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Abstract 
 

With the continuous emergence of new applications and cyberattacks and their frequent 
updates, the need for automatic protocol reverse engineering is gaining recognition. 
Although several methods for automatic protocol reverse engineering have been proposed, 
each method still faces major limitations in extracting clear specifications and in its universal 
application. In order to overcome such limitations, we propose an automatic protocol reverse 
engineering method using a two-pathway model based on a contiguous sequential pattern 
(CSP) algorithm. By using this model, the method can infer both command-oriented 
protocols and non-command-oriented protocols clearly and in detail. The proposed method 
infers all the key elements of the protocol, which are syntax, semantics, and finite state 
machine (FSM), and extracts clear syntax by defining fine-grained field types and three 
types of format: field format, message format, and flow format. We evaluated the efficacy of 
the proposed method over two non-command-oriented protocols and three command-
oriented protocols: the former are HTTP and DNS, and the latter are FTP, SMTP, and POP3. 
The experimental results show that this method can reverse engineer with high coverage and 
correctness rates, more than 98.5% and 99.1% respectively, and be general for both 
command-oriented and non-command-oriented protocols. 
 
 
Keywords: Protocol reverse engineering, network security, two-pathway model, command-
oriented protocols, contiguous sequential pattern algorithm  
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1. Introduction 

Globally, IP traffic is growing rapidly at a compound annual growth rate (CAGR) of 26.5 
percent, and the advancement of Internet-of-Things (IoT) technology will result in a CAGR 
of 46 percent for mobile traffic in 2022 [1]. The 5G environment is faster, and also supports 
commercial services. However, as the number of vulnerable mobile and IoT devices 
increases in the faster network, the number of new applications and attack vectors will also 
increase. Many of the protocols in this environment are proprietary protocols that are 
developed and used by specific vendors, or protocols with limited or no specifications, such 
as botnet’s command and control (C&C) protocols. Meanwhile, according to a sample of 
malicious codes for IoT devices collected by Kaspersky Lab from 2016 to 2018, the number 
of malware variants that attacked IoT devices in the first half of 2018 exceeded 120,000, 
more than triple the number of IoT malicious codes found throughout 2017 [2]. Malware on 
most IoT devices aims to create botnets to facilitate distributed denial-of-service (DDoS) 
attacks. An example of this is the DDoS attacks distributed via variants of the Mirai botnets 
after the Mirai source code was released in October 2016. Accordingly, being able to analyze 
C&C protocols that control malicious code in order to defend against cyberattacks is one of 
the reasons why structural analysis technology for unknown protocols is needed. 

SAMBA is a project that reverse engineered Microsoft's Server Message Block (SMB) 
protocol to allow file and printer sharing between Windows and other systems [3]. Protocol 
reverse engineering, the task of extracting the specification of unknown protocols as in the 
SAMBA example, can be leveraged for heterogeneous interoperability and is essential for 
efficient network management and security issues. For instance, protocol reverse engineering 
can be helpful for firewalls and intrusion detection systems to detect and block previously 
unknown attacks. It can also be used for penetration testing, can be used in a smart fuzzing 
operation to identify network vulnerabilities, and can provide useful information as part of 
deep packet inspection (DPI) to analyze malware protocols [4]. However, in order to provide 
this information, an in-depth understanding of the protocol is first required, and the 
underlying technology is protocol reverse engineering [5]. 

In general, in order to infer the specification of an unknown protocol, an inspector such 
as a network administrator or a security expert manually analyzes the network traces or 
execution traces of the target protocol. However, this primitive method requires difficult and 
time-consuming processes. Therefore, the quality of the results may vary depending on the 
proficiency of the inspector. In addition, this manual and laborious process faces difficulties 
with the continual appearance of new applications and their frequent updates. 

Owing to these circumstances, several automatic reverse engineering methods have been 
proposed [6-28]. However, there is no method that perfectly extracts the specification of a 
protocol, and each still has major limitations. First, most existing methods infer only some of 
the key elements of a protocol: syntax, semantics, and timing. Ideal protocol reverse 
engineering should reflect all these three key elements. Second, some existing methods 
extract protocol syntax that is not sufficiently compressed; they extract too many message 
formats, making it difficult for network administrators to catch the structure of the protocol 
at a glance. Third, some existing methods extract a syntax that is too generic. The message 
format they extract consists simply of static fields and gaps; some researchers refer to this 
gap as a dynamic field because it has variable values, but such a simple classification of 
fields is insufficient for understanding detailed protocol syntax. Lastly, many previous 
methods are specialized only for non-command-oriented protocols when inferring syntax. 
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To address these limitations, we propose an automatic protocol reverse engineering 
method using a two-pathway model based on network trace. By using the two-pathway 
model, the proposed method can universally infer the detailed specifications of both 
command-oriented protocols and non-command-oriented protocols. For a prompt extraction 
with low overhead, we modify a sequential pattern mining algorithm that finds common 
characters or hex values in the traffic payload. We refer to this modified algorithm as the 
contiguous sequential pattern (CSP) algorithm [29]. This algorithm can find protocol 
patterns very quickly with low memory requirements, because it eliminates candidate 
patterns at an early stage if they do not satisfy a minimum support threshold. As the length of 
the pattern increases, the computational overhead dramatically decreases. In addition, we 
define three types of formats which are field, message, and flow format, and four types of 
field formats to give a clear and detailed syntax. 

