modal Signatures of Encrypted Network Traffic

TABLE 1. Examples of related work in user behavior detection.

multi-modal signature-based traffic analysis method differ in
their approach to behavior detection.

Firstly, the learning-based method involves training mod-
els using labeled data. It utilizes pre-labeled traffic data
(e.g., normal, and malicious behaviors) to learn behavior
patterns through machine learning algorithms. This approach
requires a considerable amount of labeled data and can be
resource-intensive and time-consuming for training. How-
ever, it can be more effective in detecting new patterns or
malicious behaviors. Secondly, the multi-modal signature-
based method detects behaviors by using predefined signa-
tures for the target traffic. Instead of relying on labeled data,
this method defines signatures based on prior knowledge
and domain expertise. It does not require extensive training
data, making it suitable for scenarios with limited labeled
data or privacy concerns. Thirdly, the learning-based method
allows for more flexibility and adaptability. It can learn from
labeled data and adapt to new patterns, including unknown or
emerging behaviors. In contrast, the multi-modal signature-
based approach is more deterministic and interpretable. Each
signature represents a specific behavior aspect, providing a
transparent view of how behaviors are detected.

Overall, the choice between the learning-basedmethod and
the multi-modal signature-based method depends on factors
such as the availability of labeled data, the desired level
of interpretability and adaptability, and the specific require-
ments of the behavior detection task.

B. USER BEHAVIOR DETECTION
Research on user behavior detection has been conducted for
a long time, mainly for network security [20], [29]. In most
studies, one application is identified, and the detailed behav-
ior of the application is defined [33], [34]. Each study differs
in the application used and the method of defining behavior,
as is shown in Table 1.

In [19], Hou et al. defined 7 behaviors for WeChat. The
authors conducted experiments to classify defined behaviors
using various algorithms, and the Random Forest algorithm
showed the best performance. Park and Kim focus on
KakaoTalk, a widely used mobile messenger [20]. The
authors mentioned network security vulnerabilities for user

behavior, although KakaoTalk uses a lightweight propri-
etary encryption protocol called LOCO. The authors defined
11 user behaviors and detected them with about 99.7% accu-
racy using Random Forest. Wu et al. used Instagram for
user behavior detection and defined 9 behaviors [21]. They
used SVM to classify defined behaviors and achieved 99.8%
accuracy.

Coull and Dyer [24] propose a method for encrypted traffic
analysis targeting Apple’s instant messaging service. They
used the sizes of the packets and defined 5 user actions
such as ‘‘start typing’’, ‘‘stop typing’’, ‘‘send text’’, ‘‘send
attachment’’, and ‘‘read receipt’’. The authors also conducted
to infer the language (e.g., English, Chinese, French, etc.) and
length of the messages.

Some studies conduct behavioral detection studies using
multiple applications. Grolman et al. applied transfer learning
to identify user behaviors [23]. They conducted experiments
for Twitter and Facebook and achieved 0.8 f1-measures. In
[25], Conti et al. used 7 applications (i.e., Gmail, Facebook,
Twitter, Tumblr, Dropbox, Google+, and Evernote). The
authors focus on Android encrypted traffic and define several
behaviors of each application. They conducted experiments
by collecting traffic to verify their proposed method. In [26],
Fu et al. proposed CUMMA, a method for classifying service
usage of mobile messaging applications by modeling user
behavioral patterns and network traffic characteristics. In
[26], the authors specifically target two messaging applica-
tions,WeChat, andWhatsApp, and define a set of 8 and 6 user
behaviors for each application, respectively. This research is
similar to [34] in terms of its approach and methodology.
Both studies focus on analyzing user behaviors and network
traffic in mobile messaging applications. In [27], Jiang et
al. focus on remote desktops and suggest that user behavior
information can be exposed even if remote desktop traffic is
encrypted.

In [22], Saltaformaggio et al. proposed NetScope using
multi-class SVM to classify actions, achieving accuracy and
recall of about 78% and 76%. In addition, the authors cat-
egorized mobile applications type and defined behavior for
each application. Our work is similar to their work in catego-
rizing the applications. However, they focus on only mobile
applications and define 1∼3 behaviors for each application.
We perform categorization for entire applications and present
common and specific behaviors according to the functions
and additional given of each application type.

In our previous method [28], we proposed a rule-based
user behavior detection and defined 4 user behaviors for
Microsoft Office 365. Our proposed method presented high
performance. However, generating a rule takes a lot of time
and highly depends on SNI information.

III. APPLICATION CATEGORIZATION & USER BEHAVIOR
DEFINITION
In this section, we explain a guideline of user behavior defi-
nition based on application categorization.

97356 VOLUME 11, 2023



J.-T. Park et al.: User Behavior Detection Using Multi-Modal Signatures of Encrypted Network Traffic

Many researchers use different applications and differently
define the application’s behaviors. As a result, it becomes
challenging to compare the performance of the proposed
methods across different studies.

Therefore, our focus has been on simplifying and standard-
izing the application types and behavior definition methods
used for performance comparison among various studies. All
applications can be categorized based on their functionalities
and services into different types. For example, KakaoTalk and
WeChat can be classified as messenger types, and Facebook
and Instagram as SNS types. In addition, the behaviors that
can be defined for each application type are similar. For
example, in the study [25], the authors defined the behaviors
such as a post on the wall, open Facebook, open a user profile,
and post user status was defined for Facebook, and in [21], the
authors defined the behaviors such as posting, repost, browse
and favorite are defined. Both researchers defined behavior
similarly for SNS-type applications. Therefore, we regard
these similar behaviors performed in the same type of appli-
cation as the same behavior. For example, ‘‘post’’ and ‘‘post
on the wall’’ of SNS-type applications are defined as the same
behavior corresponding to ‘‘posting’’.

However, application categorization and behavior defi-
nition have some considerations. First, it is impossible to
categorize all applications because the types of commonly
used applications are diverse. In this paper, applications used
in previous user behavior detection research are classified
into 7 categories (i.e., messenger, document work, design,
SNS, remote meeting, mail, and SaaS). Application types
can be additionally defined if the target application does not
belong to the defined 7 types. For example, if the target
application belongs to shopping, ‘shopping’ can be defined
as additional application types. In that case, a new application
type can be added, and behavior suitable for the type can be
defined.

Second, many applications are multifunctional, encom-
passing various features. As a result, they can be categorized
under more than one type in our research. For instance, Insta-
gram is primarily considered an SNS application, but it also
incorporates a messenger function known as Direct Message
(DM). Consequently, Instagram falls into two categories:
SNS and Messenger types.

Third, even if it is the same type of application, detailed
functions or services may differ depending on the application.
For example, in this paper, we classify the behaviors that can
be commonly defined for each application type and those that
can be individually defined. For instance, in amessenger-type
application, sending and receiving messages is defined as a
common behavior, and an open mini program in WeChat is
defined as a specific behavior. In this paper, we classify the
behavior into common behavior defined by application type
and specific behavior defined individually by application.
For example, in a messenger-type application, sending and
receiving messages is defined as a common behavior, and
an open mini program in WeChat is defined as a specific
behavior. We categorized the 7 applications and defined the

common and specific behaviors for each application type as
shown in Table 2.
In Table 2, the ‘‘application type’’ and ‘‘description of

application type’’ indicate the type of categorized application
and the description of each type. The ‘‘application name’’
indicates an application example corresponding to the appli-
cation type, and the ‘‘behavior definition’’ indicates examples
of common and specific behavior definitions according to
categorized application types.

IV. OVERALL DESIGN OF THE PROPOSED SYSTEM
In this section, we describe the overall design of a rule-based
user behavior detection system and its detailed mechanism.
The entire system structure consists of 3 sub-systems (i.e.,
rule generation, rule-based user behavior detection, and rule
update & re-generation) and is shown in Fig. 2.

A. RULE GENERATION
Before rule generation, the detection behavior for the target
application must be defined. As mentioned before, we define
4 behaviors as the target behavior for SaaS applications. The
detection rule indicates traffic characteristics for behavior and
consists of the application and behavior rules. The overall
structure of the detection rule is shown in Fig. 3 according
to the behavior sequence. The application rule represents a
detection rule for the target application, and the behavior
rule represents a detection rule for the target application’s
behavior. Signatures are classified into Header, SNI, and PSD
(Packet Size Distribution) and indicate each type of traffic
characteristic. Behavior state information indicates current
and preceded behavior information and is determined accord-
ing to behavior sequence. In other words, an application rule
is composed of behavior rules for each behavior and a behav-
ior rule is composed of 3 signatures and status information of
the target behavior.

