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Abstract— By the rapid development of the Internet and 

online applications, traffic classification has changed to an 

important topic in the field of network management. Although 

many studies have been conducted in recent years, designing a 

robust classification model remains a major challenge. Even 

though previous researches have focused on changing the layer 

structure within the deep learning model, they do not consider 

the input shape that best represents the traffic. To this end, a 

new traffic classification method is presented in this paper that 

aims to utilize various input shape that can be derived from 

fixed-length packet bytes. The proposed method utilized 

MISCNN (Multi Input Shape Convolution Neural Network) to 

generate robust traffic classification model that can be used in 

many domains. Various experiments were carried out to verify 

superiority of proposed method for the tasks of traffic 

classification and application identification. According to the 

obtained results, MISCNN achieved higher score compared to 

previous researches that utilized only 2D square input shape and 

1D linear input shape on the ISCX VPN-nonVPN dataset. 

Keywords— traffic classification, traffic identification, 

convolutional neural network, DL-based classification 

I. INTRODUCTION 

Traffic Classification (TC) is generally known as a core  
technology in network traffic monitoring and analysis 
(NTMA). TC is a technology that aims at grouping similar or 
related traffic and classifying it into predefined categories, 
such as normal or malicious traffic, application types, or 
application protocols or services to which the application 
belongs [1]. TC is important because of varied reasons that 
involve: 

1) Troubleshooting :  locating faulty network devices and 

hardware/software misconfigurations and point of packet 

losses, network errors, etc. 

2) Quality of Service(QoS) : managing to guarantee the 

overall acceptability of an application (bandwidth resources, 

cloud service usage, etc.). 

3) Security : distinguishing malicious and abnormal 

network traffic for network security measurement and 

intrusion detection. 

TC methods that have been widely used since the past 
include port-based classification and payload-based 
classification [2]. However, both two types of the methods 
have clear limitations. Payload-based method cannot classify 
encrypted traffic, but most of the traffic is encrypted and sent 
in present. Port-based methods can only classify traffic based 
on known ports, but many traffic hides ports or uses dynamic 
ports. In order to overcome the former limitations, Machine 
Learning (ML) emerged as a suitable alternative for the traffic 
classification task. Although ML based methods solve the 
fundamental limitations of former researches, they are still 
confronted with crucial challenges. Meaningless features from 
the data prevent classification models from learning and 
reasoning accurately, so they necessarily require proper 
feature engineering. Also, ML based models are more prone 
to overfitting given unbalanced data and cannot accurately 
learn traffic data from modern dynamic network environments. 
Furthermore, the number of internet users and applications 
intensifies the aforementioned challenges [3]. In recent years, 
deep learning (DL) based methods have get attention for TC 
owing to the fact that they do not need handcraft features and 
achieve high classification performance. Among DL methods, 
convolutional neural network (CNN), which extracts features 
by converting fixed-length bytes into images, is widely used 
in recent studies. Most of the studies reshape the raw packet 
bytes into a square 2D vector, but overlook the fact that the 
packet structure does not have 2D spatial information unlike a 
typical image used in computer vision domain. Some studies 
report that 1D-based CNN outperform 2D-based CNN, but 
there are not enough considerations for input shapes [10]. 

This paper assumes that there will be other input shapes 
that best represent the characteristics of the packet, and 
proposes MISCNN, which simultaneously learns various 
input shapes that can be derived from a fixed length of bytes. 
Based on the empirical results, it can be claimed that MISCNN 
has superior classification performance than existing model 
that adopts square input shape or 1D input shape. 

The remainder of the paper consists of related studies, 
datasets used in experiments, descriptions of the proposed 
model, experiments and results and conclusion. 
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TABLE I.  CNN-BASED TC STUDIES 

※ S: Square like, L: Linear 

II. RELATED WORK 

The deep neural network (DNN) is an artificial neural 
network (ANN) consisting of multiple hidden layers between 
the input layers and output layers [4]. CNN and RNN are 
mainly utilized in the TC field [5], but this section only briefly 
covers the description of CNN. 

 CNN is a DL method that supplements the problems that 
occur when processing data such as images or videos in 
general DNNs. CNN mainly consists of three layers, as 
follows: 

1) Convolution layer: Extracting local features from 

image using filter. 

2) Pooling layer: Memorizing only representative values 

(Max, Avg, etc.) with in a pre-fixed window in order not to be 

affected by changes in the topology of the image. 

3)  Fully-connected layer: A layer that learns global 

features created through iteration of local feature extraction of 

convolutional layers and pooling layers. 
 