The remainder of this manuscript is organized as follows: In Section 2, we present related 
work. We describe a two-pathway model using a CSP algorithm in Section 3. In Section 4, 
we evaluate the superiority of the proposed method using five protocols. Finally, we present 
the conclusion in Section 5. 

2. Related Work 
In this section, we introduce existing automatic protocol reverse engineering methods and 

describe their remaining limitations. 

2.1 Previous Automatic Protocol Reverse Engineering Method 
Several methods have been proposed to address the need for automatic protocol reverse 

engineering. The most common way to classify protocol reverse engineering methods is to 
divide them into network trace-based analysis and execution trace-based analysis, depending 
on whether the network trace is used as the input or the execution trace. 

Execution trace-based analysis monitors a binary program that implements the protocol, 
and analyzes the execution traces that log how the binary program processes messages such 
as execution commands, memory usage, system calls, and access to specific file systems. 
Existing methods that use an execution trace include Polyglot [6], Tupni [7], Prospex [8], 
and Dispatcher [9]. Because these methods analyze the execution of an actual binary 
program, the accuracy of inferred results may be improved, but virtually, obtaining the 
binary program of an unknown protocol is not possible. For example, malicious botnet’s 
C&C servers are likely to exist in an external network and are hidden for the success of 
continuous attacks. Another disadvantage is that usually, only received messages are 
analyzed, because these methods typically observe and analyze the program binaries of the 
client while processing input messages. However, in order to analyze the structure of a 
protocol perfectly, the sent messages must also be analyzed. 

However, network trace-based analysis monitors the network packets of the target 
protocol and analyzes each captured network trace as input. Thus, it is possible to perform 
network trace-based analysis even in an environment where the host running the program 
binaries is inaccessible, so it is more practical than execution trace-based analysis. Network 
trace-based analysis scheme can analyze sent and received messages by capturing the traffic 
generated from the router connecting the target network with the external network. Hence, 
our proposed method uses network trace-based analysis, which is advantageous in terms of 
practicality and convenience. 
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Existing methods that use network trace include PIP [10], ScriptGen [11], RolePlayer 
[12], and AutoReEngine [13]. PIP [10] was one of the earliest automatic protocol reverse 
engineering methods that used network traces. This method finds protocol fields using the 
sequence alignment algorithm, which is used to find similarity between biological sequences 
such as amino acid and DNA sequences. The sequence alignment algorithm greatly 
influenced many of the other existing methods. ScriptGen [11] and RolePlayer [12] also use 
the sequence alignment algorithm, but the purpose of these methods is packet-replay to trick 
attackers by making them appear to be under attack. AutoReEngine [13], Wang et al. [14], 
and Ji et al. [15] used frequent pattern mining to extract message formats, but the target 
network environments were different: AutoReEngine [13] focused on application layer 
protocols built on Ethernet networks, Wang et al. [14] focused on protocols built on wireless 
networks, and Ji et al. [15] targeted unmanned aerial vehicle (UAV) control protocols. 

2.2 Remaining Limitations 
A protocol is a set of communication rules between two devices. The key elements of a 

protocol are syntax, semantics, and timing. In order to obtain abundant information about an 
unknown protocol, a protocol reverse engineering method must be able to extract these three 
key elements. However, most existing methods extract only some of these three key 
elements. Table 1 shows the outputs of previous methods. For abundant specifications, we 
designed our proposed method to extract all three of these key elements. 