Rule generation is a process of analyzing the traffic of the
target application, extracting a signature, and creating a rule
by aggregating the signatures. Rule generation is composed
of 5 detailed processes (i.e., traffic preprocessing, signature
extraction, behavior rule generation, behavior rule verifica-
tion, and application rule generation).

1) TRAFFIC PREPROCESSING
Traffic pre-processing is performed both for rule creation and
behavior detection. Traffic preprocessing in rule generation
consists of 3 detailed processes (i.e., traffic collection, flow
generation, and GT (Ground Truth) traffic generation).

Fig. 4 shows traffic preprocessing in rule generation. Traf-
fic collection is the process of collecting the traffic of a target
application to define the behavior signature. In this paper,
we use Wireshark to collect pcap files. Behavior information
during the traffic collection is recorded and stored as a log
file. The stored log file includes information on the host
IP, target application, behavior, and behavior execution time.
The log file is used in GT traffic generation of pre-processing

VOLUME 11, 2023 97357



J.-T. Park et al.: User Behavior Detection Using Multi-Modal Signatures of Encrypted Network Traffic

TABLE 2. Categorization of application type and behavior definition based on application type.

FIGURE 2. Entire structure of proposed method.

and behavior rule verification. Flow generation converts the
collected pcap traffic file in packet units into a flow unit
traffic file. A flow is a set of packets with the same 5-tuples

information (Source IP, Source Port, Protocol, Destination IP,
Destination Port). This process applies to TLS packets, and
other protocol packets are excluded.

97358 VOLUME 11, 2023



J.-T. Park et al.: User Behavior Detection Using Multi-Modal Signatures of Encrypted Network Traffic

FIGURE 3. The overall structure of the detection rule.

FIGURE 4. A process of traffic preprocessing in rule generation.

GT traffic is generated for the behavior by inputting the
converted flow-unit traffic file. GT traffic is required for
accurate signature extraction, as common features of traffic
for behavior are extracted during the behavior signature gen-
eration. Therefore, in the GT traffic generation, the behavior
execution time is additionally loaded from the log file, and
traffic corresponding to +3 seconds is cut based on the
behavior execution time. However, if communication within
a behavior takes longer than 3 seconds, the time interval can
be set differently for each application. For example, Adobe
Creative Cloud takes an average of 10 seconds during the
login, and the time interval is set to +10 seconds.

2) SIGNATURE EXTRACTION
Signature extraction takes the collected traffic as input and
extracts traffic characteristics from various perspectives.
A signature represents a common traffic characteristic and
comprises a header, SNI, and PSD information.

Header signature indicates the header information of the
flow that occurred when performing a behavior and repre-
sentatively includes destination IP, port, and protocol. The
header signature is defined when a fixed destination IP, port,
or protocol is used in the behavior of the target application.
SNI signature utilizes the SNI information in the Client Hello
packet Extension field during the TLS handshake process.
It indicates the URL information about the communicating
server. The Client Hello packet is not encrypted because they
are sent in the TLS Handshake before performing encrypted
communication. For example, when a specific behavior, such
as login or logout, is performed, specific SNI information is
extracted when visiting or bypassing a specific site. However,
since the traffic collected in the real network environment can
run many applications on one host, many flows are included,
and various SNIs are derived. Therefore, in rule generation,
the commonly occurring SNI that occurs in the behavior of
the target application is defined as an SNI signature with GT
traffic that has undergone preprocessing as an input.

PSD signature indicates a set of packet sizes represented
by an integer vector. Packet size information has been used
for a long time in many researches. The basic concept of
PSD signatures is that there are statistically similar patterns
in the traffic when the user behavior is performed. PSD is
a set of 1∼ ith packet sizes considering packet direction
and presented as an integer vector. i represent the number of
packets to use in PSD, and we set i to 5.

In our previous research [28], signatures were extracted
manually, consuming much time and effort. To solve this
problem, we propose an advanced signature extraction
method. The advanced signature extraction method is applied
differently depending on the data type. The data type consists
of a string and an integer vector according to the kind of
signature. String type data includes header and SNI signature,
and integer vector type data includes PSD signature.

String-type signatures generally have fixed values. For
example, when application X acts, the destination IP of 10.
x.x.x and fixed SNI information of ‘‘www.xxx.com’’ appear,
defined as header and SNI signature, respectively.

TraceSet =
{
T1,T2,T3 . . . ,Tp

}
,

p = the number of GT traffic traces (1)

Fj =
{
f1, f2, f3,, . . . , fn

}
,

j = the target trace number (2)

In the rule generation, GT traffic sets of multiple traces
are collected, and the collected traffic traces are composed of
several packets and flows. Equation (1) represents the set of
collected GT traffic traces, and Equation (2) represents the set
of flows in the jth trace. Header, SNI, and PSD flow features
are derived from a single flow.

Flow_FeatureSet =


Hdr_Set
SNI_Set
PSD_Set

(3)

VOLUME 11, 2023 97359



J.-T. Park et al.: User Behavior Detection Using Multi-Modal Signatures of Encrypted Network Traffic

Equation (3) represents the feature set for entire flows in
the ith trace, and the feature set consists of Hdr_Set , SNI_Set
and PSD_Set.

Hdr_Set = {H1,H2,H3, . . . ,Hn} ,

n = the number of flows (4)

SNI_Set =
{
s1, s2, s3,, . . . , sn

}
(5)

PSD_Set =
{
P1,P2,P3,, . . . ,Pn

}
(6)

In Equation (4), (5) and (6), Hdr_Set, SNI_Set, and
PSD_Set represents a set of headers, SNIs and PSDs derived
from each flow. Equation (7) indicates the header information
of the ith flow (fi). Equation (8) indicates the PSD which is a
sequence of 1∼5th packet sizes in ith flow (f i).

Hi = [dst_ip, dst_port, prot] (7)

Pi = [p1, p2, p3,p4, p5] (8)

Header signature is defined when using a fixed server IP,
port, and protocol. To set the header signature, destination
IP, port, and protocol are derived from all flows in the entire
traffic traces. The derived header information is compared for
each trace, and common information is defined as a header
signature.

TS i = s1 + i+ s2 + i+ s3 . . . + sn (9)

i = target trace number

LSm = LCS(TS i,TS i+1)

m = number of LCS algorithms applied (10)

SNI signature is defined when using fixed strings. In this
paper, we use the LCS algorithm to extract SNI information
automatically. LCS algorithm takes two strings as input and
extracts the longest common substring from the two strings.
Algorithm 1 indicates the pseudo-algorithm of LCS. Since
there are several flows in one GT trace in the collected multi-
ple trace datasets, the LCS (Longest Common Subsequence)
algorithm is applied repeatedly multiple times to extract the
SNI signature.

Algorithm 2 and Fig. 5 show a process of SNI signature
extraction. First, obtain the GT traffic datasets for the specific
behavior targeted by the application. Next, extract the SNI for
all flows observed in each trace. Subsequently, concatenate
the extracted SNIs along with the trace number to form a
single string.

This string is referred to as the TS (Trace String) and
is represented by Equation (9). For instance, if a particular
traffic trace consists of three flows with SNIs ‘‘ABC’’, ‘‘def’’,
and ‘‘xyz’’, respectively, and the trace number is ‘‘3’’, the TS
would be ‘‘abc3def3xyz’’.

Since the LCS algorithm takes two strings as input,
it divides the entire trace set into two traces as Ti,Ti+1.
S algorithm is repeatedly applied with a pair of TS i,TS i+1.
derived from a pair of trac es as input. Equation (10) shows the
string derived when the LCS algorithm is recursively applied
m times and is performed until one string is finally obtained.

Algorithm 1 LCS Algorithm
Input : string s[1:m], t[1:n]
Output: substring lcs (the longest common substrings)
01: Allocate space L[0:m, 0:n] and max_length = 0
02: L[0, j] = 0 for all
03: for i = 1 to m do
04: for j = 1 to n do
05: if s[i] == t[j] then
06: if I == 1 or j == 1 then
07: LCS_Mat[i,j] = 1
08: else
09: LCS_Mat[i,j] = LCS_Mat[i-1, j-1] + 1
10: if LCS_Mat[i,j] > max_length then
11: max_length = LCS_Mat[i, j]
12: lcs = s[i-max_length:i-max_length+i]
13: else if LCS_Mat[I,j] == max_length then
14: lcs = lcs.append(s[i-max_length:i-max_length+i])
15: else
16: LCS_Mat[i, j] = 0

17: return lcs

FIGURE 5. A process of SNI signature extraction.

