
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Study on the Method to Extract Clear Fields
From the Private Protocol

1st Min-Seob Lee
dept. of Computer and Information

Science
Korea University

Sejong, Korea
chenlima2@korea.ac.kr

2nd Kyu-Seok Shim
dept. of Computer and Information

Science
Korea University

Sejong, Korea
kusuk007@korea.ac.kr

4th Myung-Sup Kim
dept. of Computer and Information

Science
Korea University

Sejong, Korea
tmskim@korea.ac.kr

3rd Young-Hoon Goo
dept. of Computer and Information

Science
Korea University

Sejong, Korea
gyh0808@korea.ac.kr

Abstract—The computer network environment has been
growing steadily in recent years, and as a result there has been
continuous high volume of network traffic. Several
applications and malicious behavior are emerging as networks
are being used in many areas. As a result, applications and
malicious behavior using private protocols continue to grow,
and most of their private protocols are unknown or not
documented. Analyzing the structure of private protocols to
respond to malicious behavior or to construct an efficient
network environment is an essential study in modern society.
The method by which protocols are analyzed is called Protocol
Reverse Engineering, and its importance has already been
proven to date. While various studies address Protocol Reverse
Engineering, there is no standardized way to distinguish or
extract the fields that make up the protocol. Therefore, this
paper proposes and validates how fields are extracted from
private protocols using the Apriori Algorithm, one of the
sequential pattern mining techniques.

Keywords—protocol reverse engineering, private protocol,
syntax, field

I. INTRODUCTION
Computer network environments have been growing

steadily in recent years, resulting in a steady stream of large
network traffic, and the increasing number of applications
and malicious behavior using the network. In most cases,
protocols that occur in these network environments are
private protocols that are unknown or not documented. In
order to clearly understand the structure of a non-public
protocol, the study of Protocol Reverse Engineering has been
studied steadily from the past to the present. Protocol
Reverse Engineering can be used in the field of network
security, for example cyberattacks. A steady stream of large
and small cyberattacks around the world continue to evolve
in various forms, using private protocols. To respond to these
cyberattacks, Protocol Reverse Engineering is essential.
Protocol Reverse Engineering can also be used in network
management. It can be used in many areas, as identifying the
status of network use and adjusting bandwidth to specific
protocols for efficient use of limited network resources. 1

1 This research was supported by Basic Science Research Program through the National Research
Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2018R1D1A1B07045742)
and by Institute for Information & communications Technology Promotion(IITP) grant funded by
the Korea Government(MSIT) (No.2018-0-00539-001,Development of Blockchain Transaction
Monitoring and Analysis Technology)

Various prior studies suggest different methodologies for
Protocol Reverse Engineering. But there are some limitations.
Traditional Protocol Reverse Engineering is time-consuming
and error-prone because it is mostly done manually. To
resolve this problem, automatic Protocol Reverse
Engineering methodologies have been proposed, but
limitations exist. Some of the suggested methodologies do
not extract fields clearly, some of them simply separate the
fields with known delimiters(space, tab, etc,..). The goal of
Protocol Reverse Engineering is to extract the clear
specifications of the target protocol, and it is also difficult to
clearly extract the field, the smallest unit of a protocol, or to
do so later. Therefore, this paper proposes a clear method for
extracting fields from Protocol Reverse Engineering and
conducts experiments on HTTP protocols. Following the
introduction, the organization of this paper defines the
relevant research and problem and details on the
methodology proposed in Chapter 3. Chapter 4 concludes
with analysis of experimental results, conclusions and future
studies in Chapter 5.

II. RELATED WORK

A. Protocol Reverse Engineering Components

Figure 1. Protocol Components

Before describing Protocol Reverse Engineering, define

the terms used when analyzing the structure of the protocol.
First, flow is a set of packets used as inputs to Protocol
Reverse Engineering. These packets are all of the same 5-
tuple(Source IP Address, Destination IP Address, Source
Port, Destination Port, L4 Protocol) packet and consist of a
sequence of messages. Messages define one TCP segment as
a message for TCP flow and one packet as a message for
UDP flow. The message consists of a sequence of fields,
which are the smallest units that have meaning when

1397978-1-5386-5041-7/18/$31.00 ©2018 IEEE ICTC 2018

analyzing a protocol’s structure. For the HTTP protocol,
such things as GET, User-Agent, HTTP/1.1 Host, are defined
as fields.