 
Table 1. Existing methods from the viewpoint of output 

Method Issue Output 
syntax semantics FSM 

Execution trace-based analysis 
Polyglot [6] 2003 ✓   

Tupni [7] 2008 ✓   
AutoFormat [16] 2008 ✓   
ReFormat [17] 2009 ✓   

Prospex [8] 2009   ✓ 
Dispatcher [9] 2013 ✓ ✓(weak)  

Network trace-based analysis 
PIP [10] 2004 ✓   

ScriptGen [11] 2005   ✓ 
RolePlayer [12] 2006 ✓ ✓(weak)  
Discoverer [18] 2007 ✓ ✓(weak)  

Pext [19] 2007   ✓ 
Trifilo et al. [20] 2009   ✓ 
Biprominer [21] 2011 ✓   

ReverX [22] 2011 ✓  ✓ 
Veritas [23] 2011 ✓  ✓ 

AutoReEngine [13] 2013 ✓  ✓ 
Wang et al. [14] 2013 ✓   

Netzob [24] 2014 ✓ ✓(weak) ✓(manual) 
FieldHunter [25] 2015 ✓ ✓(strong)  

WASp [26] 2016 ✓ ✓(weak)  
Ji et al. [15] 2017 ✓   

Ladi et al. [27] 2018 ✓   
READ [28] 2019 ✓   
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The second limitation is that the extracted syntax is not sufficiently compressed, which 
means that too many message formats are extracted. Thus, it is not easy for a network 
administrator to intuitively catch the structure of an unknown protocol. In addition, since 
many message formats are clustered in a top-down clustering method, fields are clustered 
into one field format only within each message format, so that fields that are actually the 
same but belong to different message formats are represented differently. This type of syntax 
can be useful for a detailed analysis of each individual packet in the protocol, but it is not 
effective for intuitively understanding the structure of the protocol. Fig. 1 shows part of the 
analysis of the HTTP protocol using one of the existing methods. Although Group 1, Group 
2, and Group 3 are actually of the same HTTP Request message type, and Group 4 and 
Group 5 are of the same HTTP Response message type, they are clustered as different 
groups. The red underline indicates a field that has a static value, and the blue underline 
indicates a field that has a dynamic value. As shown by Group 1 and Group 2 of Fig. 1, 
although the two groups have some of the actually same types of fields, the fields were 
determined differently to be static or dynamic field formats only within each group. In the 
case of Netzob [24], with 1000 HTTP protocol packets as input, 324 message formats were 
extracted when the similarity threshold was set to 50%, and 225 message formats were 
extracted when the threshold was set to 25%. To address this problem, our proposed method 
extracts three levels of formats, which are the field format, message format, and flow format, 
using the bottom-up clustering method. 

 

 
Fig. 1. Example of the problem caused by insufficiently compressed message formats 

 
Third, many of the existing methods extract a syntax that is too generic. When inferring 

syntax, they use methods based on frequency, such as the Shannon theorem, Zipf’s law, the 
support of association rule mining, or the probability of occurrence of LDA or Markov 
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chains, and they extract the most frequent values as static fields. Therefore, the extracted 
message formats are simply composed of static fields and gaps. Some methods call the gap 
between static fields a dynamic field, but this field does not have much meaning to discern. 
Therefore, the message format they extracted is only a sequence of protocol keywords. To 
represent a detailed syntax, we define the four types of field format and extract message 
formats consisting of these four types of field format, as shown in Fig. 2. 

 

 
Fig. 2. Example of a message format that is too generic, and a detailed message format 

 
The fourth limitation is that many of existing methods can only infer syntax of non-

command-oriented protocols; Protocols are divided into two categories: One is non-
command-oriented protocol, and the other is command-oriented protocol. Non-command-
oriented protocol literally refers to a basic protocol, not a command-oriented protocol. 
Namely, for basic protocols, protocol keyword indicates the protocol function, so the 
keywords appear in the input traffic reflect what protocol functions users generally use. 
Therefore, generally, the keyword appears more frequently than the noise, and the 
randomness of the values that the field corresponding keywords can have is low. By contrast, 
command-oriented protocol means the following. 

Command-oriented protocols are protocols with a keyword frequency that follows an 
almost uniform distribution, and its form is “Keyword – Arguments.” Generally, when users 
use a binary program implementing these protocols, they use various commands, each at a 
low frequency. For example, when using an application implementing File Transfer Protocol 
(FTP), they first log into the server. Then, they enter the “PWD” command to see the 
working directory, the “LIST” command to see the list of elements in the current directory, 
the “BIN” command to change to binary mode, the “GET” command to download data, and 
the “PUT” command to upload data. Also, using Simple Mail Transfer Protocol (SMTP), 
which is another example of a command-oriented protocol, is similar; users use various 
functions evenly, such as checking a mailbox, sending, deleting, and opening an e-mail. 

