
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 11, Nov. 2020 4310
Copyright ⓒ 2020 KSII

This work was partly supported by the Industrial Strategic Technology Development Program - Advanced
Technology Center+(ATC+) grant funded By the Ministry of Trade, Industry & Energy(MOTIE, Korea) and the
Korea Evaluation Institute of Industrial Technology (KEIT) (No. 20008902, Development of SaaS SW
Management Platform based on 5Channel Discovery technology for IT Cost Saving), Institute for Information &
communication Technology Planning & Evaluation (IITP) grant funded by Korea Government (MSIT) (No.2018-
0-00539, Development of Blockchain Transaction Monitoring and Analysis Technology), and Korea Institute of
Science and Technology Information (KISTI).

http://doi.org/10.3837/tiis.2020.11.004 ISSN : 1976-7277

Two-Pathway Model for Enhancement of
Protocol Reverse Engineering

Young-Hoon Goo1, Kyu-Seok Shim1, Ui-Jun Baek2, and Myung-Sup Kim2*
1 Advanced KREONET Center, Korea Institute of Science and Technology Information

Daejeon, Korea
[e-mail: {gyh0808, kusuk007}@kisti.re.kr]

2 Department of Computer and Information Science, Korea University
Sejong, Korea

[e-mail: {pb1069, tmskim}@korea.ac.kr]
*Corresponding author: Myung-Sup Kim

Received June 24, 2020; revised August 17, 2020; accepted September 14, 2020;

published November 30, 2020

Abstract

With the continuous emergence of new applications and cyberattacks and their frequent
updates, the need for automatic protocol reverse engineering is gaining recognition.
Although several methods for automatic protocol reverse engineering have been proposed,
each method still faces major limitations in extracting clear specifications and in its universal
application. In order to overcome such limitations, we propose an automatic protocol reverse
engineering method using a two-pathway model based on a contiguous sequential pattern
(CSP) algorithm. By using this model, the method can infer both command-oriented
protocols and non-command-oriented protocols clearly and in detail. The proposed method
infers all the key elements of the protocol, which are syntax, semantics, and finite state
machine (FSM), and extracts clear syntax by defining fine-grained field types and three
types of format: field format, message format, and flow format. We evaluated the efficacy of
the proposed method over two non-command-oriented protocols and three command-
oriented protocols: the former are HTTP and DNS, and the latter are FTP, SMTP, and POP3.
The experimental results show that this method can reverse engineer with high coverage and
correctness rates, more than 98.5% and 99.1% respectively, and be general for both
command-oriented and non-command-oriented protocols.

Keywords: Protocol reverse engineering, network security, two-pathway model, command-
oriented protocols, contiguous sequential pattern algorithm

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 11, November 2020 4311

1. Introduction

Globally, IP traffic is growing rapidly at a compound annual growth rate (CAGR) of 26.5
percent, and the advancement of Internet-of-Things (IoT) technology will result in a CAGR
of 46 percent for mobile traffic in 2022 [1]. The 5G environment is faster, and also supports
commercial services. However, as the number of vulnerable mobile and IoT devices
increases in the faster network, the number of new applications and attack vectors will also
increase. Many of the protocols in this environment are proprietary protocols that are
developed and used by specific vendors, or protocols with limited or no specifications, such
as botnet’s command and control (C&C) protocols. Meanwhile, according to a sample of
malicious codes for IoT devices collected by Kaspersky Lab from 2016 to 2018, the number
of malware variants that attacked IoT devices in the first half of 2018 exceeded 120,000,
more than triple the number of IoT malicious codes found throughout 2017 [2]. Malware on
most IoT devices aims to create botnets to facilitate distributed denial-of-service (DDoS)
attacks. An example of this is the DDoS attacks distributed via variants of the Mirai botnets
after the Mirai source code was released in October 2016. Accordingly, being able to analyze
C&C protocols that control malicious code in order to defend against cyberattacks is one of
the reasons why structural analysis technology for unknown protocols is needed.

SAMBA is a project that reverse engineered Microsoft's Server Message Block (SMB)
protocol to allow file and printer sharing between Windows and other systems [3]. Protocol
reverse engineering, the task of extracting the specification of unknown protocols as in the
SAMBA example, can be leveraged for heterogeneous interoperability and is essential for
efficient network management and security issues. For instance, protocol reverse engineering
can be helpful for firewalls and intrusion detection systems to detect and block previously
unknown attacks. It can also be used for penetration testing, can be used in a smart fuzzing
operation to identify network vulnerabilities, and can provide useful information as part of
deep packet inspection (DPI) to analyze malware protocols [4]. However, in order to provide
this information, an in-depth understanding of the protocol is first required, and the
underlying technology is protocol reverse engineering [5].

In general, in order to infer the specification of an unknown protocol, an inspector such
as a network administrator or a security expert manually analyzes the network traces or
execution traces of the target protocol. However, this primitive method requires difficult and
time-consuming processes. Therefore, the quality of the results may vary depending on the
proficiency of the inspector. In addition, this manual and laborious process faces difficulties
with the continual appearance of new applications and their frequent updates.

Owing to these circumstances, several automatic reverse engineering methods have been
proposed [6-28]. However, there is no method that perfectly extracts the specification of a
protocol, and each still has major limitations. First, most existing methods infer only some of
the key elements of a protocol: syntax, semantics, and timing. Ideal protocol reverse
engineering should reflect all these three key elements. Second, some existing methods
extract protocol syntax that is not sufficiently compressed; they extract too many message
formats, making it difficult for network administrators to catch the structure of the protocol
at a glance. Third, some existing methods extract a syntax that is too generic. The message
format they extract consists simply of static fields and gaps; some researchers refer to this
gap as a dynamic field because it has variable values, but such a simple classification of
fields is insufficient for understanding detailed protocol syntax. Lastly, many previous
methods are specialized only for non-command-oriented protocols when inferring syntax.