In our previous research [28], we relied solely on header
and SNI signatures for user behavior detection. However,
we encountered a specific scenario where the same signa-
tures were associated with different behaviors, leading to an
increased probability of false detection. To address this issue,
we present PSD signatures in this paper. Unlike string-based
signatures (e.g., header, SNI) that have fixed values, the PSD
signature is an integer vector type with variable values. For
instance, if the same behavior occurs in different traces, the
packet sizes may vary. Therefore, unlike the method used for
defining string-based signatures, the PSD signature is defined
by setting representative values and thresholds separately.

Fig. 6 illustrates an entire process of extracting header, SNI
and PSD signature generation. Initially, the header and SNI
signature are sequentially extracted with the GT traffic set as
input. Subsequently, the extraction of the PSD signature is

97360 VOLUME 11, 2023



J.-T. Park et al.: User Behavior Detection Using Multi-Modal Signatures of Encrypted Network Traffic

Algorithm 2 SNI Signature Extraction
Input: GT Traffic Trace 1∼N
Output: OutputSNIList (SNI Signature)
[Notation] N : Entire trace count / Mi : Entire flow count of
trace i

// Concatenate the SNI for the target GT traffic traces
01: for i = 1 to N
02: SNIList = []
03: for j =1 toMi
04: SNIList + = SNI
05: SNIList + = i
06: TargetSNIList.append(SNIList)
07: CurrentTraceCount = N
08: TargetListCurrent = []
// SNI signature extraction by using recursive LCS algorithm
09: while CurrentTraceCount != 1: do
10: for i = 1 to CurrentTraceCount

// the case of N is odd
11: if CurrentTraceCount % 2 != 0 then
12: if i == CurrentTraceCount then
13: TargetListCurrent. append (TargetSNIList[i])
14: break
15: elseifi != CurrentTraceCount then
16: if i % 2 != 0 then
17: A = TargetSNIList[i]
18: B = TargetSNIList[i+1]
19: TargetListCurrent. append (LCS (A, B))
20: i + = 1

// the case of N is even
21: else if CurrentTraceCount % 2 == 0 then
22: if i % 2 != 0 then
23: A = TargetSNIList[i]
24: B = TargetSNIList[i+1]
25: TargetListCurrent. append (LCS (A, B))
26: i + = 1
27: CurrentTraceCount = len(TargetListCurren )
28 TargetSNIList = TargetListCurrent
29: TargetListCurrent = []
30: OutputSNIList = TargetSNIList
31: return OutputSNIList

performed based on two scenarios: the presence or absence
of an SNI signature.

Through traffic analysis, we observed that flows with the
same SNI signature across different traces exhibited similar
PSD patterns. For example, when there is a flow with a
unique SNI signature of ‘‘xxx,’’ the analysis of its PSD reveals
minimal packet size variations among the packets within that
flow. As a result, we divide the PSD signature generation into
two cases: i) when the SNI signature is extracted, and ii)when
the SNI signature is not extracted.
i) the SNI signature is extracted: If a signature has been

extracted, a PSD for a flow, including the corresponding

FIGURE 6. An entire process of extracting header, SNI, and PSD signature.

signature, is obtained. The PSD for each trace is derived by
performing the same operation on various collected traces.
Subsequently, the average PSD is computed based on several
derived PSDs, as shown in Equations (11) and (12). The dif-
ference is then calculated between the average PSD and each
individual PSD, as depicted in Equation (13). The threshold
is determined as the largest value among these differences.
Finally, the average PSD and threshold are defined as the PSD
signature.

AvgPktSet =
{
AvgPktSize1,AvgPktSize2, . . .AvgPktSize5

}
(11)

AvgPktSizem =

(∑n
i=1 pi1

)
n

n = the number of traffic traces,

m = target packet number (12)

Thrm = max
{∣∣AvgPktSizem − pm

∣∣} (13)

However, if the difference exceeds the predefined maxi-
mum threshold, it is determined that the PSD signature cannot
be applied, and only the extracted signature is utilized. For
example, if there are 5 traces (n=5) with the same size for
the 1st packet in the PSD, the threshold is set to 0. On the
other hand, if the sizes of the 2nd packet in the PSD across
the 5 traces are 108, 128, 98, 132, and 108, the average packet
size for the 2nd packet is 113, and the threshold is set to
19 (132-119), which represents the largest difference from
the average value. If the predefined maximum threshold is
set to 15, the difference exceeds the predefined maximum
threshold. In such cases, statistical significance is not applied,
and only header or SNI signatures are utilized.

ii) the SNI signature is not extracted: If there is no
extracted signature, a clustering algorithm is used to obtain

VOLUME 11, 2023 97361



J.-T. Park et al.: User Behavior Detection Using Multi-Modal Signatures of Encrypted Network Traffic

FIGURE 7. An example of behavior rule of the application start of
Microsoft Office 365.

TABLE 3. An example of signature format of behavior rule.

the PSD signature. First, as shown in Equation (6), the PSD
of all flows in the collected GT traffic are derived. After that,
we apply the k-means clustering algorithm to the derived
PSD. Each cluster is identified while changing k, and the
minimum k containing all GT traffic traces in the cluster
is obtained. When k is derived, the threshold is defined as
the maximum distance between the centroid vector and the
cluster. Finally, each cluster’s centroid vector and threshold
are defined as the PSD signature.

3) BEHAVIOR RULE GENERATION
Behavior rule generation is a process of creating a detection
rule for one behavior in a target application, and it consists of
signature aggregation and behavior rule generation. Signature
aggregation is a process of collecting the header, SNI, and
PSD signatures derived from the previous process. Behavior
rule generation combines the collected signatures and behav-
ior state information of the target behavior and derives them
as rules. An example of a defined behavior rule is shown in
Table. 3 and Fig. 7.

Table 3 shows rules for applications start with Microsoft
Office 365. It exhibits a fixed server IP of ‘‘13.107.6.156’’
and an SNI of ‘‘www.office.com’’. The PSD signature is
defined as [571/0, −1514/0, 212/20, 159/14, 891/12], while
[571, −1514, 212, 159, 891] represents the PSD values, and
[/0, /10, /5, /16, /12] indicates the threshold for each packet.
The state information represents the currently detected
behavior and the preceding behavior. Taking into account
the sequence of behaviors, the current and preceding behav-
iors mentioned in the state information cannot be detected
in the subsequent behavior detection. For instance, a login
action is not detected unless the application start is detected
before considering the behavior sequence. In Table 3, the
current behavior is application start, and there is no preceding
behavior.

Fig. 7 shows the behavior rules for application start in
Microsoft Office 365 by utilizing Table 3. The contents of
each signature are stored according to the JSON format.

4) BEHAVIOR RULE VALIDATION
In behavior rule verification, the validation process involves
checking the accurate detection of behaviors by inputting
the behavior rule and the GT traffic, which was not used in
previous signature extraction. The validation is conducted on
two types of traffic: i) traffic with the same behavior as the
target behavior of the application, and ii) traffic with different
behaviors of the same application. If the generated behavior
rules result in false detections, an analysis is conducted to
determine the cause of the false detections.

In the first case, if patterns are observed that differ from the
defined signatures, new signatures are added. For example,
if signature #1 is derived from 1 to 8 traces, but in 2 traces,
signature #1 is not derived while signature #2 is derived
instead, signature #2 is added. In this case, both signatures #1
and #2 are used to detect the behavior. On the other hand,
in the second case, if false detections occur, the corresponding
signature is considered as not being a unique signature for
detecting the behavior and is discarded.

5) APPLICATION RULE GENERATION
In the process of application rule generation, the rules defined
for each behavior, which have undergone the verification
process, are consolidated into a single application rule. The
generated application rule is then used to assess the detection
performance by detecting user behaviors in the actual net-
work environment.