As mentioned above, because many methods use frequency-based analysis, it is not easy 
to infer command-oriented protocols in detail. Although there are some methods that infer 
command-oriented protocols such as FTP, SMTP, and POP3, but the syntax they extract is 
not detailed because they mainly focus on enabling packet-replay or establishing FSM. For 
example, they cannot extract a login keyword because the keyword occurs only once in a 
flow. To infer both command-oriented and non-command-oriented protocols in detail, the 
proposed method uses a two-pathway model. 
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3. Two-Pathway Model: Automatic Protocol Reverse Engineering 
Method 

In this section, we describe our method for automatically extracting specification. First, 
we define the key terms used in this paper as follows. There are four types of field format 
that our method extracts: SF(v), DF(v), DF, and GAP. (v) stands for having values. SF(v) is 
a static field that has only one value, and its length is fixed. DF(v), DF, and GAP are 
dynamic fields that have multiple values, so their lengths may be fixed or variable. The 
difference between these three field formats is the predictability of their value and length. 
DF(v) is a dynamic field with a value and length that are both predictable because the 
number of values the field can have is somewhat limited. DF is a dynamic field with a length 
that is predictable due to low randomness, but its value is non-predictable. GAP is a dynamic 
field with a value and length that are both non-predictable. Unlike other existing methods, 
the proposed method extracts flow formats as well as field and message formats. A flow 
format represents the main flow type of the protocol, and consists of a sequence of message 
formats. It can also be used to generalize the FSM. 

The system architecture of the proposed method consists of four phases, as shown in Fig. 
3. There are two pathways in the system architecture. Path 1 is for inferring non-command-
oriented protocols, and path 2 is for inferring command-oriented protocols: path 1 and path 2 
are represented by the red line and the blue line in Fig. 3, respectively. In Fig. 3, for a given 
module, the outgoing arrows towards formats or FSM represent the output of the module. 
For given formats, the outgoing arrows towards a module represent the input of the module. 

Generally, there is exclusiveness between non-command-oriented protocols and 
command-oriented protocols: if a protocol has many field formats with low occurrence, then 
that protocol has few field formats with high occurrence. However, we use the two pathways 
in parallel, factoring in the case in which a protocol has both kinds of field formats; for 
example, if a non-command-oriented protocol includes a step transmitting a specific message 
for login, the frequency of the keywords related to this step is once in a flow. In addition, to 
reduce the processing time and memory requirement, some modules have a condition on 
each path that automatically determines whether to stop a process. 

 

 
Fig. 3. System architecture of the proposed method 
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3.1 Preprocessing 
In the preprocessing phase, after receiving network traces of the target protocol, the 

system generates flows. A flow refers to a bidirectional set of packets that have the same 5 
tuple: the layer-4 protocol, source IP address/port, and destination IP address/port. Then, the 
system straightens each flow out by removing packets having no payload, and abnormal 
packets, such as out-of-order packets and retransmission packets. After reforming the flows 
correctly, the system reassembles the packets into message units in each flow. If the layer-4 
protocol is TCP, the system sets the message unit to a set of consecutive packets with the 
same direction because TCP is a stream-based protocol, otherwise it sets the message unit to 
one packet. 

3.2 Two-Pathway Model for Extracting Protocol Syntax 
The proposed method extracts field formats, message formats, and flow formats by using 

the CSP algorithm hierarchically, as shown in Fig. 4. In this subsection, we describe how to 
extract these three types of format, and how to apply the format extracting method in the 
two-pathway model. 

 

 
Fig. 4. Concept of extracting protocol syntax using the contiguous sequential algorithm hierarchically 

 
The CSP algorithm is a data mining technique. The goal of this algorithm is to find 

frequent patterns with items that are consecutively adjacent in a large database. In this 
algorithm, the threshold of support value is very important. The support value is defined as 
the ratio of sequences having subsequence to total sequences. The algorithm generates all 
possible candidate subsequences and calculates the support value for each candidate. Then, it 
extracts subsequences that have a support value higher than the user-defined threshold. 

Fig. 5 depicts the basic CSP algorithm. (1) It extracts unique length-1 items from all the 
input sequences and stores them in the length-1 candidate set, L1. (2) From the L1, it 
calculates the support value for each candidate, and stores the subsequences that satisfy the 
user-defined threshold into the frequent subsequence set. (3) It generates length-2 candidates 
by using the length-1 frequent subsequences. (4) It iterates (2) and (3) by increasing the 
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length k, until new candidates or frequent subsequences cannot be extracted. (5) Finally, it 
checks the relation of inclusion between frequent subsequences; if a relation is found, the 
included subsequences are deleted. 

