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Summary

With the recent exponential increase in internet speeds, the traditional net-

work environment is evolving into a high-capacity network environment. Net-

work traffic usage is also increasing exponentially, as are new malicious

behaviors and related applications. Most of these applications and malicious

behaviors use unknown protocols for which the structure is inaccessible;

hence, protocol reverse engineering is receiving increasing attention in the

field of network management. Various approaches have been proposed, but

they still suffer from misidentification of field boundaries. To understand mes-

sage structures properly, it is important to identify accurately the boundaries

of the fields constituting the protocol message; accurate keyword extraction

based on this approach leads to the correct inference of message types, seman-

tics, and state machine. In this study, we propose a message keyword extrac-

tion method using accurate identification of field boundaries from delimiter

inference and statistical analysis. Through the identification of field bound-

aries, messages can be subdivided into fields. We evaluate the efficacy of the

proposed method by applying it to several textual and binary protocols. The

proposed method showed better results than did other previous studies for

both textual and binary protocols.

1 | INTRODUCTION

With the trend toward development of the Internet of Things (IoT) and pervasive computing technology, the traditional
network environment is evolving into a high-capacity high-speed network environment. Global internet traffic is also
growing exponentially, as are malicious intentions and development of new applications.1 Unfortunately, many applica-
tions and malicious interventions use unknown protocols for which specifications are not documented. In addition, var-
ious IoT sensor networks use customized protocols to reduce expenditure on licenses and energy usage and size.
Industrial control systems use proprietary protocols for operating technology (OT).2 The constantly evolving and
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increasingly sophisticated cyber-attacks also use proprietary protocols to avoid detection. Thus, there is a growing need
for protocol reverse engineering to achieve efficient network operation and management in areas such as malware anal-
ysis, network vulnerability assessment, and construction of effective detection and prevention mechanisms.3 In particu-
lar, protocol reverse engineering has become increasingly important over the last decade, in light of the proliferation of
IoT devices, intensifying global cyber-conflicts and numerous security incidents.

Protocol reverse engineering is the process of inferring an unknown protocol structure. The general process consists
of three phases: syntax inference, semantics inference, and state machine inference, which represents the order in
which message types are transmitted. For semantics and state machine inference to be successful, syntax inference
must be performed correctly, and accurate keyword extraction is crucial for accomplishing correct syntax inference.4–9

In this paper, we use the term “keyword” to refer to a value that one field can have; accurate keyword extraction refers
to the process of extracting values that exactly one field can have, not noise such as a combination of values from two
or more fields or a portion of the value of one field. Various approaches have been proposed, but they still suffer from a
misidentification of field boundaries that leads to incorrect extraction of keywords. To determine the structure of the
message, which is subdivided into fields accurately, we must first identify the field boundaries properly.

In this study, we propose a message keyword extraction method using accurate identification of field boundaries.
The proposed method first infers three types of delimiters, which are the basic delimiter, the key delimiter, and the sin-
gleton delimiter step by step. In the case of plaintext protocols, the proposed method extracts keywords using these
delimiters. In the case of binary protocols, the proposed method extracts keywords using frequent pattern mining with
positional analysis.

The rest of this paper is organized as follows. Section 2 describes related work and the definition of the problem.
Section 3 presents the details of the proposed method. In Section 4, we evaluate the proposed method through experi-
ments involving HTTP/1.1, FTP, SMTP, DNS, and NetBIOS/SMB protocols. Finally, Section 5 presents conclusions and
suggestions for future work.

2 | RELATED WORK AND PROBLEM SCOPE

2.1 | Protocol reverse engineering

Protocol reverse engineering is a method that extracts the structure of the target unknown protocol. It is generally con-
ducted on application layer protocols.10 In the early 1990s, when the internet became prevalent, interoperability and
software compliance was the main purpose, but, over the past decade, its purposes and target protocol layers have
become more diversified.11 The aim of protocol reverse engineering is to extract the syntax, semantics, and timing
corresponding to the fundamental components of the target unknown protocol.