CNN can learn spatial features and have already achieved 
impressive results in many computer vision tasks, such as 
image classification [6]. 

CNN is the most commonly used method for DL based 
traffic classification, and packets are truncated by fixed length 
to enter the learning model and are usually converted to 2D 
vector of square-shape and 1D vector of linear-shape. There 
are former studies to classify network traffic using CNN, 
which are summarized in Table 1. According to our 
investigations, in the past two-dimensional square-like input 
shapes were mainly used. Relatively recently, 1-D linear input 
shapes have been constantly applied, presumably based on 
empirical studies that show that linear input shape-based TC 
model perform better than square-like input shape-based [10]. 
As far as we know, there are no studies using input shapes that 
are different from the two input shape type mentioned above. 

 

 

 

TABLE II.  TC TASKS OF ISCX VPN-NONVPN 

 

TABLE III.  ISCX VPN-NONVPN 2016 DATASET 

III. MISCNN 

A. Dataset 

The "ISCX VPN-nonVPN 2016" dataset with raw pcap 
format of various applications is used to evaluate the 
classification performance [17].  It includes human-generated 
traffic encompassing different traffic types with information 
also on the related applications collected through both regular 
sessions and sessions encapsulated over VPN. In view of this 
structure, we can associate a three-view label (i.e. 
encapsulation, traffic type, and application) to whatever 
segmentation of raw network traffic (i.e. to a generic TC 
object). Such three-view label corresponds to just as many TC 
tasks to be tackled. Table 2 lists the ISCX VPN-nonVPN 
classes associated to each task. Each task is applied in the 
proposed model and comparative experiments. 

Paper No. Category 
DL 

Method 
Features 

Input 

shape 

[7] (2018) IDS CNN 
Header, 
Payload 

S 

[8] (2018) APP TC CNN Header S 

[9] (2019) APP TC CNN Payload S 

[10] (2019) APP TC CNN Payload S, L 

[11] (2020) APP TC 
CNN,  

SAE 
Header L 

[12] (2020) APP TC CNN 
Header, 

Payload 
S 

[13] (2021) APP TC CNN Header L 

[14] (2021) APP TC 
CNN, 

LSTM 
Header L 

[15] (2021) APP TC 
CNN, 
LSTM 

Payload S, L 

[16] (2022) APP TC CNN 
Header 

(Statistic) 
L 

Task Classes 

Encapsulation nonVPN, VPN 

Traffic Type VoIP, FileTransfer, P2P, Streaming, Chat, Email, 

Browser 

Application Skype, Torrent, Hangouts, VoipBuster, Facebook, 

FTPs, SCP, Email, Youtube, Vimeo, Spotify, Netflix, 
SFTP, Aim, ICQ 

Category Application 
Encapsulation Category 

ratio NonVPN VPN 

Chat 

aim chat 421 32 

14,396 
(4.68%) 

facecbook chat 509 1,159 

hangout chat 438 2,751 

icq chat 438 31 

skype chat 8,561 56 

Email 
email 7,314 298 8,061 

(2.62%) gmail 449 - 

Stream 

ing 

netflix 564 173 

2,761 

(0.89%) 

vimeo 433 136 

youtube 879 213 

spotify 226 137 

File 

transfer 

skype file 56,930 867 

67,353 

(21.9%) 

scp 8355 - 

sftp 218 28 

ftp 830 125 

VoIP 

skype audio 38533 912 

214,045 

(69.6%) 

skype video 571 - 

hangout audio 78,996 8,120 

hangout video 1,513 - 

facebook audio 79,488 1,355 

Voi  p buster 2,938 1,619 

Browser facebook video 414 - 
414 

(0.13%)  

P2P bit torrent - 477 
477 

(0.16%) 

VPN-nonVPN Ratio 
289,018 

(93.98%) 

18,489 

(6.01%) 
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B. Preprocess  

Packets extracted from the raw pcap file are aggregated 
into flows based on the 5-tuple(source IP, destination IP, 
source port, destination port, protocol) and reconstructed into 
bidirectional flows with considered directionality. Nearly 60 
percent of the aggregated two-way flows contain only one 
UDP packet, which interfere with proper learning process and 
have been eliminated [15]. As a result, 27.8k bidirectional 
flows were extracted and the distribution is shown in Table 3. 
According to Table 3, the dataset is highly imbalanced, which 
can adversely affect learning process, so under-sampling or 
over-sampling can be considered [18]. However, imbalance 
occurs frequently in real network environments, so we did not 
perform any sampling process. 