 

 
Fig. 5. Contiguous sequential pattern algorithm 

 
When extracting protocol syntax using the CSP algorithm, length-1 item unit and support 

unit vary depending on the type of format and the path. Two kinds of support unit (message-
based unit and flow-based unit) are used in our method, as shown in Formula 1 and 2; A 
sequence of SuppM refers to one message, and A sequence of SuppF refers to one flow. 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀 = 𝑛𝑛(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝑛𝑛(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

                                     (1) 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹 = 𝑛𝑛(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝑛𝑛(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

                                        (2) 
 

There are three thresholds for path 1: T1, T2, and T3, and two thresholds for path 2: T4 and 
T5. By running the CSP algorithm with these user-defined thresholds, the system extracts 
field formats, message formats, and flow formats for each path. T1 and T2 are thresholds for 
SuppM to extract field formats and message formats of non-command-oriented protocol, 
respectively. T3 is a threshold for SuppF to extract flow formats of non-command-oriented 
protocol. According to the definition of the CSP algorithm, subsequences that satisfy these 
thresholds are extracted into formats. T4 and T5 are thresholds for SuppF and SuppM, 
respectively, and are used to extract the formats of the command-oriented protocol. 

The set of field formats, message formats, and flow formats to be extracted for path 1 are 
defined as follows: 
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𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃1 = �𝑘𝑘|𝑘𝑘 = 〈𝑏𝑏0𝑏𝑏1𝑏𝑏2 ⋯𝑏𝑏𝑛𝑛���������������〉, 𝑏𝑏𝑖𝑖𝜖𝜖 (0𝑥𝑥00,⋯ ,0𝑥𝑥𝑥𝑥𝑥𝑥), 𝑘𝑘. 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑀𝑀 ≥ 𝑇𝑇1�         (3) 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃1 = �𝑚𝑚|𝑚𝑚 = 〈𝑘𝑘0𝑘𝑘1𝑘𝑘2 ⋯𝑘𝑘𝑛𝑛����������������〉, 𝑘𝑘𝑖𝑖𝜖𝜖 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃1 ,𝑚𝑚. 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑀𝑀 ≥ 𝑇𝑇2�      (4) 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃1 = {𝑓𝑓|𝑓𝑓 = 〈𝑚𝑚0𝑚𝑚1𝑚𝑚2⋯𝑚𝑚𝑛𝑛�������������������〉,𝑚𝑚𝑖𝑖𝜖𝜖 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃1, 𝑓𝑓. 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝐹𝐹 ≥ 𝑇𝑇3}     (5) 
 
where 𝑏𝑏 refers to one byte, 𝑘𝑘 refers to one field format, 𝑚𝑚 refers to one message format, and 
𝑓𝑓 refers to one flow format. 

In path 1, for inferring non-command-oriented protocols, the system extracts field 
formats of the type SF(v) by running the CSP algorithm after setting the length-1 item unit to 
one byte. When extracting message formats, it sets the length-1 item unit to one field format 
and runs the CSP algorithm. When extracting flow formats, it sets the length-1 item unit to 
one message format and runs the CSP algorithm. In our experiences, generally, the best 
thresholds for T1, T2, and T3 are 65%, 50%, and 50%, respectively. 

The sets of each type of format to be extracted for path 2 are defined as follows: 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃2 = �𝑘𝑘|𝑘𝑘 = 〈𝑏𝑏0𝑏𝑏1𝑏𝑏2 ⋯𝑏𝑏𝑛𝑛���������������〉, 𝑏𝑏𝑖𝑖𝜖𝜖 (0𝑥𝑥00,⋯ ,0𝑥𝑥𝑥𝑥𝑥𝑥),
𝑘𝑘. 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝐹𝐹 ≥ 𝑇𝑇4 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘. 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑀𝑀 ≤ 𝑇𝑇5

�                     (6) 

 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃2 = �𝑚𝑚|𝑚𝑚 = 〈𝑘𝑘0𝑘𝑘1𝑘𝑘2 ⋯𝑘𝑘𝑛𝑛����������������〉, 𝑘𝑘𝑖𝑖  𝜖𝜖  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃2,

𝑚𝑚. 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝐹𝐹 ≥ 𝑇𝑇4 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚. 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑀𝑀 ≤ 𝑇𝑇5
�                (7) 

 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃2 = {𝑓𝑓|𝑓𝑓 = 〈𝑚𝑚0𝑚𝑚1𝑚𝑚2⋯𝑚𝑚𝑛𝑛�������������������〉,𝑚𝑚𝑖𝑖𝜖𝜖 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃2, 𝑓𝑓. 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝐹𝐹 ≥ 𝑇𝑇4}     (8) 

 
Path 2 is for command-oriented protocols. The keywords of these protocols appear a very 

small number of times. However, these keywords are characterized as appearing at least once 
in a flow, such as a login or a logout process. Therefore, in order to extract field formats and 
message formats in path 2, the system has to use two support units. When extracting field 
formats or message formats, the system extracts the subsequences that appear with very high 
frequency for all flows, and simultaneously with very low frequency for all messages. 
Theoretically, it is correct to set T4 to 100% and T5 to the ratio of the total flows to the total 
messages, but we set T4 to 80% and T5 to 15% considering the case where some packets are 
collected from the middle of the actual flow. When extracting flow formats, the system uses 
only one support unit: SuppF. Because it uses the extracted message formats for path 2 as 
length-1 items to generate the candidates of the flow formats, there is no need to worry about 
extracting too many flow formats. 