4312 Goo et al.: Two-pathway Model for Enhancement of Protocol Reverse Engineering

To address these limitations, we propose an automatic protocol reverse engineering
method using a two-pathway model based on network trace. By using the two-pathway
model, the proposed method can universally infer the detailed specifications of both
command-oriented protocols and non-command-oriented protocols. For a prompt extraction
with low overhead, we modify a sequential pattern mining algorithm that finds common
characters or hex values in the traffic payload. We refer to this modified algorithm as the
contiguous sequential pattern (CSP) algorithm [29]. This algorithm can find protocol
patterns very quickly with low memory requirements, because it eliminates candidate
patterns at an early stage if they do not satisfy a minimum support threshold. As the length of
the pattern increases, the computational overhead dramatically decreases. In addition, we
define three types of formats which are field, message, and flow format, and four types of
field formats to give a clear and detailed syntax.

The remainder of this manuscript is organized as follows: In Section 2, we present related
work. We describe a two-pathway model using a CSP algorithm in Section 3. In Section 4,
we evaluate the superiority of the proposed method using five protocols. Finally, we present
the conclusion in Section 5.

2. Related Work
In this section, we introduce existing automatic protocol reverse engineering methods and

describe their remaining limitations.

2.1 Previous Automatic Protocol Reverse Engineering Method
Several methods have been proposed to address the need for automatic protocol reverse

engineering. The most common way to classify protocol reverse engineering methods is to
divide them into network trace-based analysis and execution trace-based analysis, depending
on whether the network trace is used as the input or the execution trace.

Execution trace-based analysis monitors a binary program that implements the protocol,
and analyzes the execution traces that log how the binary program processes messages such
as execution commands, memory usage, system calls, and access to specific file systems.
Existing methods that use an execution trace include Polyglot [6], Tupni [7], Prospex [8],
and Dispatcher [9]. Because these methods analyze the execution of an actual binary
program, the accuracy of inferred results may be improved, but virtually, obtaining the
binary program of an unknown protocol is not possible. For example, malicious botnet’s
C&C servers are likely to exist in an external network and are hidden for the success of
continuous attacks. Another disadvantage is that usually, only received messages are
analyzed, because these methods typically observe and analyze the program binaries of the
client while processing input messages. However, in order to analyze the structure of a
protocol perfectly, the sent messages must also be analyzed.

However, network trace-based analysis monitors the network packets of the target
protocol and analyzes each captured network trace as input. Thus, it is possible to perform
network trace-based analysis even in an environment where the host running the program
binaries is inaccessible, so it is more practical than execution trace-based analysis. Network
trace-based analysis scheme can analyze sent and received messages by capturing the traffic
generated from the router connecting the target network with the external network. Hence,
our proposed method uses network trace-based analysis, which is advantageous in terms of
practicality and convenience.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 11, November 2020 4313

Existing methods that use network trace include PIP [10], ScriptGen [11], RolePlayer
[12], and AutoReEngine [13]. PIP [10] was one of the earliest automatic protocol reverse
engineering methods that used network traces. This method finds protocol fields using the
sequence alignment algorithm, which is used to find similarity between biological sequences
such as amino acid and DNA sequences. The sequence alignment algorithm greatly
influenced many of the other existing methods. ScriptGen [11] and RolePlayer [12] also use
the sequence alignment algorithm, but the purpose of these methods is packet-replay to trick
attackers by making them appear to be under attack. AutoReEngine [13], Wang et al. [14],
and Ji et al. [15] used frequent pattern mining to extract message formats, but the target
network environments were different: AutoReEngine [13] focused on application layer
protocols built on Ethernet networks, Wang et al. [14] focused on protocols built on wireless
networks, and Ji et al. [15] targeted unmanned aerial vehicle (UAV) control protocols.

2.2 Remaining Limitations
A protocol is a set of communication rules between two devices. The key elements of a

protocol are syntax, semantics, and timing. In order to obtain abundant information about an
unknown protocol, a protocol reverse engineering method must be able to extract these three
key elements. However, most existing methods extract only some of these three key
elements. Table 1 shows the outputs of previous methods. For abundant specifications, we
designed our proposed method to extract all three of these key elements.

Table 1. Existing methods from the viewpoint of output

Method Issue Output
syntax semantics FSM

Execution trace-based analysis
Polyglot [6] 2003 ✓

Tupni [7] 2008 ✓
AutoFormat [16] 2008 ✓
ReFormat [17] 2009 ✓

Prospex [8] 2009 ✓
Dispatcher [9] 2013 ✓ ✓(weak)

Network trace-based analysis
PIP [10] 2004 ✓

ScriptGen [11] 2005 ✓
RolePlayer [12] 2006 ✓ ✓(weak)
Discoverer [18] 2007 ✓ ✓(weak)

Pext [19] 2007 ✓
Trifilo et al. [20] 2009 ✓
Biprominer [21] 2011 ✓

ReverX [22] 2011 ✓ ✓
Veritas [23] 2011 ✓ ✓

AutoReEngine [13] 2013 ✓ ✓
Wang et al. [14] 2013 ✓

Netzob [24] 2014 ✓ ✓(weak) ✓(manual)
FieldHunter [25] 2015 ✓ ✓(strong)

WASp [26] 2016 ✓ ✓(weak)
Ji et al. [15] 2017 ✓

Ladi et al. [27] 2018 ✓
READ [28] 2019 ✓

4314 Goo et al.: Two-pathway Model for Enhancement of Protocol Reverse Engineering

The second limitation is that the extracted syntax is not sufficiently compressed, which
means that too many message formats are extracted. Thus, it is not easy for a network
administrator to intuitively catch the structure of an unknown protocol. In addition, since
many message formats are clustered in a top-down clustering method, fields are clustered
into one field format only within each message format, so that fields that are actually the
same but belong to different message formats are represented differently. This type of syntax
can be useful for a detailed analysis of each individual packet in the protocol, but it is not
effective for intuitively understanding the structure of the protocol. Fig. 1 shows part of the
analysis of the HTTP protocol using one of the existing methods. Although Group 1, Group
2, and Group 3 are actually of the same HTTP Request message type, and Group 4 and
Group 5 are of the same HTTP Response message type, they are clustered as different
groups. The red underline indicates a field that has a static value, and the blue underline
indicates a field that has a dynamic value. As shown by Group 1 and Group 2 of Fig. 1,
although the two groups have some of the actually same types of fields, the fields were
determined differently to be static or dynamic field formats only within each group. In the
case of Netzob [24], with 1000 HTTP protocol packets as input, 324 message formats were
extracted when the similarity threshold was set to 50%, and 225 message formats were
extracted when the threshold was set to 25%. To address this problem, our proposed method
extracts three levels of formats, which are the field format, message format, and flow format,
using the bottom-up clustering method.