Each flow sample contains only the first-k packets among 
all packets, and when the number of packets in the flow is less 
than pre-fixed k, an empty object filled with zero is added. The 
First-n bytes are extracted from the packets contained in the 
flow, and when the size of packet is less than pre-fixed n, the 
remaining empty space of packet object is padded to zero. The 
initial shape of packet data is a k*1, which is reshaped as p*q 
in the Reshape layer. 

C. Baseline 

The baseline used in this study is a mixed model of CNN 
and Gated Recurrent Unit (GRU), and is shown in Figure 1. 
Using each packet as an input rather than aggregating it as a 
single input ensures high performance [7]. Therefore, the 
baseline receives multiple packets and then merges into one 
output at the GRU layer. Residual block was placed to extract 
features from the input made up of each packet [19]. Each 
residual block consists of three Convolution Layer and after 
each convolution operation, Batch Normalization layer is 
placed to adjust the mean and variance of the output. The 
hyper parameters of the baseline are show in Table 4. 

 

 

TABLE IV.  HYPERPARAMETERS OF BASELINE 

Layer Hyperparameters 

Conv2D Kernel size: (8,1), n_filters:4 

Residual Blocka - 

Dense Unit:32 

Dropout Rate:0.2 

GRU Unit:16 

Dense Units:6 

a. The hyperparameters of the residual block depend on the model and are given in Table 5. 

 

Fig. 1. Baseline 

 

Fig. 2. MISCNN Scheme 
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TABLE V.   HYPERPARAMETERS OF MISCNN 

D. MISCNN 

MISCNN is based on a very simple idea and it is powerful. 
The input before it is passed to the first residual block is split 
into inputs with multiple shapes. The number of shapes each 
input can have is equal to the number of divisor in the packet 
vector size n. For example, 784*1 input that are frequently 
used in previous studies have 15 different shapes (784*1, 
392*2, 196*4, … , 1*784). At this point, shape 1*784 is 
excluded because it has the same structure as shape 784*1 (but 
shape 2*392 and shape 392*2 are clearly different). An 
overview of the MISCNN is shown in Figure 2. These reshape 
methods are not available in the field of image recognition and 
computer vision because they compromise the 2D spatial 
information of adjacent(vertical, horizontal) pixels of a typical 
image. On the other hand, because raw packet do not have 2D 
spatial information, reshape methods can be considered, 
which allows the training model to observe the same input 
from various perspectives. The hyperparameters vary for each 
model, as shown in Table 5. Each shape is used as an input to 
the residual block, and the shape’s hyperparameters 
correspond to the hyperparameters of each residual block. 
When n is 784, The hyperparameters of each shape are shown 
in Table 5. 

E. Experiment setup 

The hardware and software of the environment in which 
the training process was performed are shown in Table 6. 
When compiling the model, the Learning Rate was set to 25e-
5. The loss function was set to Categorial Crossentropy, and 
Adam Optimizer was used as the optimizer. The classification 
performance was measured according to the change in the 
number of packet bytes n and the number of packets k, and p 
and q are dependent on n. To address extreme class 
imbalances, we set class weight corresponding to the number 
of sample per class.  

TABLE VI.  EXPERIMENT ENVIRONMENT 

IV. EXPERIMENTAL RESULTS 

A. Metrics 

Accuracy, Precision, Recall and F-measure are used for 
evaluation, and are follows: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 () 

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 () 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 () 

 𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 () 

B. Overall comparison with previous studies 

To verify the effectiveness of the proposed method, 
MISCNN and four previous studies and baselines were 
compared by three TC tasks, and comparison results are 
shown in Table 7. It is noteworthy that MISCNN 
outperformed previous studies. Compared to the best existing 
methods in the three tasks, it showed a rise of 4.83% in 
Encapsulation task, more than 10% in Category task, and 7% 
in Application task, which is the most difficult task. In 
particular, F-measure increased significantly compared to 
previous study. Another thing to note is that Baseline’s 
performance also outperformed previous TC models. Baseline 
applied with skip-connection method, which showed excellent 
performance in the field of image recognition and computer 
vision, shows better performance than previous TC models in 
two metrics, which proves that skip-connection method is 
useful in the field of TC. One last observation is that the 1D 
CNN-based TC model extracts traffic characteristics better 
than the 2D CNN-based TC model, which is the same as the 
results of previous studies. 

Shape kernel_size n_filters 

(784, 1) (6, 1) 

Initial value : 4, 
Last value : 16 

 

The initial value is 4, 
Which doubles for 

each residual block. 