B. RULE-BASED USER BEHAVIOR DETECTION
Rule-based behavior detection is a process of detecting user
behavior in a real network environment using generated
application rules. The real network environment represents a
network with multiple hosts, such as businesses or university
network environments. User behavior detection is composed
of 4 detailed processes (i.e., traffic preprocessing, behavior
detection, performance validation, and rule update)

97362 VOLUME 11, 2023



J.-T. Park et al.: User Behavior Detection Using Multi-Modal Signatures of Encrypted Network Traffic

1) TRAFFIC PREPROCESSING
Traffic preprocessing in behavior detection involves two
detailed processes: traffic collection and flow generation.
Traffic collection is conducted within the target network in
a multi-host environment. In our proposed system, we collect
the traffic by employing packet mirroring on the campus net-
work of Korea University. The collected traffic encompasses
packets from various applications generated by multiple
users. The flow generation process follows the same prepro-
cessing method as in rule generation. In our proposed system,
user behaviors are recorded to evaluate the detection results.
These behavior records are utilized in the performance eval-
uation process.

2) BEHAVIOR DETECTION
Behavior detection aims to verify the accurate detection of the
target application’s behavior using preprocessed flows and
the generated application rule as input. Our goal is to pre-
cisely detect user(host), application, behavior, and behavior
execution time utilizing the generated application rules.

The method of applying header, SNI, and PSD signatures
in the application rule for behavior detection is as follows.
Firstly, the header signature in the rule checks if the col-
lected traffic contains the defined IP, Port, and Protocol. If a
matching flow is found, the behavior defined in the rule is
detected. Secondly, the SNI signature in the rule checks if
the defined SNI is present in the collected traffic. When a
matching flow is identified, the corresponding behavior is
detected. Thirdly, the application of PSD signatures within
the rules differs based on two scenarios. If there is a header
or SNI signature, a PSD is derived for a flow that matches
the signature. The derived PSD is compared with the defined
signature, including the PSD and thresholds of each packet.
If the difference between the signature and the derived PSD
is smaller than the threshold, the behavior is detected. On the
other hand, if there is no header or SNI signature, PSDs are
derived for the entire flow. The derived PSD is compared with
the defined signature, including centroid vectors and thresh-
olds. If the distance between the derived PSD and centroid
vectors is smaller than the threshold, the behavior is detected.
As a result of behavior detection, user, application, behavior,
and behavior execution time information is derived.

C. PERFORMANCE EVALUATION & RULE UPDATE
In this process, performance evaluation and rule update for
detection results are performed. Performance evaluation is
performed by comparing the behavior record with the detec-
tion result, and the evaluation result is stored in the result
DB. A rule update is performed in the case of performance
degradation for a certain period in the stored results.

1) PERFORMANCE EVALUATION
In performance evaluation, the evaluation result is obtained
by comparing the detection result with behavior records.
There are two methods of behavior recording: manual

FIGURE 8. An example of behavior detection result.

behavior recording and agent-based behavior recording.
In the manual recording method, the user directly records
the host, application, behavior, and behavior execution time.
In the agent-based recording method, the host, application,
behavior, and behavior execution time are recorded using
process APIs. This method requires an agent to be installed
on the host of the detection target. The agent operates based
on the API calls triggered when an application behavior is
performed on the host.

The behavior detection result is categorized into true detec-
tion (TP, TN), false detection (FP), and non-detection (FN),
as illustrated in Fig. 8. We focus on detecting the target
behavior; therefore, we do not consider other behaviors from
the perspective of the target behavior. True Positive (TP)
refers to the case where the host IP, application, and behavior
information all match, and the detected time is within the
range of the behavior execution time. True Negative (TN)
indicates the case where a different behavior is performed
and correctly not detected. False Positive (FP) corresponds to
cases where a different behavior is mistakenly detected as the
target behavior. False Negative (FN) represents cases where
the target behavior is performed but not detected.

The detection result calculates the Recall, Precision, and
F1 measure by using TP, TN, FP, and FN. Equation (14),
(15), (16), and (17) indicates the formula of Recall, Precision,
F1-measure, and Accuracy.

Recall =
TP

TP+ FN
(14)

Precision =
TP

TP+ FP
(15)

F1 − measure =
2 × Precision× Recall
(Recall + Precision)

(16)

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(17)

2) RULE UPDATE
In real network environments, SaaS applications often
encounter changes in traffic patterns due to reasons such as
security updates and application version upgrades. A limita-
tion of the signature-based analysis method is that predefined

VOLUME 11, 2023 97363



J.-T. Park et al.: User Behavior Detection Using Multi-Modal Signatures of Encrypted Network Traffic

FIGURE 9. A process of rule update mechanism.

signatures cannot be applied when there are changes in traffic
patterns or characteristics. As the proposed method is also
a type of signature analysis, it is susceptible to changes in
traffic patterns.

To address this limitation, we have designed a mechanism
for rule update and regeneration. The rule update process
determines when a change in traffic pattern occurs, while
the rule regeneration process executes the rule generation
procedure when it is deemed necessary.

The rule update process assesses the performance of the
rule by collecting behavior detection results. As mentioned
earlier, user behavior detection is conducted in a multi-host
environment. The traffic collected through packet mirroring
is stored every minute. Behavior detection is performed on
this collected traffic, and detection results are generated at
one-minute intervals. These detection results are aggregated
in units of 1, 6, 12 hours, and 1-, 3-, and 7-day intervals.

Fig. 9 illustrates the mechanism of rule update, showcasing
how a threshold is set for detection results to assess the degra-
dation of detection performance caused by changes in traffic
patterns. If the detection result falls below the threshold, the
average detection result is calculated for 30 minutes, 1 hour,
and 3 hours from the corresponding time point. If the derived
average detection result remains below the threshold, it indi-
cates a change in the traffic pattern of the target application.

When conducting behavior detection experiments, we have
set the detection result threshold to 0.95, taking into account
that the majority of applications demonstrate an average
detection performance of 95% or higher. In these experi-
ments, F-measure and Accuracy are used as the evaluation
metric to assess the overall detection performance. In cases
where over 10 user behaviors occur within a specified period,
and the average detection performance falls below 0.95, a rule
update is performed.

3) RULE RE-GENERATION
Rule regeneration performs the rule generation process again,
targeting application behaviors that require rule update.

In rule regeneration, the behavior and application rule gen-
eration are performed in the same way.

V. EVALUATION OF THE PROPOSED METHOD
In this section, we conduct experiments to verify our pro-
posed method. We implement the proposed system through
Python code on Linux. Experiments are performed on a server
with Intel(R) Core (TM) i7-4770K CPU, 32GBMemory, and
CentOS Linux release 7.9.2009 operating system.

We use Wireshark to collect the target application traffic
for rule generation. The system extracted one JSON file for
each application containing the information of header, SNI,
PSD signatures, and behavior sequence, as previously shown
in Table 3. We performed 4 experiments with traffic collected
from multi-host network environments and generated rule
files as input.

In the first experiment, we evaluate the detection per-
formance for 5 applications in a multi-host environment.
We used packet mirroring within Korea University to imple-
ment a multi-host environment and collected the campus
network traffic. In the second experiment, we conduct detec-
tion experiments targeting other types of applications besides
SaaS. The target application was selected as Microsoft Office
365 and Zoom. Microsoft Office 365 and Zoom are SaaS
types, but Microsoft Office 365 also belongs to the document
processing type, and Zoom belongs to the remote meeting
type. We defined the 3 new target behaviors as ‘‘use Power-
Point, Word, and Excel’’ in Microsoft Office 365 and 2 new
target behaviors as ‘‘remote meeting’’ and ‘‘terminate the
remote meeting’’ in Zoom. In the third experiment, we con-
ducted several comparison experiments.

The detection performance is compared according to
the signature application method. In addition, we compare
the detection performance with and without the behavior
sequence to verify the effect of the behavior sequence. In the
fourth experiment, the time consumed in the rule generation
is compared with the proposed method and our previous
method [28].

A. DATASET
We selected 5 SaaS applications (e.g., Microsoft Office 365,
Adobe Creative Cloud, Autodesk, Slack, and Zoom) for the
experiment and used the privately collected dataset for each
application. For the dataset, 30 traces were collected for each
application, of which 20 traces were used for rule generation
and 10 traces for behavior detection. Information on the
dataset is shown in Table 4 and 5.

In SaaS-type applications, it is important to select an appro-
priate license because the services and behaviors provided
may vary depending on the license type. We selected widely
used licenses with common functions for each application.
An educational license provided for the university is used in
Office 365, Adobe Creative Cloud, and Zoom. The AutoCAD
LT 2023 license is used in Autodesk, and the free license is
used in Slack.

97364 VOLUME 11, 2023



J.-T. Park et al.: User Behavior Detection Using Multi-Modal Signatures of Encrypted Network Traffic

TABLE 4. Information of traffic dataset in rule generation.