The condition to execute the modules for path 2 is that T5, i.e., the ratio of the total flows 
to the total messages, is lower than T1. This regulation is intended to prevent the same 
formats from being extracted from path 1 and path 2. 
 

3.3 Extracting Dynamic Field Formats 

3.3.1 DF(v) Field Format Extractor 
To extract DF(v), the system runs the CSP algorithm recursively. The DF(v) field format 

extractor module selects the SF(v)s that meet certain conditions, and changes their type to 
DF(v). The conditions are as follows: 
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 Condition 1: The support value is not 100%. 
 Condition 2: The position variance is small. 
 Condition 3: The difference between maximum depth and minimum offset is small. 
Condition 1 means that the number of values this field format has is not one. Conditions 

2 and 3 mean that the position of this field is somewhat fixed, and we use 200 and 40 as the 
thresholds for Conditions 2 and 3. The system extracts all the values that these field formats 
can have by running the following process for each SF(v) and satisfying the above three 
conditions, as shown in Fig. 6: 

First, the system extracts only message sequences that do not have the SF(v) from all the 
message sequences, and truncates them based on the minimum offset and maximum depth of 
the SF(v). After creating a new database, i.e., new message sequences, it runs the CSP 
algorithm for these new message sequences. Among the outputs of the CSP algorithm, it 
stores the result that has the highest support value as another value of this field format. The 
above process is repeated until no new value is extracted. Finally, the system changes the 
type of this field format to DF(v). 

 

 
Fig. 6. Process of DF(v) field format extractor 

 
The DF(v) field format extractor module only works with path 1. If running this module 

in path 2, multiple identical DF(v)s are generated because the field formats of path 2 have a 
very small support value. Therefore, in the case of path 2, dynamic field formats are 
extracted only through the additional field format attacher module, described in 3.3.2. 

After extracting the DF(v) through this module, the system extracts the message formats 
by running the CSP algorithm using the extracted SF(v) and DF(v) as length-1 items, as 
mentioned in 3.2. Path 2 does not go through this module, so only SF (v)s are used as length-
1 items to extract the message format. 
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3.3.2 Additional Field Format Attacher 
After extracting message formats, the system fills in the blanks between the field formats 

that make up the message format with the additional field formats. Fig. 7 shows the process 
of extracting the additional field formats for each message format. 

First, the system collects only message sequences that have the target message format. To 
determine the type of each blank in the message format, it collects the length list of the data 
corresponding to the blank in the message sequences, and calculates the length variance and 
the maximum length of the data. As shown in the sequence diagram of Fig. 7, the system 
determines the type of blank. If the length variance is higher than 5000, then the blank type 
is determined to be a GAP. If not, it stores the maximum, minimum, and average length for 
the blank because the randomness of the length is not too high. After that, it checks whether 
the maximum length is higher than 20 or not. If the maximum length is higher than 20, then 
the blank type is determined to be DF, otherwise, it stores the data as the values for the blank. 
If the number of stored value is only one, then the type of blank is determined to be SF(v). 
Otherwise, the type of blank is determined to DF(v). The above process is performed for all 
blanks in the message format, and also for all message formats. As a result, message formats 
can be obtained which are composed in detail in four types of field formats of SF(v), DF(v), 
DF, and GAP. 

 

 
Fig. 7. Process of additional field format attacher 

 

3.4 Semantics Inference 
In the semantic inference phase, our method uses FieldHunter’s [25] semantic inferencing 

method to ascertain the semantics of the field formats that make up each message format. 
This is because FieldHunter’s method extracts the most specific and varied types of 
semantics of the previous methods, as shown in Table 1. 