(392, 2) (6, 1) 

(196, 4) (4, 1) 

(98,   8) (4, 1) 

(56, 14) (2, 1) 

(49, 16) (2, 2) 

(28, 28) (2, 2) 

(16, 49) (2, 2) 

(14, 56) (1, 4) 

(8, 98) (1, 4) 

(7, 112) (1, 8) 

(4, 196) (1, 10) 

(2, 392) (1, 20) 

 List Spec 

Hardware CPU  Intel(R) Xeon(R) CPU E5-2630 v4 @ 
2.20GHz 

GPU   NVIDIA GP102 [TITAN Xp] 

RAM 120G 

Software Nvidia driver 440.33.01 

CuDNN  cuDNN/7.6 for cuda 10.1 

Cuda cuda/10.1 

Python python3.6.9 

Tensorflow tensorflow 2.3.0 

Keras keras 2.4.0 

 Encapsulation (%) Traffic Type (%) Application (%) RTPE[s] 

 Accuracy F1 score Accuracy F1 score Accuracy F1 score 

1D-CNN [20] 87.47 83.50 73.14 71.14 72.73 61.35 13.83 

1D-CNN [22] 82.39 76.24 56.09 54.75 56.54 40.87 1.70 

2D-CNN [21] 87.43 83.51 71.86 69.77 71.45 59.29 40.9 

Distiller [15] 93.75 91.95 80.78 78.72 77.63 66.44 5.99 

Baseline(1D) 97.47 95.28 91.21 91.36 81.08 78.79 23.5 

Baseline(2D) 94.12 94.04 87.22 85.23 78.06 77.65 23.5 

MISCNN 98.58 98.58 93.58 93.21 85.02 85.26 40.1 

MISCNN Gain +4.83 +6.63 +12.8 +14.49 +7.39 +18.82 +34.11 

a. RTPE: Run-Time Per Epoch 

 

TABLE Ⅶ. COMPARISON OF MISCNN WITH PREVIOUS STUDEIS 
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C. Comparison by experimental parameters 

In this section, the TC performance by the n (fixed packet 
length) and k (=the number of packets input to the TC model) 
and is summarized for each of the three tasks. shp means the 
number of different shapes derived from one input. 

First, in the encapsulation task, there was no significant 
performance change by n, and the performance slightly 
increased as k increased. The best performance is when n is 
484 or 676, where the number of shp is equal to 8. This 
suggests that too many shapes cause overfitting of the TC 
model, and it is not recommended to use too many shapes in 
Encapsulation task, which is a relatively easy task. In the 
Category task, no performance changes are observed as n 
increases or decreases, significant change is observed 
depending on the shp. When n is 576 and n is 784, the shp is 
20 and 14, respectively, showing the best performance. In 
addtion, as k increases, performance increases, and then when 
k is 7, it shows the best performance, and if it increases further 
performance deteriorates, rather. In the application task, the 
TC model shows the highest classification performance when 
n is 576, and no clear pattern was observed with changes in n, 
k, shp. From a global perspective, it can be observed that the 
higher the number of shapes shows higher TC performance, 
indicating that the proposed method is useful in TC field. 

V. CONCLUSION 

In this paper, we propose a DL learning scheme to observe 
packets from many perspectives through various shapes that 
can be derived from one input. We focused on packet data not 
having two dimensional spatial information, unlike typical 
images, and assumed that reshaping packets into various 
shapes is a way to observe and extract the useful features of 
raw packets. We conducted an evaluation using an open 
dataset ISCX VPN-nonVPN 2016 for verification of the 
proposed method and designed a baseline that applied skip-
connection method.  Finally, we implement an MISCNN 
applying the proposed method to the designed baseline and 
compare TC performance with previous studies. 

Our proposal has three contributions. First, overall 
comparison show that MISCNN improved 14% in accuracy 
and 18% in f-measure over state-of-the-art TC methods. This 
performance improvement highlights that observing packets 
from more diverse perspectives prevents overfitting of the TC 
model and leads to higher performance improvements. Second, 
performance comparisons based on experimental parameter 
changes show that using many shapes, except for 
Encapsulation task, helps classify accurately. In fact, 
considering that Encapsulation task are less important and 
more versatile than other tasks in real world networks, 
bringing to many shapes into TC model can be useful in 
common situations. Last, comparative experiments were 
conducted within an unprecedented dataset of preprocessing 
for data imbalances, which mimicked real-world networks. 
This means that the proposed MISCNN is practical enough to 
be used in real-world network environments.  

Three future works are presented in connection with this 
study. The first is lightening. MISCNN is accurate but 
excessively heavy, which undermines the practicality of the 
TC model. Secondly, the application of state-of-the-art. Third, 
how to handle cases where there are no classes or ground truth.  
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