Prior protocol reverse engineering methods were conducted manually so that all elements of the protocol structure
could be extracted clearly. However, these manual methods require considerable time, and results can vary depending
on the analyst's ability.12 Therefore, these methods are not compatible with the rapid increase in the number of new
applications and the vast amount of traffic in today's network environment.13–15

To address these problems, several automatic protocol reverse engineering methods have been studied; these are
divided into two categories: execution trace analysis and network trace analysis.16 Execution trace analysis must build
an execution monitoring system that logs how the program processes messages of the target unknown protocol. This
analysis is only made possible by acquiring a program that uses the target unknown protocol. However, access to the
program of an unknown protocol is rarely available due to concealment and obfuscation efforts.17–20 Conversely, net-
work trace analysis only requires network packets and does not need a program implementing the target protocols.21–24

Thus, we have used network trace analysis in view of the practicality of this type of analysis.

2.2 | Related work

The previous methods using network trace analysis include AutoReEngine,25 Netzob,26 Trifilo,27 Veritas,28 ReverX,29

and Pext.30 Among these, Veritas and Pext focus on inferring a state machine; hence, we compare our method with
AutoReEngine and Netzob, which focus on both a state machine and protocol syntax. The reasons for choosing these
methods are as follows: Netzob is one of the most promising methods and is an open-source project that can be used
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easily; AutoReEngine uses frequent pattern mining considering position, as does the proposed method so that they can
be compared easily and intuitively.

Netzob is a top-down method. It regards a packet as a message and measures the similarity between each pair of
messages with the UPGMA algorithm. Then, it groups the messages into message type clusters if the similarity between
two messages exceeds the threshold entered by a user. Lastly, for each cluster, meaning message format, the method
runs the Needleman-Wunch algorithm and performs sequence alignment to divide the message format into fields.

AutoReEngine is a bottom-up method. It first reconstructs the target unknown protocol traffic into messages. It then
uses the Apriori algorithm to extract byte-streams that frequently occur in sessions and determines final fields among
the extracted byte-streams using positional analysis. Subsequently, it runs the Apriori algorithm again to extract mes-
sage formats using fields as input.

2.3 | Problem definition

Ideal protocol reverse engineering involves extracting all of the three components of protocol, which are syntax, seman-
tics, and timing. Syntax represents the message types in the target protocol and their structures, including field
sequence, boundaries, size, and value. Semantics represents the meaning of each field, making up the message type.
Timing is expressed in a state machine that represents the order of message types. The correct inference of all these
components requires extracting keywords in messages accurately for message type clustering.

The previous methods have limited ability to infer message structures. First, some methods assume that the
delimiter is already known, and they divide messages into fields by using the specific delimiter. These methods can-
not extract keywords in a case in which the target protocol has no defined delimiters. Second, because many
methods use only frequency analysis to determine the keywords, message structures with incorrect field boundaries
are extracted. Third, the previous methods using a top-down approach first cluster messages into message types
without keyword extraction and then subdivide each message type into fields only within each cluster. Thus, the
keywords are expressed differently in different clusters; hence, it is difficult for an analyst to understand the correct
message structures. The most powerful feature for clustering messages is keywords. However, because these methods
do not use keywords as a feature, they extract too many message types; this leads to a poor understanding of proto-
col structures.

Hence, we focus on accurate keyword extraction, and, for this purpose, we perform analyses designed to identify the
field boundaries.

3 | THE PROPOSED METHOD

In this section, we first provide an overview of the proposed method and a definition of the terms used; we then
describe the proposed method in detail.

3.1 | Overview and definition of terms

As described earlier, the main purpose of the proposed method is to identify field boundaries and extract keywords to
ascertain message structures. Figure 1 displays an overview of the proposed method. The proposed method first per-
forms preprocessing and determines whether the target protocol is a plaintext protocol or a binary protocol. If the proto-
col is a plaintext protocol, the method determines whether there are predefined delimiter candidates in the target
protocol and then extracts keywords using the inferred delimiters. If the protocol is a binary protocol or there are no
inferred delimiters, the method extracts keywords using frequent pattern mining with positional analysis.

To infer the delimiters of the target protocol, we first define three types of delimiters: the basic delimiter, the key
delimiter, and the singleton delimiter, as shown in Figure 2.