Table 4 shows the traffic data used to generate the rule
and shows the average flow and number of packets for each
trace. In rule generation, the target behavior was performed
5 times in one trace, and 20 traces were used for each behav-
ior. For the better performance, we collected GT traffic of
each behavior. To collect GT traffic for each application’s
behavior, the collection environment was built as an isolated
network environment and collected in a single host environ-
ment. TLS is widely used for encrypted communication, and
among the five applications used in our experiments, TLS
was the most commonly utilized method. Across all applica-
tions, TLS 1.2 packets appeared with the highest frequency.
TLS 1.3 followed as the second most prevalent version.
Microsoft Office 365 also exhibited UDP-based encryption
using QUIC. Additionally, TLS 1.1 packets were sporadically
observed in a few applications.

Table 5 shows each traffic information collected in a multi-
host environment, and 10 traces were collected for each
application. Since we collected the traffic in a multi-host
environment, the traffic includes the target host’s application
behavior and various traffic from other hosts.Flow andPacket
represent the number of flows and packets in the traffic,
respectively, and Host represents the total number of hosts
in a multi-host environment. For each trace, 4 behaviors were
repeated 10 times for each application.

We recorded the host IP, application name, behavior, and
behavior execution time information for the collected dataset,
and the recording process was performed manually in the
experiment.

B. PERFORMANCE EVALUATION
In this section, we describe the results of 4 experiments.
Behaviors for each experiment were recorded manually, and
evaluation metrics were calculated by comparing them with
behavior detection results.

1) USER BEHAVIOR DETECTION IN A MULTI-HOST
ENVIRONMENT
The first experiment focuses on behavior detection in a multi-
host environment, specifically aiming to accurately detect
behaviors defined for each application. The results of this
experiment are presented in Table 6.

In Table 6, the 4 behaviors are labeled as behaviors
#1(application start), #2(login), #3(logout), and #4(applica-
tion end), respectively. The experiment resulted in an average
F-measure ranging from 92∼ 99% and an accuracy ranging
from 89∼99% across the five applications. Most of the appli-
cations achieve an F-measure and accuracy in the range of
approximately 95∼99%, except Slack. Among the 5 applica-
tions, Microsoft Office 365 exhibits the highest performance,
achieving an F-measure and accuracy of 99%.

Slack is classified as both a SaaS and messenger-type
application, and its login and logout processes differ from
those of other applications. Messenger-type applications can
run in the background and utilize tokens for identification
and authentication during the login and logout procedures.
Due to the token-based authentication, where users can access
applications without additional credentials within the token’s
validity period, there are instances where traffic patterns may
not be clearly observed during login and logout. This can
result in higher rates of false detection and non-detection,
mainly caused by inaccurate signature definitions for these
specific stages. This challenge poses difficulties in the field of
network traffic analysis, and we plan to explore methods for
detecting behaviors in applications that utilize token-based
authentication in future research.

2) USER BEHAVIOR DETECTION FOR OTHER APPLICATION
TYPE
We conducted an experiment applying the proposed method
to detect the behavior of different types of applications.

We defined 3 behaviors of the document processing type
application and 2 behaviors of the remote meeting type appli-
cation, instead of the 4 behaviors defined for the SaaS type.
As the behaviors defined by Microsoft Office 365 and Zoom
differ from the 4 behaviors of the SaaS type, we created new
rules specifically for these behaviors.

Table 7 represents information about collected traffic for
rule generation and behavior detection for each action. It pro-
vides details about flows and packets. However, since our
emphasis was on SaaS-type application behavior detection,
the second experiment was carried out using only 5 traces
for each application. Table 8 shows the detection experiment
results for different types of application behaviors. In Table 8,
the 3 behaviors of Microsoft Office 365 (i.e., use PowerPoint,

VOLUME 11, 2023 97365



J.-T. Park et al.: User Behavior Detection Using Multi-Modal Signatures of Encrypted Network Traffic

TABLE 5. Information of traffic dataset in a multi-host environment.

TABLE 6. Result of behavior detection for 5 SaaS applications.

Word, and Excel) are represented as behaviors #o1, #o2, and
#o3, 2 behaviors of Zoom (i.e., remote meeting and terminate
the remotemeeting) are represented as behaviors #z1 and #z2.

TABLE 7. Information of traffic dataset for other type application.

As a result of the experiment, an average of 98∼100%
F-measure and 98∼ 100% accuracy was shown in 2 appli-
cations. Microsoft Office 365 shows clear SNI signatures
for all 3 behaviors. For example, the SNI of ‘‘power-
point.office.com’’ is derived using PowerPoint. Zoom shows

97366 VOLUME 11, 2023



J.-T. Park et al.: User Behavior Detection Using Multi-Modal Signatures of Encrypted Network Traffic

TABLE 8. Result of behavior detection for other type applications.

TABLE 9. Comparison result of the behavior rule generation time.

TABLE 10. Comparison result of the applkication rule generation time.

a similar pattern in the PSD or each behavior. PSDs derived
for each activity show a similar pattern. The results show that
a clear common signature can be derived from different types
of application behaviors, and the proposed method can be
applied to other types of application behaviors.

3) COMPARISON EXPERIMENT (1)
In the third experiment, we conducted performance com-
parison experiments for the signature application method.
Microsoft Office 365 was selected as the target application,

and the experiment environment was set to be identical.
We compared the performance of 5 signature methods: i)
header, ii)SNI, iii)PSD, iv)All, and v) All (BS). Among these
methods, i), ii), and iii) apply individual methodologies, iv)
All represents a method that utilizes all 3 signatures in the
proposed approach but does not consider behavior sequences.
On the other hand, v)All (BS) represents amethod that uses all
3 signatures and takes behavior sequences into consideration.

If a corresponding signature is not present in the target
behavior, it is considered as a non-detection since it cannot
be detected. For example, the header signature exists in the
application start of Microsoft Office 365 but does not exist
in the login behavior. In such cases, the performance of the
header signature in login is evaluated as non-detection.

Fig. 10 shows the detection performance according to the
applied signature. Since Microsoft connects to a specific site
when starting the application, information about the specific
site is defined as a header signature. Therefore, the applica-
tion start of Microsoft Office 365 can be detected with 100%
accuracy based on this information. However, the header
signature is derived only at the application start, it cannot be
detected in other behaviors.

The SNI signature demonstrated 100% accuracy in appli-
cation start and approximately 95-97% accuracy in login
and logout. However, for the application end, the accuracy
dropped to around 80-82%. The application end is detected
when the process’s end button is pressed. During this event,
the SNI signature for the application end does not have a
fixed SNI but varies depending on the traces. As a result,
false detections and non-detections occurred relatively more
frequently compared to other behaviors.

On the other hand, the PSD signatures achieved approxi-
mately 93-98% detection accuracy across the four behaviors,
exhibiting the highest individual signature detection perfor-
mance. However, false detections and non-detections were
more likely to occur due to slight variations in threshold
values and distances.

In the case of All, it is detected with an accuracy of about
97∼100%, and the overall detection performance is improved
compared to when an individual signature is applied. How-
ever, since the behavior sequence is not considered, duplicate
detection occurs when the same pattern occurs even if the
target behavior is detected.

Duplicate detection is judged as a false detection (FP) in
the detection criteria, and it mainly occurs in the login. All
(BS) can solve this problem because it considers the sequence
of behaviors. Considering the sequence of behaviors, login
is only detected after the application start. In addition, after
being detected, it is not detected until a logout occurs. There-
fore, All (BS) showed about 99∼100% detection accuracy in
4 behaviors,

Overall, the detection performance can be limited when
relying solely on individual signatures. This is because some
traffic information used for detecting specific behaviors can
be effectively captured by signatures, while others may lack
clear patterns for accurate signature definition. For instance,

VOLUME 11, 2023 97367



J.-T. Park et al.: User Behavior Detection Using Multi-Modal Signatures of Encrypted Network Traffic

FIGURE 10. Performance comparison for the signature application method in Microsoft Office 365.

in Fig. 10, the application end behavior in Microsoft Office
365 does not exhibit a distinct SNI pattern, resulting in an
SNI accuracy of approximately 80%. On the other hand, PSD
signatures demonstrate relatively clearer patterns, achieving a
detection performance of around 90%. However, in practical
detection, it is not solely dependent on individual signa-
tures but also incorporates the three signatures and behavior
sequences for a comprehensive approach. Consequently, even
for the application end behavior in Microsoft Office 365,
a detection performance of over 98% is achieved. This
aspect can be regarded as another contribution of this paper,
addressing the limitations of existing signature-based analy-
sis methods that rely solely on individual signatures.