Fig. 1. Example of the problem caused by insufficiently compressed message formats

Third, many of the existing methods extract a syntax that is too generic. When inferring

syntax, they use methods based on frequency, such as the Shannon theorem, Zipf’s law, the
support of association rule mining, or the probability of occurrence of LDA or Markov

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 11, November 2020 4315

chains, and they extract the most frequent values as static fields. Therefore, the extracted
message formats are simply composed of static fields and gaps. Some methods call the gap
between static fields a dynamic field, but this field does not have much meaning to discern.
Therefore, the message format they extracted is only a sequence of protocol keywords. To
represent a detailed syntax, we define the four types of field format and extract message
formats consisting of these four types of field format, as shown in Fig. 2.

Fig. 2. Example of a message format that is too generic, and a detailed message format

The fourth limitation is that many of existing methods can only infer syntax of non-

command-oriented protocols; Protocols are divided into two categories: One is non-
command-oriented protocol, and the other is command-oriented protocol. Non-command-
oriented protocol literally refers to a basic protocol, not a command-oriented protocol.
Namely, for basic protocols, protocol keyword indicates the protocol function, so the
keywords appear in the input traffic reflect what protocol functions users generally use.
Therefore, generally, the keyword appears more frequently than the noise, and the
randomness of the values that the field corresponding keywords can have is low. By contrast,
command-oriented protocol means the following.

Command-oriented protocols are protocols with a keyword frequency that follows an
almost uniform distribution, and its form is “Keyword – Arguments.” Generally, when users
use a binary program implementing these protocols, they use various commands, each at a
low frequency. For example, when using an application implementing File Transfer Protocol
(FTP), they first log into the server. Then, they enter the “PWD” command to see the
working directory, the “LIST” command to see the list of elements in the current directory,
the “BIN” command to change to binary mode, the “GET” command to download data, and
the “PUT” command to upload data. Also, using Simple Mail Transfer Protocol (SMTP),
which is another example of a command-oriented protocol, is similar; users use various
functions evenly, such as checking a mailbox, sending, deleting, and opening an e-mail.

As mentioned above, because many methods use frequency-based analysis, it is not easy
to infer command-oriented protocols in detail. Although there are some methods that infer
command-oriented protocols such as FTP, SMTP, and POP3, but the syntax they extract is
not detailed because they mainly focus on enabling packet-replay or establishing FSM. For
example, they cannot extract a login keyword because the keyword occurs only once in a
flow. To infer both command-oriented and non-command-oriented protocols in detail, the
proposed method uses a two-pathway model.

4316 Goo et al.: Two-pathway Model for Enhancement of Protocol Reverse Engineering

3. Two-Pathway Model: Automatic Protocol Reverse Engineering
Method

In this section, we describe our method for automatically extracting specification. First,
we define the key terms used in this paper as follows. There are four types of field format
that our method extracts: SF(v), DF(v), DF, and GAP. (v) stands for having values. SF(v) is
a static field that has only one value, and its length is fixed. DF(v), DF, and GAP are
dynamic fields that have multiple values, so their lengths may be fixed or variable. The
difference between these three field formats is the predictability of their value and length.
DF(v) is a dynamic field with a value and length that are both predictable because the
number of values the field can have is somewhat limited. DF is a dynamic field with a length
that is predictable due to low randomness, but its value is non-predictable. GAP is a dynamic
field with a value and length that are both non-predictable. Unlike other existing methods,
the proposed method extracts flow formats as well as field and message formats. A flow
format represents the main flow type of the protocol, and consists of a sequence of message
formats. It can also be used to generalize the FSM.

The system architecture of the proposed method consists of four phases, as shown in Fig.
3. There are two pathways in the system architecture. Path 1 is for inferring non-command-
oriented protocols, and path 2 is for inferring command-oriented protocols: path 1 and path 2
are represented by the red line and the blue line in Fig. 3, respectively. In Fig. 3, for a given
module, the outgoing arrows towards formats or FSM represent the output of the module.
For given formats, the outgoing arrows towards a module represent the input of the module.

Generally, there is exclusiveness between non-command-oriented protocols and
command-oriented protocols: if a protocol has many field formats with low occurrence, then
that protocol has few field formats with high occurrence. However, we use the two pathways
in parallel, factoring in the case in which a protocol has both kinds of field formats; for
example, if a non-command-oriented protocol includes a step transmitting a specific message
for login, the frequency of the keywords related to this step is once in a flow. In addition, to
reduce the processing time and memory requirement, some modules have a condition on
each path that automatically determines whether to stop a process.

Fig. 3. System architecture of the proposed method

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 11, November 2020 4317

3.1 Preprocessing
In the preprocessing phase, after receiving network traces of the target protocol, the

system generates flows. A flow refers to a bidirectional set of packets that have the same 5
tuple: the layer-4 protocol, source IP address/port, and destination IP address/port. Then, the
system straightens each flow out by removing packets having no payload, and abnormal
packets, such as out-of-order packets and retransmission packets. After reforming the flows
correctly, the system reassembles the packets into message units in each flow. If the layer-4
protocol is TCP, the system sets the message unit to a set of consecutive packets with the
same direction because TCP is a stream-based protocol, otherwise it sets the message unit to
one packet.

3.2 Two-Pathway Model for Extracting Protocol Syntax
The proposed method extracts field formats, message formats, and flow formats by using

the CSP algorithm hierarchically, as shown in Fig. 4. In this subsection, we describe how to
extract these three types of format, and how to apply the format extracting method in the
two-pathway model.