Figure 2. Type of field
There are three types of fields: Static Field, Dynamic Field
with fixed length, and Dynamic Field with variable length.
This paper clearly describes how to extract static fields with
fixed values from a private protocol.

B. Protocol Reverse Engineering

Protocol Reverse Engineering is the study of identifying
the explicit structure of a private protocol rather than the
protocol in which the specifications are opened. It is usually
aimed at deriving three components of unknown application
layer protocols from OSI layer 7.[1] Three elements of a
protocol are syntax, semantics, and timing. The goal of
Protocol Reverse Engineering is to provide a clear
understanding of what types of messages are in the target
protocol, how they are organized and in what order they
communicate.

Most traditional Protocol Reverse Engineering has been
done passively by people. Passive Protocol Reverse
Engineering can take a very long time because instead of
being able to accurately identify all the components of a
protocol, the results can vary depending on who analyzes and
are performed manually. For this reason, it is not appropriate
to analyze large amounts of private protocol traffic in the
current network environment. In order to overcome these
limitations, automated Protocol Reverse Engineering
methodologies began to be designed.

Automatic Protocol Reverse Engineering is typically
divided into analysis methods based on network traces and
analysis based on execution traces. The biggest difference
between the two methods[2] is the trace used for input. The
Execution Trace based analysis uses the execution traces
logged by monitoring the execution of program binaries that
use the target protocol. This method is not suitable for
analyzing private protocols realistically because it can only
be used if program binaries implementing the target protocol
are acquired. Network Trace based analysis uses the network
traffic captured by the target protocol as an input. This
method has the advantage of capturing traffic and performing
analysis even if the program binaries implementing the target
protocol are not accessible, so it is considered suitable for
analyzing a private protocol. Therefore, this paper uses
Network Trace based analysis methods.

C. Prior Study

A prior study using Network Trace based analysis
methods included [3]AutoReEngine, [4]Netzob, [5]Trifilo,
[6]Veritas, [7]ReverX, and [8]Pext. Among the preceding
studies mentions above, methodologies for extracting fields

from protocols are ReverX, Veritas, AutoReEngine, and
Netzob. Out of these four methodologies, Netzob, which is
open source, and AutoReEngine, which is the basis for the
methodology proposed in this paper, are selected for testing.

Figure 3. Apriori Algorithm

AutoReEngine receives protocol network traffic as an
input. AutoReEngine consists of four main steps : Data Pre-
Processing, Protocol Keyword Extraction, Message Format
Extraction, and State Machine Inference. The key algorithm
for AutoReEngine is the Apriori algorithm. The Apriori
algorithm is an algorithm that extracts frequently occurring
items as one of sequential pattern mining techniques.
AutoReEngine uses this algorithm to extract commonly
occurring strings in the target protocol. The values for the
position variance of these strings are then obtained and the
strings that occur at a fixed location are selected as the final
field with the value of the position variance below the
specified threshold.

Netzob is a top-down Protocol Reverse Engineering
method. First, protocol network traffic is received as an input,
reassembled in message units, and the Needleman-Wunch
algorithms is used to conduct the sequence alignment and
extract a Symbol as a result. Extract the Strings commonly
seen in each Symbol into a static field(Data Variable) and the
fields with different values into a dynamic field(Alternative
Variable). Then use the UPGMA algorithm to measure the
similarities between each Symbol and cluster Symbol with
similarities beyond the user-defined degree of similarity.

Figure 4. Field in Netzob

D. Define Problem

There are three main output of Protocol Reverse
Engineering : Syntax, Semantics, and FSM. Syntax refers to
the format of how messages are configured in the target
protocol, while Semantics refers to the meaning of each field
that constitutes a message type. FSM is a finite Automata
that describes the order in which message types

1398

communicate. This paper proposes a method for clearly
extracting fields from Syntax during the output of Protocol
Reverse Engineering.