The system traverses field formats for each message format, and heuristically checks 
whether each field format corresponds to six predefined semantic types through each 
algorithm: MSG-Type, MSG-Len, Host-ID, Session-ID, Trans-ID, and Accumulators. 
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1) MSG-Type 
The algorithm determines whether the field format corresponds to MSG-Type, and 

whether the following two conditions are met with the entropy and causality metrics. 
 Condition 1: The number of values for the field format is not one, but is not too large.  
 Condition 2: The field format has a causal relationship with the data in the opposite 

direction. 
To check Condition 1, it uses the entropy metric: H(𝑥𝑥) = −∑ 𝑝𝑝𝑖𝑖 log2 𝑝𝑝𝑖𝑖𝑛𝑛

𝑖𝑖=1  refers to the 
values of the field format. If the entropy is large, it means that the values of the field format 
are very randomly distributed, and if the entropy is zero, it means that there is only one 
possible value for the field format. Therefore, the system checks that the entropy is not zero 
and less than 0.2. To check Condition 2, it uses the causality metric: I(𝑞𝑞; 𝑟𝑟)/H(𝑞𝑞). q refers to 
the values of the field format, and r refers to the values in the opposite direction. The system 
checks that the causality metric is higher than 0.8. 

2) MSG-Len 
The system uses the Pearson Correlation metric: Cov(𝑋𝑋,𝑌𝑌)

𝜎𝜎(𝑋𝑋)∙𝜎𝜎(𝑌𝑌)
 for the value of the field and the 

length of the message to check whether they have a strong positive linear relationship. X 
refers to the values of the field format, and Y refers to the lengths of the message sequences. 
A refers to the gradients of the linear function for X and Y, and B refers to the bias of the 
linear function for X and Y. The system determines that the field format corresponds to 
MSG-Len if the Pearson correlation metric is greater than 0.7, and the match rate between A 
and B is greater than 0.9. 

3) Host-ID 
The system uses the categorical metric R(𝑥𝑥, 𝑦𝑦) = I(𝑥𝑥;𝑦𝑦)/H(𝑥𝑥, 𝑦𝑦). x refers to the values of 

the field format, and y refers to source IP addresses. The system determines that the field 
format corresponds to Host-ID if the categorical metric is greater than 0.9. 

4) Session-ID 
Like the algorithm for Host-ID, the system uses the categorical metric to check whether 

the field format corresponds to Session-ID. The only difference is that y of the categorical 
metric refers to the 5 tuple information. 

5) Trans-ID 
A transaction is a request and response pair, so the system checks the match rate between 

the values of the field format and the values in the opposite direction. Also, the system uses 
the entropy metric to check that the values for the field format are highly random. The 
system determines that the field format corresponds to Trans-ID if the entropy is greater than 
4, and the match rate is greater than 0.8. 

6) Accumulators 
The system determines that the field format corresponds to Accumulators if the values of 

the field format are constantly increasing over time. 
 

3.5. Extracting Protocol FSM 
In this module, the system creates protocol FSM by matching the completed message 

formats with all of the messages in input network traces. First, it sorts the flows and 
messages in the input network traces in chronological order. Next, traversing all the 
messages, it identifies which message format corresponds to each message, and set the 
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message formats as nodes of FSM. Then, it represents each occurrence sequence of 
identified nodes as an edge of FSM and counts the number of times each sequence is 
founded to calculate the transition probability. As a result, the protocol FSM is created where 
each state, i.e., node, represents a message format, and each transition, i.e., edge, represents 
the change from one message format to another. Each transition has a transition probability 
that can be useful for packet-replay. The FSM we extract contains all the messages of the 
input network trace, and we can use the extracted flow format to generalize the FSM. 

4. Experiment and Results 
This section discusses the experimental results of the proposed automatic protocol 

reverse engineering method. Our evaluation is performed on a machine running CentOS 7, 
with a quad-core of Intel(R) Core(TM) i7-4770K 3.50GHz CPU, and 32GB of RAM. A 
prototype implementation of our proposed method written in C++ was used, and a graph 
visualization tool used to extract png file showing FSM was Graphviz [30]. The prototype 
system consists of 27 classes composed of 32,295 lines of code. 

As mentioned in Section 3, this method uses two pathways for inferring both non-
command-oriented protocols and command-oriented protocols. Thus, we collected two 
application protocols, HTTP and DNS, for path 1, and three application protocols, FTP, 
SMTP, and POP3, for path 2. The system automatically determined which path to select, as 
mentioned in Section 3. Table 2 shows the traffic information of these five protocols. 