Fig. 4. Concept of extracting protocol syntax using the contiguous sequential algorithm hierarchically

The CSP algorithm is a data mining technique. The goal of this algorithm is to find

frequent patterns with items that are consecutively adjacent in a large database. In this
algorithm, the threshold of support value is very important. The support value is defined as
the ratio of sequences having subsequence to total sequences. The algorithm generates all
possible candidate subsequences and calculates the support value for each candidate. Then, it
extracts subsequences that have a support value higher than the user-defined threshold.

Fig. 5 depicts the basic CSP algorithm. (1) It extracts unique length-1 items from all the
input sequences and stores them in the length-1 candidate set, L1. (2) From the L1, it
calculates the support value for each candidate, and stores the subsequences that satisfy the
user-defined threshold into the frequent subsequence set. (3) It generates length-2 candidates
by using the length-1 frequent subsequences. (4) It iterates (2) and (3) by increasing the

4318 Goo et al.: Two-pathway Model for Enhancement of Protocol Reverse Engineering

length k, until new candidates or frequent subsequences cannot be extracted. (5) Finally, it
checks the relation of inclusion between frequent subsequences; if a relation is found, the
included subsequences are deleted.

Fig. 5. Contiguous sequential pattern algorithm

When extracting protocol syntax using the CSP algorithm, length-1 item unit and support

unit vary depending on the type of format and the path. Two kinds of support unit (message-
based unit and flow-based unit) are used in our method, as shown in Formula 1 and 2; A
sequence of SuppM refers to one message, and A sequence of SuppF refers to one flow.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀 = 𝑛𝑛(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝑛𝑛(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

 (1)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹 = 𝑛𝑛(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝑛𝑛(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

 (2)

There are three thresholds for path 1: T1, T2, and T3, and two thresholds for path 2: T4 and
T5. By running the CSP algorithm with these user-defined thresholds, the system extracts
field formats, message formats, and flow formats for each path. T1 and T2 are thresholds for
SuppM to extract field formats and message formats of non-command-oriented protocol,
respectively. T3 is a threshold for SuppF to extract flow formats of non-command-oriented
protocol. According to the definition of the CSP algorithm, subsequences that satisfy these
thresholds are extracted into formats. T4 and T5 are thresholds for SuppF and SuppM,
respectively, and are used to extract the formats of the command-oriented protocol.

The set of field formats, message formats, and flow formats to be extracted for path 1 are
defined as follows:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 11, November 2020 4319

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃1 = �𝑘𝑘|𝑘𝑘 = 〈𝑏𝑏0𝑏𝑏1𝑏𝑏2 ⋯𝑏𝑏𝑛𝑛���������������〉, 𝑏𝑏𝑖𝑖𝜖𝜖 (0𝑥𝑥00,⋯ ,0𝑥𝑥𝑥𝑥𝑥𝑥), 𝑘𝑘. 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑀𝑀 ≥ 𝑇𝑇1� (3)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃1 = �𝑚𝑚|𝑚𝑚 = 〈𝑘𝑘0𝑘𝑘1𝑘𝑘2 ⋯𝑘𝑘𝑛𝑛����������������〉, 𝑘𝑘𝑖𝑖𝜖𝜖 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃1 ,𝑚𝑚. 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑀𝑀 ≥ 𝑇𝑇2� (4)

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃1 = {𝑓𝑓|𝑓𝑓 = 〈𝑚𝑚0𝑚𝑚1𝑚𝑚2⋯𝑚𝑚𝑛𝑛�������������������〉,𝑚𝑚𝑖𝑖𝜖𝜖 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃1, 𝑓𝑓. 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝐹𝐹 ≥ 𝑇𝑇3} (5)

where 𝑏𝑏 refers to one byte, 𝑘𝑘 refers to one field format, 𝑚𝑚 refers to one message format, and
𝑓𝑓 refers to one flow format.

In path 1, for inferring non-command-oriented protocols, the system extracts field
formats of the type SF(v) by running the CSP algorithm after setting the length-1 item unit to
one byte. When extracting message formats, it sets the length-1 item unit to one field format
and runs the CSP algorithm. When extracting flow formats, it sets the length-1 item unit to
one message format and runs the CSP algorithm. In our experiences, generally, the best
thresholds for T1, T2, and T3 are 65%, 50%, and 50%, respectively.

The sets of each type of format to be extracted for path 2 are defined as follows:

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃2 = �𝑘𝑘|𝑘𝑘 = 〈𝑏𝑏0𝑏𝑏1𝑏𝑏2 ⋯𝑏𝑏𝑛𝑛���������������〉, 𝑏𝑏𝑖𝑖𝜖𝜖 (0𝑥𝑥00,⋯ ,0𝑥𝑥𝑥𝑥𝑥𝑥),
𝑘𝑘. 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝐹𝐹 ≥ 𝑇𝑇4 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘. 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑀𝑀 ≤ 𝑇𝑇5

� (6)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃2 = �𝑚𝑚|𝑚𝑚 = 〈𝑘𝑘0𝑘𝑘1𝑘𝑘2 ⋯𝑘𝑘𝑛𝑛����������������〉, 𝑘𝑘𝑖𝑖 𝜖𝜖 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃2,

𝑚𝑚. 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝐹𝐹 ≥ 𝑇𝑇4 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚. 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑀𝑀 ≤ 𝑇𝑇5
� (7)

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃2 = {𝑓𝑓|𝑓𝑓 = 〈𝑚𝑚0𝑚𝑚1𝑚𝑚2⋯𝑚𝑚𝑛𝑛�������������������〉,𝑚𝑚𝑖𝑖𝜖𝜖 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃2, 𝑓𝑓. 𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝐹𝐹 ≥ 𝑇𝑇4} (8)

Path 2 is for command-oriented protocols. The keywords of these protocols appear a very

small number of times. However, these keywords are characterized as appearing at least once
in a flow, such as a login or a logout process. Therefore, in order to extract field formats and
message formats in path 2, the system has to use two support units. When extracting field
formats or message formats, the system extracts the subsequences that appear with very high
frequency for all flows, and simultaneously with very low frequency for all messages.
Theoretically, it is correct to set T4 to 100% and T5 to the ratio of the total flows to the total
messages, but we set T4 to 80% and T5 to 15% considering the case where some packets are
collected from the middle of the actual flow. When extracting flow formats, the system uses
only one support unit: SuppF. Because it uses the extracted message formats for path 2 as
length-1 items to generate the candidates of the flow formats, there is no need to worry about
extracting too many flow formats.