In prior studies each field is extracted in a different way,
with several limitations. First, when extracting fields,
separate the fields by simply known delimiters. This method
works well if the fields in the target protocol are separated by
delimiters, but if not, the analysis is likely to be poor. For a
private protocol, it is not appropriate to distinguish fields by
delimiters because you do not know how they are organized.
Second, we extract frequently occurring strings form the
target protocol into the field. Since location information on
where a field occurs in a message is not used but relies on
statistical methods to extract fields, simply the frequently
occurring strings are extracted into the field. A string that
occurs only once when connecting and disconnecting
between the server and the client may need to be extracted
into a field, with limitations that cannot be extracted in this
way. Therefore, this study proposes to extract fields that
occur at a fixed location frequently occurring in the target
protocol using the appropriate location and statistical
information of the field.

III. THE PROPOSED METHOD

Figure 5. The Overview of Proposed Method

In the Message Assemble phase, data pre-processing is
performed by receiving the target protocol network traffic as
an input.

In the Statistics Filter phase, three support units are
applied to the Apriori algorithm to extract commonly
occurring strings. Although the basic Apriori algorithm uses
one support unit, the proposed methodology uses three
support units to eliminate as much noise as possible. This
phase extract field candidates, which are frequently
generated in all three units.

In the Position-Value Filter phase, only field candidates
that occur at a fixed location using the location information
of the field candidates extracted from the previous step are
filtered. Only field candidates who meet the threshold
specified by the user are selected as final field.

A. Statistics Filter

Figure 6. Three Support Unit

At the Statistics Filter step, the Apriori algorithm (Fig.3)

applies three supports(Fig.6) that perform different roles to
extract frequently occurring strings (field candidates).

First of all, Message Support works to separate the
direction (Request, Response) of a message to examine how
often field candidates occurs in a Request Message or
Response Message. Because the smallest unit of support to
which it can be applied is applied in more detail, support
plays a key role in extracting fields from this methodology.

Flow Support examines the frequency of field candidates
in the overall flow. With Flow Support, you can remove
strings that occur frequently in only a few flows, but only
one time in the flow, but are not extracted as fields (ex.
Login Keyword). Therefore, in this methodology, the
strings that appear in each flow are exceptionally extracted
into fields.

Figure 7. Flow Set

Flow_set is a set of elements that make up all of the
flows that are connected between one server and the clients
that communicate with that server. Flow_set Support as
opposed to Message Support, is the largest unit to which
support can be applied. By applying Support throughout the
traffic between all clients that each server communicates
with, it can filter the frequent strings that occur only with a
few servers.

1399

Figure 8. Delete Inclusion Relation

In this methodology, unlike the typical Apriori algorithm, we
have added a portion of the inclusion relationship at each level.
For example, suppose an item with a length of 4 has a keyword
“Cont” and a keyword with “onte”. Fig 8 shows a combination of
these two keywords to create a 5-length keyword with “Conte”. If
all three keywords satisfy all three support units, all three
keywords will appear as filed candidates. However, the keyword
“Cont” does not have to be extracted as a field because it is
unconditionally extended only to the keyword “Conte”. Thus, this
methodology eliminates field candidates that do not need to be
extracted into the field by means of an inter-relational algorithm.
For example, “Cont”, as mentioned above, must be removed
because it only extends to the keyword “Conte” as described
above.

However, the keyword “onte” can be extended to “Conte” or
“onten”. Therefore, remove “onte” if the combined number of
messages with “onte” and all 5-length keywords with which
“onte” can be expanded are the same. In such a case, the “onte”
should be deleted because the number of cases where the “onte”
keyword can be extended is considered. Fig9 shows that
pseudocode of this process.