1. Basic delimiter: A message is composed of a series of fields, and each field may have a nested structure that can be
divided into several subfields. A basic delimiter is a one byte or two byte separator that can divide a message into
the highest-level fields. We call the highest-level field an initial field.
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2. Key delimiter: One initial field may contain a key indicating the characteristics of the field, and a value. A key
delimiter is a separator that can divide the initial field into a key and value.

3. Singleton delimiter: One initial field can be divided into several subfields that contain different values. A singleton
delimiter is a separator for accomplishing this.

3.2 | Preprocessing

In the preprocessing step, the proposed method reforms the raw packets of the target unknown protocol into flows; a
flow is a sequence of packets that have the same five tuples. The method then reorders the packets to resolve the
retransmission and out-or-order problem31 and excludes packets that have no payload of the transport layer. Next, it

FIGURE 2 Concept of three types of delimiters

FIGURE 1 Overview of proposed method
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reconstructs each flow into message sequences by following a heuristic method. A message is a protocol data unit
(PDU). For a transport control protocol flow, the proposed method assembles consecutive chunks having the same
direction into one message. For a user datagram protocol flow, it treats the data following the transport layer header in
one packet as one message. Finally, it checks whether the target protocol is a plaintext or binary protocol. If at least
60% of the messages contain 80% of bytes as ASCII printable characters (alphanumerics, symbols, and signs, which cor-
respond to 0x 21 to 0x7e of the ASCII code), the target protocol is identified as a plaintext protocol; if not, the protocol
is identified as a binary protocol.

Subsequently, if the protocol is a plaintext protocol, it is sent to the basic delimiter inference step; if not, it is sent to
the frequent pattern mining step.

3.3 | Basic delimiter inference

In this step, the proposed method first determines whether or not the target protocol has a basic delimiter. If it has a
basic delimiter, it is sent to the next module in this step; if not, it is sent to the frequent pattern mining step.

We have five predefined delimiter candidates: “0x0d0a” (carriage return line feed), “0x20” (space), “0x3b” (semico-
lon), “0x3d” (equal sign), and “0x3a20” (colon space). The user can add more delimiter candidates.

Figure 3 presents the pseudocode of the basic delimiter inference step. First, the proposed method determines
whether each delimiter candidate has two properties:

1. The number of times a delimiter appears in each message is similar for all messages in one direction. Message for-
mats for one protocol can be broadly divided into request and response formats; hence, messages are formatted simi-
larly in each direction.

2. The positions at which delimiters appear in each message are similar for all messages.

To apply these two criteria for each delimiter candidate, the proposed method proceeds as follows: While traversing
all messages in each direction, it counts the number of times the delimiter candidate appears for each message and cal-
culates the average of all the offsets, which are positions of the delimiter candidate, for each message. Next, it calculates
the variance for offset averages and the entropy of occurrence counts. If both the entropy and the variance are low
enough, the delimiter candidate is extracted as the basic delimiter. Based on our experience, we set the thresholds for
the entropy and the variance to 3.2 and 2.5, respectively.

Finally, the proposed method extracts initial fields using the basic delimiter.

H Xð Þ= −
Xn

i=1

p xið Þlog2p xið Þ,where xi =occurence counts of the delimiter candidate for message i: ð1Þ

Equation 1 provides a definition for entropy; a discrete random variable X is for occurrence counts of the delimiter
candidate in each message. This represents uncertainty in the information; hence, if all the occurrence counts of each

FIGURE 3 Pseudocode of basic delimiter inference
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message are the same, the entropy is zero. In this step, a small entropy means the delimiter candidate satisfies the first
property. A small variance of offset average means the delimiter candidate satisfies the second property.

3.4 | Key delimiter inference

In the key delimiter inference step, the proposed method infers the key delimiter and then, by using the key delimiter,
it extracts all the keys as keywords.

Figure 4 presents the pseudocode of the key delimiter inference step. A highest-level field, which we call an initial
field, generally consists of key and value. Therefore, one property of the key delimiter, which separates key and value,
is that the delimiter appears for each initial field only once. The other property is that the positions in which the delim-
iter appears for all initial fields are similar.