The condition to execute the modules for path 2 is that T5, i.e., the ratio of the total flows
to the total messages, is lower than T1. This regulation is intended to prevent the same
formats from being extracted from path 1 and path 2.

3.3 Extracting Dynamic Field Formats

3.3.1 DF(v) Field Format Extractor
To extract DF(v), the system runs the CSP algorithm recursively. The DF(v) field format

extractor module selects the SF(v)s that meet certain conditions, and changes their type to
DF(v). The conditions are as follows:

4320 Goo et al.: Two-pathway Model for Enhancement of Protocol Reverse Engineering

 Condition 1: The support value is not 100%.
 Condition 2: The position variance is small.
 Condition 3: The difference between maximum depth and minimum offset is small.
Condition 1 means that the number of values this field format has is not one. Conditions

2 and 3 mean that the position of this field is somewhat fixed, and we use 200 and 40 as the
thresholds for Conditions 2 and 3. The system extracts all the values that these field formats
can have by running the following process for each SF(v) and satisfying the above three
conditions, as shown in Fig. 6:

First, the system extracts only message sequences that do not have the SF(v) from all the
message sequences, and truncates them based on the minimum offset and maximum depth of
the SF(v). After creating a new database, i.e., new message sequences, it runs the CSP
algorithm for these new message sequences. Among the outputs of the CSP algorithm, it
stores the result that has the highest support value as another value of this field format. The
above process is repeated until no new value is extracted. Finally, the system changes the
type of this field format to DF(v).

Fig. 6. Process of DF(v) field format extractor

The DF(v) field format extractor module only works with path 1. If running this module

in path 2, multiple identical DF(v)s are generated because the field formats of path 2 have a
very small support value. Therefore, in the case of path 2, dynamic field formats are
extracted only through the additional field format attacher module, described in 3.3.2.

After extracting the DF(v) through this module, the system extracts the message formats
by running the CSP algorithm using the extracted SF(v) and DF(v) as length-1 items, as
mentioned in 3.2. Path 2 does not go through this module, so only SF (v)s are used as length-
1 items to extract the message format.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 11, November 2020 4321

3.3.2 Additional Field Format Attacher
After extracting message formats, the system fills in the blanks between the field formats

that make up the message format with the additional field formats. Fig. 7 shows the process
of extracting the additional field formats for each message format.

First, the system collects only message sequences that have the target message format. To
determine the type of each blank in the message format, it collects the length list of the data
corresponding to the blank in the message sequences, and calculates the length variance and
the maximum length of the data. As shown in the sequence diagram of Fig. 7, the system
determines the type of blank. If the length variance is higher than 5000, then the blank type
is determined to be a GAP. If not, it stores the maximum, minimum, and average length for
the blank because the randomness of the length is not too high. After that, it checks whether
the maximum length is higher than 20 or not. If the maximum length is higher than 20, then
the blank type is determined to be DF, otherwise, it stores the data as the values for the blank.
If the number of stored value is only one, then the type of blank is determined to be SF(v).
Otherwise, the type of blank is determined to DF(v). The above process is performed for all
blanks in the message format, and also for all message formats. As a result, message formats
can be obtained which are composed in detail in four types of field formats of SF(v), DF(v),
DF, and GAP.

Fig. 7. Process of additional field format attacher

3.4 Semantics Inference
In the semantic inference phase, our method uses FieldHunter’s [25] semantic inferencing

method to ascertain the semantics of the field formats that make up each message format.
This is because FieldHunter’s method extracts the most specific and varied types of
semantics of the previous methods, as shown in Table 1.

The system traverses field formats for each message format, and heuristically checks
whether each field format corresponds to six predefined semantic types through each
algorithm: MSG-Type, MSG-Len, Host-ID, Session-ID, Trans-ID, and Accumulators.

4322 Goo et al.: Two-pathway Model for Enhancement of Protocol Reverse Engineering

1) MSG-Type
The algorithm determines whether the field format corresponds to MSG-Type, and

whether the following two conditions are met with the entropy and causality metrics.
 Condition 1: The number of values for the field format is not one, but is not too large.
 Condition 2: The field format has a causal relationship with the data in the opposite

direction.
To check Condition 1, it uses the entropy metric: H(𝑥𝑥) = −∑ 𝑝𝑝𝑖𝑖 log2 𝑝𝑝𝑖𝑖𝑛𝑛

𝑖𝑖=1 refers to the
values of the field format. If the entropy is large, it means that the values of the field format
are very randomly distributed, and if the entropy is zero, it means that there is only one
possible value for the field format. Therefore, the system checks that the entropy is not zero
and less than 0.2. To check Condition 2, it uses the causality metric: I(𝑞𝑞; 𝑟𝑟)/H(𝑞𝑞). q refers to
the values of the field format, and r refers to the values in the opposite direction. The system
checks that the causality metric is higher than 0.8.

2) MSG-Len
The system uses the Pearson Correlation metric: Cov(𝑋𝑋,𝑌𝑌)

𝜎𝜎(𝑋𝑋)∙𝜎𝜎(𝑌𝑌)
 for the value of the field and the

length of the message to check whether they have a strong positive linear relationship. X
refers to the values of the field format, and Y refers to the lengths of the message sequences.
A refers to the gradients of the linear function for X and Y, and B refers to the bias of the
linear function for X and Y. The system determines that the field format corresponds to
MSG-Len if the Pearson correlation metric is greater than 0.7, and the match rate between A
and B is greater than 0.9.

3) Host-ID
The system uses the categorical metric R(𝑥𝑥, 𝑦𝑦) = I(𝑥𝑥;𝑦𝑦)/H(𝑥𝑥, 𝑦𝑦). x refers to the values of

the field format, and y refers to source IP addresses. The system determines that the field
format corresponds to Host-ID if the categorical metric is greater than 0.9.

4) Session-ID
Like the algorithm for Host-ID, the system uses the categorical metric to check whether

the field format corresponds to Session-ID. The only difference is that y of the categorical
metric refers to the 5 tuple information.