 
Table 2. Traffic information of five protocols for experiments 

Protocols Flows Packets Bytes (K) Messages 
HTTP 342 13353 17741.5 1922 (req.: 961 / res.:961) 
DNS 2254 4878 797.5 4878 (req.: 2481 / res.: 2397) 
FTP 535 37117 4351.0 35573 (req.: 18052 / res.: 17521) 

SMTP 330 6621 572.0 6284 (req.: 3307 / res.: 2977) 
POP3 8 167 40.0 136 (req.: 72 / res.: 64) 
 
In order to evaluate the performance of our method, we measure its coverage and 

correctness. Coverage is the ratio of the number of messages matched with the extracted 
message formats to the number of total messages, as shown in Formula 9. It indicates how 
many messages can be analyzed in the extracted message formats. Correctness is the ratio of 
the number of true message formats matched with the extracted message formats to the 
number of total true message formats, as shown in Formula 10. It indicates how many true 
message formats can be analyzed in the extracted message formats. 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑛𝑛(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)
𝑛𝑛(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

                          (9) 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑛𝑛(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)
𝑛𝑛(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

               (10) 

Table 3 shows a summary of the experimental results. In all protocols, our method 
extracted protocol specifications within 1 min. Because our algorithm eliminated 
unsatisfactory candidate formats at an early stage and considered only satisfactory candidates 
when making an item length longer, the extraction execution time was reduced. The 
coverage and correctness values for all protocols were almost 100%. 
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Table 3. Summary of the experimental results 

Protocols 
Format Info. FSM Info. Proc. 

Time 
(s) 

Performance 
Field 

Format 
Msg 

Format 
Flow 

Format State Transition Coverage Correctness 

HTTP 
31 

(req.: 21 
res.: 10) 

40 
(req.: 22 
res.: 18) 

3 16 38 17.5 100% 100% 

DNS 
14 

(req.: 3 
res.: 11) 

14 
(req.: 3 

Res.: 11) 
3 8 28 48.2 100% 100% 

FTP 
7 

(req.: 5 
res.: 2) 

5 
(req.: 3 
res.: 2) 

11 7 12 27.7 98.5% 99.1% 

SMTP 
22 

(req.: 13 
res.: 9) 

21 
(req.: 12 

res.: 9) 
36 22 24 11.9 100% 100% 

POP3 
38 

(req.: 31 
res.: 7) 

27 
(req.: 20 

res.: 7) 
16 19 28 0.2 100% 100% 

 
The reason that the coverage and correctness values for FTP protocols were not 100% is 

that there were some abnormal flows; in these flows, some packets were not captured due to 
the speed limit of the capture device. For sessions that lasted for a long time when capturing 
a large amount of traffic, there may have been missed packets due to the limitations of the 
capture device because new sessions continued to occur. These abnormal flows resulted in 
incorrect message assembly. 

 

 
Fig. 8. Intuitive structure of the message formats for HTTP protocol 
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Fig. 8 shows the structure of the message formats for the HTTP protocol. As shown in 

Fig. 8, the proposed method extracts a sufficiently compressed number of message formats, 
and they have an intuitive structure composed of four types of field formats. 

Fig. 9 is one of the extracted message formats of the HTTP protocol. It shows that the 
proposed method extracts the fully separated message formats without blanks, and each field 
formats that make up the message format have detailed information, including direction, 
value, length, position, and semantics. This message format indicates the response message 
format for the HTTP protocol, and covers all parts of the true message format: from the 
header line to the double pair of carriage returns and line feed. Also, our method properly 
determined the semantics of the Date field as Accumulators. 

 

 
Fig. 9. Sample message format for HTTP protocol 

 
 
Fig. 10 is one of the extracted flow formats for the FTP protocol, and it perfectly reflects 

the login process of the FTP protocol. The flow format is a main flow type, and one of the 
main paths of the FSM. 
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Fig. 10. Sample flow format for FTP protocol 
 
 
Fig. 11 is the extracted FSM of the FTP protocol, and it shows the order in which 

messages are transferred. Each path from the initial state to the final state refers to a flow 
type. 
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Fig. 11. Extracted FSM of FTP protocol 

5. Conclusions and Future Work 
In this paper, we proposed a novel method for automatic protocol reverse engineering 

using a two-pathway model. The proposed method can apply to both command-oriented 
protocols and non-command-oriented protocols. By defining three types of format and four 
types of field formats, the proposed method extracts intuitive and detailed protocol 
specifications using the CSP algorithm hierarchically. Moreover, the proposed method 
extracts not only syntax but also semantics, and the FSM of the target protocol.  

We performed experiments with five known protocols to validate the superiority of the 
proposed method. In all the protocols, the inferred specification was extracted in less than 1 
min. Furthermore, the proposed method exhibited good performance in terms of coverage 
and correctness. 

In future work, we plan to develop a hybrid method that uses both execution traces and 
network traces to solve the problem of inferring the encrypted protocols. Further, we intend 
to expand the range of protocol layers to allow for more general use. 
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