4) COMPARISON EXPERIMENT (2)
To validate the proposed method, a comparative experiment
with other methods is necessary. However, as mentioned
earlier, comparing the objective performance in user behavior
detection research is challenging due to variations in the
target application and behavior definition methods used in
each research.

In the fourth experiment, we conducted comparison exper-
iments with our previous research [28]. We compare the rule

generation time to verify the efficiency of the automatic rule
generation method of the proposed method.

Table 9 shows the behavior rule generation time for each
method, and we use the Autodesk login for the target. The
traffic collection and pre-processing process is the same for
both methods, and it takes 10 minutes. The header signature
is the process of extracting a fixed IP and port if there is one,
and the two methods perform the same. There are differences
in the two methods of the SNI signature generation process.
In the previous research, the SNI signature was used to derive
commonly occurring SNI information by checking the SNI
for all flows for each trace, and it took about 120 minutes.

However, the proposed method automatically extracts a
common SNI signature with all trace traffic as input and takes
within 5 minutes. Since PSD signatures were not applied in
the previous method, we excluded the PSD signatures. The
proposedmethod extracts signatures within 5 minutes. Signa-
ture aggregation is a process of generating a single behavior
detection rule by collecting several generated signatures. The
previous method was performed manually, and it took about
20minutes for the procedure. On the other hand, the proposed
method performs this process automatically, and each takes
within 1 minute. Comparing the total time, the previous
method consumes 180 minutes, excluding PSD signatures,

97368 VOLUME 11, 2023



J.-T. Park et al.: User Behavior Detection Using Multi-Modal Signatures of Encrypted Network Traffic

TABLE 11. An example of calculating the computational complexity for
the behavior detection.

and the proposed method consumes about 90 minutes. The
time difference will likely become larger when there are more
traffic traces.

Table 10 shows the application rule generation time for
each method, and we use Autodesk for the target. In the case
of the previous method, it takes about 759minutes to generate
the entire application rule and an average of 184.75 minutes
for one behavior, excluding the rule aggregation. In the case
of the proposed method, it takes about 185 minutes to gener-
ate the entire application rule and an average of 46minutes for
one behavior, excluding the rule aggregation. Comparing the
rule generation time of the twomethods, the proposedmethod
can significantly reduce both the behavior and application
rule generation time.

Although our proposedmethod’s automatic rule generation
significantly reduces the time compared to the manual rule
generation in previous studies, it is still time-consuming task.
To address this issue, we have divided our system into two
main parts: rule generation and behavior detection. The rule
generation part can operate offline once sufficient traffic data
sets for the target application have been collected. Addi-
tionally, similar to the training time in the learning-based
analysis method, the rule generation time may vary based on
the volume of collected traces. Nevertheless, it is possible
to further decrease the rule generation time using a GPU,
as demonstrated in the comparison experiment (2).

VI. DISCUSSION
A. COMPUTATIONAL COMPLEXITY
The computational complexity can vary depending on differ-
ent situations and environments. In this section, we explain
various factors that influence computational complexity.

As we mentioned in Section IV, the proposed system con-
sists of 3 main parts: rule generation, rule validation, and
behavior detection, all of which are affected by hardware
specifications.

In the rule generation part, multiple GT traffic traces are
taken as input to derive the three signatures, and the aggre-
gation process is performed. Therefore, the computational
complexity of rule generation is primarily influenced by the
amount of traffic data (e.g., GT traffic trace count, the number
of flows in each trace), and the time complexity increases lin-
early with the increase in data quantity. Similarly, in the rule
validation part, the computational complexity is also affected
by the amount of traffic data (e.g., GT traffic trace count,
the number of flows in each trace) and the time complexity
increases linearly with the increase in data quantity.

Behavior detection involves deriving detection results
through signature matching with the input traffic data col-
lected over one minute through mirroring. Since behavior
detection utilizes data preprocessed at the flow level, it is less
affected by the packet quantity and more influenced by the
number of flows. Furthermore, the final number of rules and
signatures obtained during the rule generation and validation
processes affects the matching frequency, resulting in a linear
increase in time complexity with the number of signatures.

Table 11 provides an example of computational complexity
calculation for behavior detection regarding a single behavior
in one application. The input traffic represents collected net-
work data, and the number of flows in the traffic is denoted as
N, with T representing the number of flows matched by the
SNI signature. The matching method indicates a one-to-one
correspondence between a flow and a signature. For example,
a single SNI signature for a target behavior will undergo
matching with all collected flows until the target behavior is
detected.

In this case, the time complexity is represented as follows
for each signature. The time complexities in Table 11 are
provided as examples for specific scenarios and may vary
depending on the other various factors explained earlier.

B. LIMITATIONS OF THE PROPOSED METHOD
Our proposed method has several limitations. Firstly, it incor-
porates a rule update mechanism to address the challenge of
traffic pattern changes in the signature-based method. While
the focus of this paper is on the overall system architec-
ture and signature generation, it is essential to validate the
effectiveness of the rule update mechanism. Nonetheless, the
rule update mechanism is expected to address the limitations
of the signature-based method in response to traffic pattern
changes. Since the rule generation is the same, enabling the
system to autonomously assess the need for rule updates
based on performance degradation by adjusting the thresh-
old. This approach is anticipated to effectively overcome the
drawbacks of the signature-based method caused by changes
in traffic patterns.

Secondly, the proposed method exhibits high detection
performance for the majority of SaaS applications. However,

VOLUME 11, 2023 97369



J.-T. Park et al.: User Behavior Detection Using Multi-Modal Signatures of Encrypted Network Traffic

it exhibits lower detection performance when applied to
applications that employ token-based authentication methods
like Slack. Token-based authentication involves exchanging
authentication information during the initial authentication,
which allows for behavior detection through the generated
traffic. However, after the initial authentication, the client
holds the authentication information in the form of tokens,
which remain valid until their expiration. Subsequent authen-
tication actions, such as login and logout, only require
checking the validity of the tokens. In this case, the minimal
packet generation, unlike session-based authentication, poses
a challenge for detecting behaviors through traffic analysis,
not only in the proposed method but also in traffic analysis
research.

Thirdly, while we have conducted several experiments on
the proposed method, it is crucial to validate its effective-
ness through performance comparisons with other research.
In particular, this paper acknowledges the need for perfor-
mance comparisons with recent studies in the field of user
behavior detection research. Asmentioned earlier, comparing
performance with other studies can be challenging due to
variations in the applications used and behavior definitions.
However, in the second experiment, we provide prelimi-
nary evidence that the proposed method can be applied to
behaviors of applications used in other studies, allowing for
performance comparisons. This is expected because the pro-
posed method consistently demonstrates high performance,
even when applied to different types of applications with
varying behavior definitions used in other studies.

Lastly, the proposed method cannot directly apply the
header and SNI signatures to other encryption protocols such
as IPsec and QUIC. However, by utilizing the PSD signature,
the proposed method can be partially applied to these proto-
cols. It is important to note that relying solely on the PSD
signature may result in performance degradation. Therefore,
further research is needed to explore advanced techniques to
address this limitation.

Nevertheless, the proposed method exhibits high detec-
tion performance by leveraging multi-modal signatures for
encrypted traffic. As a result, the proposed method can be
applied to diverse domains that involve encrypted traffic,
including user behavior detection and malicious behavior
detection.

C. FEASIBILITY AND UTILIZATION OF THE PROPOSED
METHOD
The primary objective of the proposedmethod is to accurately
detect user behavior using Multi-Modal Signatures. It seam-
lessly integrates with existing traffic analysis systems and
operates effectively on the internet. The method comprises
two components: rule generation and behavior detection,
each offering distinct advantages depending on its specific
application.

The proposed method can be applied in diverse scenarios,
with two prominent examples. Firstly, it can be integrated
into enterprise or organizational network traffic analysis and

management systems. When deployed within an organiza-
tion’s network, the system conducts comprehensive traffic
analysis, providing profound insights into user activities and
application usage. We have successfully implemented this
approach on Korea University’s campus network.