5) Trans-ID
A transaction is a request and response pair, so the system checks the match rate between

the values of the field format and the values in the opposite direction. Also, the system uses
the entropy metric to check that the values for the field format are highly random. The
system determines that the field format corresponds to Trans-ID if the entropy is greater than
4, and the match rate is greater than 0.8.

6) Accumulators
The system determines that the field format corresponds to Accumulators if the values of

the field format are constantly increasing over time.

3.5. Extracting Protocol FSM
In this module, the system creates protocol FSM by matching the completed message

formats with all of the messages in input network traces. First, it sorts the flows and
messages in the input network traces in chronological order. Next, traversing all the
messages, it identifies which message format corresponds to each message, and set the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 11, November 2020 4323

message formats as nodes of FSM. Then, it represents each occurrence sequence of
identified nodes as an edge of FSM and counts the number of times each sequence is
founded to calculate the transition probability. As a result, the protocol FSM is created where
each state, i.e., node, represents a message format, and each transition, i.e., edge, represents
the change from one message format to another. Each transition has a transition probability
that can be useful for packet-replay. The FSM we extract contains all the messages of the
input network trace, and we can use the extracted flow format to generalize the FSM.

4. Experiment and Results
This section discusses the experimental results of the proposed automatic protocol

reverse engineering method. Our evaluation is performed on a machine running CentOS 7,
with a quad-core of Intel(R) Core(TM) i7-4770K 3.50GHz CPU, and 32GB of RAM. A
prototype implementation of our proposed method written in C++ was used, and a graph
visualization tool used to extract png file showing FSM was Graphviz [30]. The prototype
system consists of 27 classes composed of 32,295 lines of code.

As mentioned in Section 3, this method uses two pathways for inferring both non-
command-oriented protocols and command-oriented protocols. Thus, we collected two
application protocols, HTTP and DNS, for path 1, and three application protocols, FTP,
SMTP, and POP3, for path 2. The system automatically determined which path to select, as
mentioned in Section 3. Table 2 shows the traffic information of these five protocols.

Table 2. Traffic information of five protocols for experiments

Protocols Flows Packets Bytes (K) Messages
HTTP 342 13353 17741.5 1922 (req.: 961 / res.:961)
DNS 2254 4878 797.5 4878 (req.: 2481 / res.: 2397)
FTP 535 37117 4351.0 35573 (req.: 18052 / res.: 17521)

SMTP 330 6621 572.0 6284 (req.: 3307 / res.: 2977)
POP3 8 167 40.0 136 (req.: 72 / res.: 64)

In order to evaluate the performance of our method, we measure its coverage and

correctness. Coverage is the ratio of the number of messages matched with the extracted
message formats to the number of total messages, as shown in Formula 9. It indicates how
many messages can be analyzed in the extracted message formats. Correctness is the ratio of
the number of true message formats matched with the extracted message formats to the
number of total true message formats, as shown in Formula 10. It indicates how many true
message formats can be analyzed in the extracted message formats.

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑛𝑛(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)
𝑛𝑛(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

 (9)

𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑛𝑛(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)
𝑛𝑛(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

 (10)

Table 3 shows a summary of the experimental results. In all protocols, our method
extracted protocol specifications within 1 min. Because our algorithm eliminated
unsatisfactory candidate formats at an early stage and considered only satisfactory candidates
when making an item length longer, the extraction execution time was reduced. The
coverage and correctness values for all protocols were almost 100%.

4324 Goo et al.: Two-pathway Model for Enhancement of Protocol Reverse Engineering

Table 3. Summary of the experimental results

Protocols
Format Info. FSM Info. Proc.

Time
(s)

Performance
Field

Format
Msg

Format
Flow

Format State Transition Coverage Correctness

HTTP
31

(req.: 21
res.: 10)

40
(req.: 22
res.: 18)

3 16 38 17.5 100% 100%

DNS
14

(req.: 3
res.: 11)

14
(req.: 3

Res.: 11)
3 8 28 48.2 100% 100%

FTP
7

(req.: 5
res.: 2)

5
(req.: 3
res.: 2)

11 7 12 27.7 98.5% 99.1%

SMTP
22

(req.: 13
res.: 9)

21
(req.: 12

res.: 9)
36 22 24 11.9 100% 100%

POP3
38

(req.: 31
res.: 7)

27
(req.: 20

res.: 7)
16 19 28 0.2 100% 100%

The reason that the coverage and correctness values for FTP protocols were not 100% is

that there were some abnormal flows; in these flows, some packets were not captured due to
the speed limit of the capture device. For sessions that lasted for a long time when capturing
a large amount of traffic, there may have been missed packets due to the limitations of the
capture device because new sessions continued to occur. These abnormal flows resulted in
incorrect message assembly.

Fig. 8. Intuitive structure of the message formats for HTTP protocol

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 11, November 2020 4325

Fig. 8 shows the structure of the message formats for the HTTP protocol. As shown in

Fig. 8, the proposed method extracts a sufficiently compressed number of message formats,
and they have an intuitive structure composed of four types of field formats.

Fig. 9 is one of the extracted message formats of the HTTP protocol. It shows that the
proposed method extracts the fully separated message formats without blanks, and each field
formats that make up the message format have detailed information, including direction,
value, length, position, and semantics. This message format indicates the response message
format for the HTTP protocol, and covers all parts of the true message format: from the
header line to the double pair of carriage returns and line feed. Also, our method properly
determined the semantics of the Date field as Accumulators.

Fig. 9. Sample message format for HTTP protocol

Fig. 10 is one of the extracted flow formats for the FTP protocol, and it perfectly reflects

the login process of the FTP protocol. The flow format is a main flow type, and one of the
main paths of the FSM.