To extract the key delimiter, the proposed method performs the following for each delimiter candidate; in traversing
all initial fields, it counts the number of times the delimiter candidate appears for each initial field and stores the offset
of the delimiter candidate. If the occurrence count of the delimiter candidate is not 1, the delimiter candidate is not the
key delimiter. Otherwise, it calculates the variance of offsets. If the variance is low enough and represents the minimum
value among all of the delimiter candidates, the delimiter candidate is extracted as the key delimiter. Based on our
experience, we set the threshold for the variance to 1.5. We can then extract all of the keys as keywords using the key
delimiter.

3.5 | Singleton delimiter inference

In the singleton delimiter inference step, the proposed method distinguishes the singleton delimiter that can separate
several different values from the initial fields that do not contain the key delimiter. Subsequently, among subfields sepa-
rated by the singleton delimiter, subfields are extracted that can have small kinds of values as keywords because a key-
word is related to meta-information of the protocol.

Figure 5 presents the pseudocode of the singleton delimiter inference step. The singleton delimiter also has two
properties that are similar to those of the basic delimiter. One is that the number of times the delimiter appears in each
initial field is similar for all initial fields. The other is that the positions in which delimiters appear in each initial field
are similar for all initial fields. To extract the singleton delimiter, the proposed method performs the following for each
delimiter candidate; first, in traversing all initial fields that do not have the key delimiter, it calculates the number of
times the delimiter candidate appears in each of the initial fields and the average of all the offsets of the delimiter

FIGURE 4 Pseudocode of key delimiter inference
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candidate for each initial field. Next, it calculates the variance of offset averages and the entropy of occurrence counts.
If both the entropy and the variance are low enough, the delimiter candidate is extracted as the singleton delimiter.
Based on our experience, we set the thresholds for the entropy and the variance at 0.4 and 1.5, respectively.

After extracting the singleton delimiter, the proposed method divides the initial fields into several subfields and
assigns an index to each subfield indicating the position in the initial field. Then, to extract keywords, the proposed
method performs the following: for each initial field, that is, subfield sequence, it counts the number of singleton delim-
iters in the initial field. Traversing all initial fields whose position is the same in a message with the same direction,
(1) if the numbers of singleton delimiters of all initial fields are the same, it converts each subfield to a specific value
using a hash function. This hash function is used to assign each different subfield with a unique value. The method cal-
culates the entropy of the hash values of subfields with the same index. If the entropy is low enough, the proposed
method extracts subfields with the same index as keywords. This means the randomness of values for this subfield is
low. We use 2.0 for the threshold of the entropy, based on our empirical evidence. (2) If the numbers of singleton delim-
iters of all initial fields whose position is the same in a message with the same direction differ, the method extracts the
subfields for which the index is lower than the minimum number of singleton delimiters between the initial fields.
Figure 6 presents the pseudocode for the keyword extraction in this step.

FIGURE 5 Pseudocode of singleton delimiter inference

FIGURE 6 Pseudocode of extracting

keyword using singleton delimiter
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3.6 | Remnantal field extraction

In this step, the proposed method extracts additional keywords in the remnantal fields. A remnantal field refers to an
initial field that does not have the singleton delimiter and the key delimiter.

First, the proposed method traverses all initial fields whose position is the same in a message with the same direc-
tion; it then extracts all lengths of keys of the initial fields with the same position. If all lengths of keys are the same,
the method performs the following: traversing all remnantal fields for which the position is the same in a message with
the same direction, it divides each of the remnantal fields with the same position into two parts based on the length of
the key. If all the first parts are ASCII printable characters and all the second parts begin with a non-ASCII printable
character, each first part is extracted as a keyword. After this step, the proposed method deletes duplicate keywords.

3.7 | Frequent pattern mining with positional analysis

If the target unknown protocol does not have any delimiters or is a binary protocol, the proposed method performs this
step after the preprocessing step. In this step, we extract keyword candidates using the AprioriAll algorithm.32 In this
algorithm, the threshold, minimum support, is very important. Support is the ratio of the sequences having target sub-
sequence to the total number of sequences. The AprioriAll algorithm extracts frequent subsequences whose support is
greater than the user-defined minimum support threshold. In our method, the support is defined as shown in Equa-
tion 2. We use the minimum support threshold of 0.6.