Secondly, the method shows potential for network secu-
rity. Though network security is not the primary focus of
this paper, the proposed method is expected to demonstrate
promising results in efficiently and accurately identifying
malicious activities. Leveraging its multi-modal approach,
the system effectively recognizes patterns indicative of var-
ious cyber threats, including malware infections, intrusion
attempts, and anomalous activities. This capability could
strengthen network security and enable a proactive response
to potential cybersecurity incidents. Moreover, the method’s
adaptability allows for continuous rule updates and refine-
ments, potentially enhancing its effectiveness against evolv-
ing cyber threats over time.

However, it is important to acknowledge that the proposed
method may take longer processing times in certain network
environments, especially with large-scale traffic. Addition-
ally, creating signatures for target applications beforehand
may limit its response to novel types of applications or attack
behaviors. Nonetheless, the proposed system holds potential
for application in various fields, such as network monitoring,
intrusion detection, and traffic analysis, where its adaptability
and multi-modal approach could be advantageous.

VII. CONCLUSION
We have discussed the research on user behavior detection
and highlighted several limitations in existing studies. These
studies often differ in terms of the target application and
behavior definition methods used, making it challenging to
objectively compare performance.

In this paper, we address the challenge of achieving
objective performance comparison in user behavior detection
research. To address this issue, we propose a method for
categorizing application types, which serves as a guideline
for consistently defining behavior based on the application
type. This approach significantly improves the comparability
of research performance.

As part of our contributions, we propose a rule-based
user behavior detection method. This signature-based traffic
analysis method utilizes multi-modal signatures, including
header, SNI, and PSD signatures, and is capable of effectively
handling encrypted traffic. Our proposed system consists of
3 main modules: rule generation, behavior detection, and rule
update.

In the rule generation phase, we address the challenges
of manual traffic analysis and rule generation by applying
an automatic signature extraction algorithm for each sig-
nature. The behavior detection module is responsible for
detecting user behavior in a real network, providing detection
results in terms of recall, precision, F-measure, and accu-
racy. To ensure the method’s adaptability to changing traffic
patterns, we also introduce a rule update mechanism that

97370 VOLUME 11, 2023



J.-T. Park et al.: User Behavior Detection Using Multi-Modal Signatures of Encrypted Network Traffic

mitigates performance degradation.With this mechanism, the
detection rules can be adjusted to accommodate variations
in traffic patterns, maintaining a high level of accuracy over
time.

To verify the proposed system, we conducted several
experiments for 5 SaaS applications. In the first experiment,
we evaluated the detection performance in a multi-host envi-
ronment. The results demonstrated that the proposed method
achieved high detection performance except for Slack, which
utilizes a token-based authentication method. In the sec-
ond experiment, we evaluated the detection performance for
applications of other types, and the proposed method exhib-
ited consistently high performance.

In the third experiment, we conducted a comparative anal-
ysis of the detection performance for each signature and
examined the impact of behavior sequences on the overall
performance. In our experiments, we compared the detection
performance of each signature, and we found that in most
applications, only SNI and PSD signatures were used, while
header signatures were rarely utilized. Header signatures are
primarily applicable when fixed IP and Port are used. How-
ever, in most current applications, fixed IP and port are not
employed. Therefore, we plan to conduct future research to
enhance header signatures by utilizing IP ranges instead of
fixed IPs. The results highlighted the effectiveness of the
proposed method in analyzing behavior sequences, further
enhancing the detection performance.

Lastly, in the fourth experiment, we compared the rule
generation time with our previous research [28]. The pro-
posed method significantly reduced the rule generation time
compared to the manual rule generation approach employed
in the previous research. This demonstrates the efficiency
and effectiveness of the proposed automated rule generation
process.

In the future, we plan to improve our proposed method
through five additional research directions. Firstly, we aim to
enhance the signature generation process with more sophis-
ticated algorithms to further increase the detection perfor-
mance. This improvement is expected to enhance the results
of the first experiment. Secondly, we will conduct additional
traffic analysis to address the low detection performance
observed in token-based applications. Thirdly, we intend to
use the application type categorization and behavior defini-
tion method presented in this paper to perform performance
comparisons with other studies. Fourthly, considering the
significance of user behavior in network management and
security, we will explore applying our proposed method to
detect malicious traffic in the field of network security. Lastly,
we are planning to review and partially share a portion of the
traffic dataset used for rule generation in this paper. These
future research endeavors will help further refine and validate
the effectiveness of our proposed approach.

REFERENCES
[1] A. Callado, C. Kamienski, G. Szabo, B. P. Gero, J. Kelner, S. Fernandes,

and D. Sadok, ‘‘A survey on internet traffic identification,’’ IEEECommun.
Surveys Tuts., vol. 11, no. 3, pp. 37–52, 3rd Quart., 2009.

[2] A. Dainotti, A. Pescape, and K. C. Claffy, ‘‘Issues and future directions in
traffic classification,’’ IEEE Netw., vol. 26, no. 1, pp. 35–40, Jan. 2012.

[3] J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, and Y. Guan, ‘‘Network
traffic classification using correlation information,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 24, no. 1, pp. 104–117, Jan. 2013.

[4] M. Finsterbusch, C. Richter, E. Rocha, J.-A. Müller, and K. Hanssgen,
‘‘A survey of payload-based traffic classification approaches,’’ IEEE Com-
mun. Surveys Tuts., vol. 16, no. 2, pp. 1135–1156, 2nd Quart., 2014.

[5] A. Shahraki, M. Abbasi, A. Taherkordi, and A. D. Jurcut, ‘‘Active learning
for network traffic classification: A technical study,’’ IEEE Trans. Cogn.
Commun. Netw., vol. 8, no. 1, pp. 422–439, Mar. 2022.

[6] A. Madhukar and C. Williamson, ‘‘A longitudinal study of P2P traffic
classification,’’ in Proc. 14th IEEE Int. Symp. Modeling, Anal., Simulation,
Monterey, CA, USA, 2006, pp. 179–188.

[7] Y.-H. Goo, K.-S. Shim, S.-K. Lee, and M.-S. Kim, ‘‘Payload signature
structure for accurate application traffic classification,’’ in Proc. 18th
Asia–Pacific Netw. Oper. Manage. Symp. (APNOMS), Kanazawa, Japan,
Oct. 2016, pp. 1–4.

[8] F. Risso, M. Baldi, O. Morandi, A. Baldini, and P. Monclus, ‘‘Lightweight,
payload-based traffic classification: An experimental evaluation,’’ in Proc.
IEEE Int. Conf. Commun., Beijing, China, May 2008, pp. 5869–5875.

[9] J.-S. Park, S.-H. Yoon, and M.-S. Kim, ‘‘Performance improvement of
payload signature-based traffic classification system using application traf-
fic temporal locality,’’ in Proc. Asia–Pacific Netw. Oper. Manage. Symp.,
2013, pp. 1–6.

[10] X. Feng, X. Huang, X. Tian, and Y. Ma, ‘‘Automatic traffic signature
extraction based on smith-waterman algorithm for traffic classification,’’
in Proc. 3rd IEEE Int. Conf. Broadband Netw. Multimedia Technol. (IC-
BNMT), Beijing, China, Oct. 2010, pp. 154–158.

[11] H. M. An, S. K. Lee, J. H. Ham, and M. S. Kim, ‘‘Traffic identification
based on applications using PSD signature free from abnormal TCP behav-
ior,’’ J. Inf. Sci. Eng., vol. 31, no. 5, pp. 1669–1692, Sep. 2015.

[12] C. Yin, Y. Zhu, J. Fei, and X. He, ‘‘A deep learning approach for intru-
sion detection using recurrent neural networks,’’ IEEE Access, vol. 5,
pp. 21954–21961, 2017.

[13] P. Wang, X. Chen, F. Ye, and Z. Sun, ‘‘A survey of techniques for mobile
service encrypted traffic classification using deep learning,’’ IEEE Access,
vol. 7, pp. 54024–54033, 2019.

[14] M. J. de Lucia and C. Cotton, ‘‘Detection of encrypted malicious network
traffic using machine learning,’’ in Proc. IEEE Mil. Commun. Conf. (MIL-
COM), Norfolk, VA, USA, Nov. 2019, pp. 1–6.

[15] T. T. T. Nguyen and G. Armitage, ‘‘A survey of techniques for internet
traffic classification using machine learning,’’ IEEE Commun. Surveys
Tuts., vol. 10, no. 4, pp. 56–76, 4th Quart., 2008.