4326 Goo et al.: Two-pathway Model for Enhancement of Protocol Reverse Engineering

Fig. 10. Sample flow format for FTP protocol

Fig. 11 is the extracted FSM of the FTP protocol, and it shows the order in which

messages are transferred. Each path from the initial state to the final state refers to a flow
type.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 11, November 2020 4327

Fig. 11. Extracted FSM of FTP protocol

5. Conclusions and Future Work
In this paper, we proposed a novel method for automatic protocol reverse engineering

using a two-pathway model. The proposed method can apply to both command-oriented
protocols and non-command-oriented protocols. By defining three types of format and four
types of field formats, the proposed method extracts intuitive and detailed protocol
specifications using the CSP algorithm hierarchically. Moreover, the proposed method
extracts not only syntax but also semantics, and the FSM of the target protocol.

We performed experiments with five known protocols to validate the superiority of the
proposed method. In all the protocols, the inferred specification was extracted in less than 1
min. Furthermore, the proposed method exhibited good performance in terms of coverage
and correctness.

In future work, we plan to develop a hybrid method that uses both execution traces and
network traces to solve the problem of inferring the encrypted protocols. Further, we intend
to expand the range of protocol layers to allow for more general use.

4328 Goo et al.: Two-pathway Model for Enhancement of Protocol Reverse Engineering

References
[1] Cisco VNI, “Cisco Visual Networking Index: Forecast and Methodology, 2016-2017,” Cisco,

CA, USA, White Paper C11-481360-01, June. 2017.
[2] M. Kuzin, Y. Shmelev, and V. Kuskov, “New trends in the world of IoT threats,” Kaspersky Lab,

Sep. 2018.
[3] A. Tridgell, “How Samba was written,” August 2003 [Online]. Available:

http://samba.org/ftp/tridge/misc/french_cafe.txt
[4] B. D. Sija, Y.-H. Goo, K.-S. Shim, H. Hasanova, and M.-S. Kim, “A Survey of Automatic

Protocol Reverse Engineering Approaches, Methods, and Tools on the Inputs and Outputs View,”
Security and Communication Networks, vol. 2018, Article ID 8370341, pp. 1-17, February 2018.
Article (CrossRef Link)

[5] J. Cai, J.-Z. Luo, and F. Lei, “Analyzing Network Protocols of Application Layer Using Hidden
Semi-Markov Model,” Mathematical Problems in Engineering, vol. 2016, Article ID 9161723,
pp. 1-14, March 2016. Article (CrossRef Link)

[6] J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: Automatic Extraction of Protocol
Message Format using Dynamic Binary Analysis,” in Proc. of 14th ACM Conf. on Computer and
Communications Security (CCS), pp. 317–329, October 2007. Article (CrossRef Link)

[7] W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz, “Tupni: Automatic Reverse
Engineering of Input Formats,” in Proc. of 15th ACM Conf. on Computer and Communications
Security (CCS), Ocober 2008. Article (CrossRef Link)

[8] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda, “Prospex: Protocol Specification
Extraction,” in Proc. of 30th IEEE Symposium on Security and Privacy, pp. 110-125, May 2009.
Article (CrossRef Link)

[9] J. Caballero and D. Song, “Automatic Protocol Reverse-Engineering: Message Format Extraction
and Field Semantics Inference,” Computer Networks, vol. 57, no. 2, pp. 451-474, 2013.
Article (CrossRef Link)

[10] M. A. Beddoe, “The Protocol Informatics Project,” 2004 [Online]. Available:
http://www.4tphi.net/~awalters/PI/PI.html

[11] C. Leita, K. Mermoud, and M. Dacier, “ScriptGen: an Automated Script Generation Tool for
Honeyd,” in Proc. of 21st Annual Computer Security Applications Conf., December 2005.
Article (CrossRef Link)

[12] W. Cui, V. Paxson, N. C. Weaver, and R. H. Katz, “Protocol-Independent Adaptive Replay of
Application Dialog,” in Proc. 13th Symposium on Network and Distributed System Security
(NDSS), February 2006. Article (CrossRef Link)

[13] J.-Z. Luo and S.-Z. Yu, “Position-based Automatic Reverse Engineering of Network Protocols,”
J. Network and Computer Applications, vol. 36, no. 3, pp. 1070-1077, May 2013.
Article (CrossRef Link)

[14] Y. Wang, N. Zhang, Y.-M. Wu, B.-B. Su, and Y.-J. Liao, “Protocol Formats Reverse
Engineering Based on Association Rules in Wireless Environment,” in Proc. of 12th IEEE Int.
Conf. on Trust, Security and Privacy in Computing and Communication, pp. 134-141, July 2013.
Article (CrossRef Link)

[15] R. Ji, H. Li, and C. Tang, “Extracting Keywords of UAVs Wireless Communication Protocols
Based on Association Rules Learning,” in Proc. of 12th IEEE Int. Conf. on Computational
Intelligence and Security, pp. 310-313, December 2016. Article (CrossRef Link)

[16] Z. Lin, X. Jiang, D. Xu, and X. Zhang, “Automatic Protocol Reverse Engineering through
Context-Aware Monitored Execution,” in Proc. of Network and Distributed System Security
Symposium (NDSS), February 2008. Article (CrossRef Link)

[17] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace, “ReFormat: Automatic Reverse
Engineering of Encrypted Messages,” in Proc. of Computer Security – ESORICS 2009, in Proc.
14th European Symposium on Research in Computer Security, pp. 200-215, September 2009.
Article (CrossRef Link)

http://samba.org/ftp/tridge/misc/french_cafe.txt
https://dx.doi.org/10.1155/2018/8370341
https://dx.doi.org/10.1155/2016/9161723
https://dx.doi.org/10.1145/1315245.1315286
https://dx.doi.org/10.1145/1455770.1455820
https://dx.doi.org/10.1109/SP.2009.14
https://dx.doi.org/10.1016/j.comnet.2012.08.003
http://www.4tphi.net/%7Eawalters/PI/PI.html
https://dx.doi.org/10.1109/CSAC.2005.49
https://www.ndss-symposium.org/ndss2006/protocol-independent-adaptive-replay-application-dialog/
https://dx.doi.org/10.1016/j.jnca.2013.01.013
https://dx.doi.org/10.1109/TrustCom.2013.21
https://dx.doi.org/10.1109/CIS.2016.0076
https://www.ndss-symposium.org/ndss2008/automatic-protocol-format-reverse-engineering-through-context-aware-monitored-execution/
https://dx.doi.org/10.1007/978-3-642-04444-1_13