Support=
Number of messages having the target bytestream

Total number of messages
: ð2Þ

After extracting keyword candidates using the AprioriAll algorithm, the proposed method performs the position-value
filter step. In general, keywords appear in a somewhat fixed position within the message. Thus, in this step, the pro-
posed method extracts keyword candidates satisfying this property. Figure 7 presents the concept of the position-value
filter. A startoffset refers to the position of the keyword candidate relative to the beginning of the message. An endoffset
refers to the position of the keyword candidate relative to the end of the message. First, the proposed method traverses
all keyword candidates and finds all messages having the keyword candidate. Next, it traverses all messages having the
keyword candidates and calculates the variance of the startoffsets (Sov) and the variance of the endoffsets (Eov). Then,
PV for the keyword candidate is calculated as the smaller of the values of Sov and Eov. If the PV of the keyword candi-
date is low enough, this means that the keyword candidate appears in a nearly fixed position. The proposed method
extracts as keywords the keyword candidates for which the PV is low enough. We use 0.05 for the threshold for PV,
based on our experience.

4 | EXPERIMENT AND RESULTS

In this section, we describe two evaluation metrics and then describe the experimental results resulting from the appli-
cation of our method to HTTP/1.1, FTP, SMTP, DNS, and NetBIOS/SMB protocols.

FIGURE 7 Concept of

position-value filter
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4.1 | Data description and evaluation metrics

To verify the proposed method, we collected traffic for five protocols from several hosts in the campus network of Korea
University: HTTP/1.1, FTP, and SMTP for plaintext protocols and DNS and NetBIOS/SMB for binary protocols. Table 1
provides quantitative information on flow, packet, byte, and message-unit for input traffic in each protocol. The sizes of
the input traffic shown in Table 1 are for results after the preprocessing step.

We evaluate the proposed method using the two completeness units, keyword-unit, and message-unit. Complete-
ness refers to the number of ground-truth keywords extracted. CompletenessF is a keyword-unit metric, and it repre-
sents the number of ground-truth keywords reflected in the extracted keyword, as shown in Equation 3.
CompletenessM is a message-unit metric, and it represents the number of` messages from which all keywords are
extracted, as shown in Equation 4.

CompletenessK =

Number of ground− truth keywords

matched with the extracted keywords
Total number of ground− truth keywords

, ð3Þ

CompletenessM =

Number of messages

fromwhich all ground− truth keywords

are extracted as the extracted keywords
Total number of messages

: ð4Þ

4.1.1 | Ground-truth description

Many previous studies evaluate their methods with their own performance evaluation methods and ground-truth.
It is not easy to compare the performances of different methods because of inconsistencies in the intrinsic ways
evaluations are applied. Our criteria for the definition of ground-truth keywords are based on the following gro-
unds; the ground-truth keywords are generated from input traffic. The keyword indicates the function of the pro-
tocol; hence, the keywords found in the input traffic reflect the protocol functions generally used. Therefore, the
keyword appears frequently in input messages, and the randomness of the values possible for the field
corresponding to the keyword is low.

For the HTTP/1.1 protocol, we set Method and Version fields in the request line of messages, Status code and
Phrase fields in the response line, and Header Name fields in the header line to the ground-truth keyword. For the
SMTP and the FTP protocols, we set Request Command and Response code fields as the ground-truth keyword. For
the DNS protocol, we set Flag, Number of question records, Number of answer records, Number of authoritative
records, Number of additional records fields, Query type, Query class, Domain type, and Domain class fields as the
ground-truth keywords. For the NetBIOS/SMB protocol, we set 0xFFSMB, Command, NT Status, and Flags fields as
the ground-truth keywords.

TABLE 1 Traffic information

Flows Packets Messages (By Our Preprocessing Step) Bytes, K

HTTP/1.1 575 7,232 2,048 8,763

SMTP 333 6,683 6,337 569

FTP 732 39,536 37,117 4,547

DNS 2,170 4,349 4,349 723

NetBIOS/SMB 12 31,053 19,372 4,969
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4.2 | Results