[16] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, ‘‘End-to-end encrypted
traffic classification with one-dimensional convolution neural networks,’’
in Proc. IEEE Int. Conf. Intell. Secur. Informat. (ISI), Jul. 2017, pp. 43–48.

[17] C. Liu, L. He, G. Xiong, Z. Cao, and Z. Li, ‘‘FS-Net: A flow sequence
network for encrypted traffic classification,’’ in Proc. IEEE Conf. Comput.
Commun. (IEEE INFOCOM), Paris, France, Apr. 2019, pp. 1171–1179.

[18] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian, ‘‘Deep
packet: A novel approach for encrypted traffic classification using deep
learning,’’ Soft Comput., vol. 24, no. 3, pp. 1999–2012, Feb. 2020.

[19] C. Hou, J. Shi, C. Kang, Z. Cao, and X. Gang, ‘‘Classifying user activities
in the encryptedWeChat traffic,’’ inProc. IEEE 37th Int. Perform. Comput.
Commun. Conf. (IPCCC), Nov. 2018, pp. 1–8.

[20] K. Park and H. Kim, ‘‘Encryption is not enough: Inferring user activities on
KakaoTalk with traffic analysis,’’ in Proc. Int. Workshop Inf. Secur. Appl.
(WISA). Cham, Switzerland: Springer, 2015, pp. 254–265.

[21] H. Wu, Q. Wu, G. Cheng, and S. Guo, ‘‘Instagram user behavior iden-
tification based on multidimensional features,’’ in Proc. IEEE Conf.
Comput. Commun. Workshops (INFOCOM WKSHPS), Toronto, ON,
Canada, Jul. 2020, pp. 1111–1116.

[22] B. Saltaformaggio, H. Choi, K. Johnson, Y. Kwon, Q. Zhang, X. Zhang,
D. Xu, and J. Qian, ‘‘Eavesdropping on fine-grained user activities within
smartphone apps over encrypted network traffic,’’ in Proc. Workshop
Offensive Technol. (WOOT), 2016, pp. 69–78.

[23] E. Grolman, A. Finkelshtein, R. Puzis, A. Shabtai, G. Celniker, Z. Katzir,
and L. Rosenfeld, ‘‘Transfer learning for user action identication in mobile
apps via encrypted trafc analysis,’’ IEEE Intell. Syst., vol. 33, no. 2,
pp. 40–53, Mar. 2018.

VOLUME 11, 2023 97371



J.-T. Park et al.: User Behavior Detection Using Multi-Modal Signatures of Encrypted Network Traffic

[24] S. E. Coull and K. P. Dyer, ‘‘Traffic analysis of encrypted messaging ser-
vices: Apple iMessage and beyond,’’ ACM SIGCOMM Comput. Commun.
Rev., vol. 44, no. 5, pp. 5–11, Oct. 2014.

[25] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, ‘‘Analyzing Android
encrypted network traffic to identify user actions,’’ IEEE Trans. Inf. Foren-
sics Security, vol. 11, no. 1, pp. 114–125, Jan. 2016.

[26] Y. Fu, H. Xiong, X. Lu, J. Yang, and C. Chen, ‘‘Service usage classification
with encrypted internet traffic in mobile messaging apps,’’ IEEE Trans.
Mobile Comput., vol. 15, no. 11, pp. 2851–2864, Nov. 2016.

[27] M. Jiang, G. Gou, J. Shi, and G. Xiong, ‘‘I know what you are doing
with remote desktop,’’ in Proc. IEEE 38th Int. Perform. Comput. Commun.
Conf. (IPCCC), London, U.K., Oct. 2019, pp. 1–7.

[28] J.-T. Park, U.-J. Baek, M.-S. Kim, M.-S. Lee, and C.-Y. Shin, ‘‘Rule-
based user behavior detection system for SaaS application,’’ in Proc. 23rd
Asia–Pacific Netw. Oper. Manage. Symp. (APNOMS), Sep. 2022, pp. 1–4.

[29] A. Subahi and G. Theodorakopoulos, ‘‘Detecting IoT user behavior and
sensitive information in encrypted IoT-app traffic,’’ Sensors, vol. 19,
no. 21, p. 4777, Nov. 2019.

[30] X. Xiao,W. Xiao, R. Li, X. Luo, H. Zheng, and S. Xia, ‘‘EBSNN: Extended
byte segment neural network for network traffic classification,’’ IEEE
Trans. Depend. Sec. Comput., vol. 19, no. 5, pp. 3521–3538, Sep. 2022.

[31] J. Li, S. Wu, H. Zhou, X. Luo, T. Wang, Y. Liu, and X. Ma, ‘‘Packet-level
open-world app fingerprinting on wireless traffic,’’ in Proc. Netw. Distrib.
Syst. Secur. Symp., 2022, pp. 1–18.

[32] J. Luxemburk and T. Čejka, ‘‘Fine-grained TLS services classification with
reject option,’’ Comput. Netw., vol. 220, Jan. 2023, Art. no. 109467.

[33] A. Bozorgi, A. Bahramali, F. Rezaei, A. Ghafari, A. Houmansadr,
R. Soltani, D. Goeckel, and D. Towsley, ‘‘I still know what you did
last summer: Inferring sensitive user activities on messaging applications
through traffic analysis,’’ IEEE Trans. Depend. Sec. Comput., vol. 20, no. 5,
pp. 4135–4153, Sep./Oct. 2023.

[34] Z. Erdenebaatar, R. Alshammari, N. Zincir-Heywood, M. Elsayed,
B. Nandy, and N. Seddigh, ‘‘Analyzing traffic characteristics of instant
messaging applications on Android smartphones,’’ in Proc. IEEE/IFIP
Netw. Oper. Manage. Symp. (NOMS), Miami, FL, USA, May 2023,
pp. 1–5.

[35] R. Han, K. Kim, B. Choi, and Y. Jeong, ‘‘A study on detection of malicious
behavior based on host process data using machine learning,’’ Appl. Sci.,
vol. 13, no. 7, p. 4097, Mar. 2023.

[36] M. H. Pathmaperuma, Y. Rahulamathavan, S. Dogan, and A. M. Kondoz,
‘‘Deep learning for encrypted traffic classification and unknown data
detection,’’ Sensors, vol. 22, no. 19, p. 7643, Oct. 2022.

[37] A. H. Celdrán, J. von der Assen, K. Moser, P. M. S. Sánchez, G. Bovet,
G. M. Pérez, and B. Stiller, ‘‘Early detection of cryptojacker malicious
behaviors on IoT crowdsensing devices,’’ in Proc. IEEE/IFIP Netw. Oper.
Manage. Symp. (NOMS), Miami, FL, USA, May 2023, pp. 1–8.

JEE-TAE PARK was born in Busan, South Korea,
in 1993. He received the B.S. degree in computer
and information science from Korea University,
South Korea, in 2016, where he is currently pur-
suing the Ph.D. degree (integrated program). His
current research interests include internet traf-
fic classification, internet security, and network
management.

CHANG-YUI SHIN received the B.S. degree
in operating analysis from the Korea Military
Academy, Seoul, in 2003, the M.S. degree in
electronic computer engineering from Korea Uni-
versity, Seoul, in 2007, and the Ph.D. degree from
Korea University, Sejong. Since being commis-
sioned as an Army Officer, in 2003, his service
department is Signal in Korea Army. At the time,
he had researched the field of mobile ad hoc net-
works. After that, he became interested in feasible

research, such as weapon system planning, interoperability, development
quality management, and actual operation while working in various organi-
zations. During the Ph.D. degree, he researches internet traffic classification,
network management, and AI.

UI-JUN BAEK was born in Seoul, South Korea,
in 1993. He received the B.S. degree in computer
and information science from Korea University,
South Korea, in 2018, where he is currently
pursuing the Ph.D. degree (integrated program).
His current research interests include blockchain
transaction monitoring, network management, and
internet security.

MYUNG-SUP KIM was born in Gyeongju,
South Korea, in 1972. He received the B.S., M.S.,
and Ph.D. degrees in computer science and engi-
neering from POSTECH, South Korea, in 1998,
2000, and 2004, respectively. From September
2004 toAugust 2006, hewas a Postdoctoral Fellow
with the Department of Electrical and Computer
Engineering, University of Toronto, Canada. Since
2006, he has been a Full Professor with the Depart-
ment of Computer Convergence Software, Korea

University, South Korea. His current research interests include internet traffic
monitoring and analysis, service and network management, future internet,
and internet security.

97372 VOLUME 11, 2023