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 11, November 2020 4329

[18] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: Automatic Protocol Reverse Engineering from
Network Traces,” in Proc. of 16th USENIX Security Symposium, pp. 1-14, August 2007.
Article (CrossRef Link)

[19] M. Shevertalov and S. Mancoridis, “A Reverse Engineering Tool for Extracting Protocols of
Networked Applications,” in Proc. of 14th Working Conf. on Reverse Engineering (WCRE), pp.
229-238, October 2007. Article (CrossRef Link)

[20] A. Trifilo, S. Burschka, and E. Biersack, “Traffic to protocol reverse engineering,” in Proc. of
IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp. 1-8,
July 2009. Article (CrossRef Link)

[21] Y. Wang, X. Li, J. Meng, Y. Zhao, Z. Zhang, and L. Guo, “Biprominer: automatic mining of
binary protocol features,” in Proc. of 12th Int. Conf. on Parallel and Distributed Computing,
Applications and Technologies (PDCAT), pp. 179-184, October 2011. Article (CrossRef Link)

[22] J. Antunes, N. Neves, and P. Verissimo, “Reverse Engineering of Protocols from Network
Traces,” in Proc. of 18th Working Conf. on Reverse Engineering (WCRE), pp.169-178, October
2011. Article (CrossRef Link)

[23] Y. Wang, Z. Zhang, D. D. Yao, B. Qu, and L. Guo, “Inferring Protocol State Machine from
Network Traces: a Probabilistic Approach,” in Proc. of 9th Applied Cryptography and Network
Security Int. Conf. (ACNS), pp. 1-18, 2011. Article (CrossRef Link)

[24] G. Bossert, F. Guihery, and G. Hiet, “Towards Automated Protocol Reverse Engineering using
Semantic Information,” in Proc. of 9th ACM Symposium on Information, Computer and
Communications Security, pp. 51-62, June 2014. Article (CrossRef Link)

[25] I. Bermudez, A. Tongaonkar, M. Iliofotou, M. Mellia, and M. M. Munafo, “Automatic Protocol
Field Inference for Deeper Protocol Understanding,” in Proc. of 14th IFIP Networking Conf., pp.
1-9, May 2015. Article (CrossRef Link)

[26] K. Choi, Y. Son, J. Noh, H. Shin, J. Choi, and Y. Kim, “Dissecting Customized Protocols:
Automatic Analysis for Customized Protocols based on IEEE 802.15.4,” in Proc. of 9th ACM
Conf. on Security and Privacy in Wireless and Mobile Networks, pp. 183-193, July 2016.
Article (CrossRef Link)

[27] G. Ladi, L. Buttyan, and T. Holczer, “Message format and field semantics inference for binary
protocols using recorded network traffic,” in Proc. of 26th Int. Conf. Software,
Telecommunication Computer Networks (SoftCom), September 13-15, 2018.
Article (CrossRef Link)

[28] M. Marchetti and D. Stabili, “READ: Reverse Engineering of Automotive Data Frames,” IEEE
Transactions on Information Forensics and Security, vol. 14, no. 4, pp. 1083-1097, September
2018. Article (CrossRef Link)

[29] B. D. Sija, K. S. Shim and M. S. Kim, “Automatic Payload Signature Generation for Accurate
Identification of Internet Applications and Application Services,” KSII Transactions on Internet
and Information Systems, vol. 12, no. 4, pp. 1572-1593, April 2018. Article (CrossRef Link)

[30] Graphviz – Graph Visualization Software. Available: https://graphviz.org/

https://dl.acm.org/doi/10.5555/1362903.1362917
https://dx.doi.org/10.1109/WCRE.2007.6
https://dx.doi.org/10.1109/CISDA.2009.5356565
https://dx.doi.org/10.1109/PDCAT.2011.25
https://dx.doi.org/10.1109/WCRE.2011.28
https://dx.doi.org/10.1007/978-3-642-21554-4_1
https://dx.doi.org/10.1145/2590296.2590346
https://dx.doi.org/10.1109/IFIPNetworking.2015.7145307
https://dx.doi.org/10.1145/2939918.2939921
https://dx.doi.org/10.23919/SOFTCOM.2018.8555813
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10206
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10206
https://dx.doi.org/10.1109/TIFS.2018.2870826
https://dx.doi.org/10.3837/tiis.2018.04.010
https://graphviz.org/

4330 Goo et al.: Two-pathway Model for Enhancement of Protocol Reverse Engineering

Young-Hoon Goo was born in Cheonan, South Korea, in 1991. He received the B.S. and
Ph.D. degrees (integrated program) in computer and information science from Korea
University, South Korea, in 2016 and 2020 respectively. Since 2020, he has been a
postdoctoral researcher with Korea Institute of Science and Technology Information
(KISTI), South Korea. His research interests include Internet traffic classification, Internet
security, network management, and wireless communication.

Kyu-Seok Shim was born in Seoul, South Korea, in 1989. He received his B.S., M.S., and
Ph.D. degrees in computer and information science from Korea University, South Korea, in
2014, 2016, and 2020, respectively. Since 2020, he has been a postdoctoral researcher with
Korea Institute of Science and Technology Information (KISTI), South Korea. His research
interests include Internet traffic classification, network management and quantum
cryptography.

Ui-Jun Back was born in Seoul, South Korea, in 1993. He received his B.S. degree
computer and information science from Korea University, South Korea, in 2018, where he is
currently pursuing the Ph.D. degree (integrated program). His research interests include
blockchain transaction monitoring, network management and Internet security.

Myung-Sup Kim was born in Gyeongju, South Korea, in 1972. He received his B.S.,
M.S., and Ph.D. degrees in computer science and engineering from POSTECH, South Korea,
in 1998, 2000, and 2004, respectively. From September 2004 to August 2006, he was a
Postdoctoral Fellow with the Department of Electrical and Computer Engineering,
University of Toronto, Canada. He joined Korea University, Korea, in 2006, where he is
working currently as an Full Professor with the Department of Computer Convergence
Software. His research interests include Internet traffic monitoring and analysis, service and
network management, the future Internet, and Internet security.