Table 2 shows the experimental results. The thresholds used in each method were set as the defaults, as follows. For the
proposed method, the minimum support value was 0.5, and the other thresholds were set as described earlier. For
AutoReEngine, the session support rate threshold is 0.5, and the site-specific session-set support rate threshold is 0.5.
For Netzob, the similarity threshold is 0.5. The proposed method showed better results than did AutoReEngine and
Netzob, in terms of CompletenessF and CompletenessM for five protocols. For the proposed method, both the metrics
are 100% for plaintext protocols. However, the evaluation result for binary protocols is slightly lower than that for plain
text protocols. Because a binary protocol generally does not use a delimiter and contains more dense data, perfect iden-
tification of all field boundaries is very difficult; this represents a challenging problem. However, keyword inference for
the binary protocol of the proposed method is significant in that it considers the position of keywords for more precise
keyword extraction. When CompletenessF is lowered, CompletenessM also tends to decrease significantly, as shown in
Table 2. This indicates that correct keyword extraction is important for the inference of message format.

Conversely, AutoReEngine shows lower performance than does the proposed method. AutoReEngine only uses
frequency-based analysis without identifying whether the protocol is plaintext-based or binary-based, so it cannot
extract the fields that do not frequently occur in messages or sessions.

Netzob does not perform the message assemble step (in preprocessing) that converts packets into PDU, and it
assumes one packet is one message. In addition, as mentioned in Section 2, Netzob uses a top-down method. That is,
without extracting the keyword, the messages are clustered first and then separated into field units within each message
cluster. The fields that make up the Netzob message type are a series of static field and GAP field pairs; a static field

TABLE 3 Extracted keywords

Sample Extracted Keywords

Proposed
method

GET

POST

HTTP/1.1

Host

Content-Type

X-Frame-Options

Vary

Keep-Alive

…

AutoReEngine ej0djj0ajUser-Agent: Mozilla/5.0 (Windows NT

GET/

3bjWin64j3bjx64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/65.0.3325.181 Safari/537.36j0djj0ajAccept:
8j0djj0ajReferer:
HTTP/1.1j0djj0ajHost:

*/*j3bjq=0.8j0djj0aj
j0ajExpire
GMTj0djj0ajC
…

Netzob GET/img/section/bg HTTP/1.1j0dj0ajHost: cafeimg.naver.netj0djj0ajConnection: keep-alive
Accept:*/*j0dj0ajPragma: no-cachej0dj0ajCookie: data==00dp9UX0D4gSFpsvKlpsHwoWo-, 1V7IalpDo7m_bHU

GMTj0djj0ajConnection: closej0djj0ajj0djj0ajj3cj!DOCTYPE htmlj3ejj0ajj3cjhtml xml:
lang=j22jkoj22jj3ejj0ajj3cjheadj3ejj0ajj3cjmeta name=j22j

HTTP/1.1200 OKj0djj0ajServer: nginxj0djj0ajDate: Tue, 10 Apr 20

GMTj0djj0ajLocation: http://mail1.dongwon.mil.kr

j0djj0ajContent-Type: text/htmlj3bjcharset=UTF-8j0djj0ajConnection: Keep-Alivej0djj0ajContent-Length:
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means a field that has only one value, and it is an aligned sequence of Netzob. We assumed that the static fields of
Netzob are the keywords. Because Netzob uses top-down clustering, the same ground-truth keywords are extracted in
different forms within each message cluster.

Table 3 shows the extracted keywords for the proposed method, AutoReEngine, and Netzob by comparing them for
the HTTP/1.1 protocol. This shows that the keyword extracted by AutoReEngine and Netzob has a noise because of the
misidentification of field boundaries.

5 | CONCLUSION

In this study, we proposed a novel protocol reverse engineering method for accurately extracting keywords by consider-
ing field boundary identification. Accurate keyword extraction plays a vital role in inferring the structure of message
types and the subsequent analysis, including semantics and state machine. We defined three types of delimiters, which
are the basic delimiter, the key delimiter, and the singleton delimiter. The proposed method extracts keywords by infer-
ring delimiters for plaintext protocols. For binary protocols, the method uses frequent pattern mining with positional
analysis to extract keywords elaborately. From experiments on five protocols and by comparing our method with prior
work, we demonstrated the superiority of the proposed methodology. We plan to design a hybrid method using both
network trace analysis and execution trace analysis. In addition, we plan to perform research that can identify field
boundaries for the binary protocol more precisely.
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