Figure 9. Delete Inclusion Relationship Algorithm

In the Statistics Filter step, the first step uses all characters
as inputs to the Apriori algorithm to extract a set of
frequently k-length strings (field candidates). And when
there are two field candidates with a fully inclusive
relationship among field candidates, a short candidate field is
removed.

B. Position-Value Filter

Figure 10. Detailed Structure of Position-Value Filter

In the Position-Value Filter Step, check the position
information of the field candidates extracted through the
Statistics Filter step. Filtering is performed based on how the
calculated position information occurs below a certain
threshold, that is, at a fixed position. The field candidate will
appear in multiple messages in the traffic data received as
shown in Figure 10. At this time, field candidates have a
Startoffset set, an Endoffset set, for each message they
appear. The Startoffset set is the set of position values
calculated from the beginning of the message, and the
Endoffset set is the set of position values calculated form the
end of the messages. Field candidates calculate the variance
of all of the Startoffset and Endoffset of all messages they
appear. Sov and Eov, which are shown in Figure 10, are each.
Define the minimum value as pv between Sov and Eov. Pv is
an indicator of how certain field candidates are appearing in
messages. If Pv is very small, it means that the field
candidate will appear in a fixed position within the message.
Therefore, it is determined that any field candidate with Pv
having a value below the threshold entered will appear in a
fixed location and will be selected as the final field.

IV. EXPERIMENT

A. Evaluation Metric

Figure 11. Evaluation Metric

In this chapter, two evaluation metrics are defined to give

a visible presentation of experimental results for the HTTP
protocol. The correct answer sheets that need to be extracted
as fields for HTTP protocol only are defined by the Method,
Version, Header Name, Status Code, and Phrase and the
evaluation metric are obtained.

True Field means one field of each correct answer to be
extracted with the above mentioned fields. For example,
individual values such as “HTTP/1.1”, “GET”, “User-Agent”
are called True Field.

True Field Format(TF) is a result of clustering of the
same True Fields as one. Cluster all True Fields with
“HTTP/1.1” values and define them as one field format. True
Field Format is classified into two elements. The first
element is TFE , which is included in EF. The second
element is TFN, Which is not included in EF.

Extracted Field Format(EF) means a field format
extracted from Automatic Protocol Reverse Engineering
methodology. Since different methodologies produce
different results, they have the greatest impact on the
generation of evaluation metrics. Extracted Field Format is
classified into two elements. The first element is EFT, which
includes the True Field Format as defined above. The second
element is EFV, which means values for the True Field
Format are not included.

1400

Conciseness is an evaluation metric of the EF from each
methodology. Indicates the percentage of field extracted
from each methodology that contain the correct answer and
is a key evaluation metric for assessing the performance of
each methodology.

Correctness is an evaluation metric for True Field
extracted from each methodology. Indicates the percentage
of True Field included in the EF extracted from any of the
True Fields in the HTTP protocol traffic used as input. That
is the frequency with EFT out of the total number of True
Fields. Even though the Conciseness is very high, it is hard
to say that a low Correctness is a good performance. Ideally,
both of these evaluation metrics will have high values.

B. Experiment Result
In this chapter, the experimental results of fields

extracted with the same HTTP protocol traffic as inputs for
each methodology are compared. Before comparing the
results of the experiments, Netzob is excluded from the
results of the experiments.

Figure 12. Netzob’s Field

This is because Netzob has too many True Fields and is too
long. The field should be the smallest unit to have meaning
in Protocol Reverse Engineering, and it is difficult to define
is as the field in this paper because it contains at least three
True Fields. Therefore, this chapter compares the results of
an experiment with AutoReEngine, which was developed by
the authors of this paper, and with the suggested
methodology.

Figure 13. Experiment Result

Figure 14. Detail Experiment Result

For AutoReEngine, the fields are judged to be better

extracted than Netzob. One or two True Fields are properly
configured. However, because AutoReEngine does not have
a module to remove the inclusion relationship in the
extraction process, the threshold is that all noise fields, which
are completely included in a particular field, are extracted. In
addition, the fields that need to be extracted are not extracted,
and these problems are judged to be that the message, the
smallest unit to which support can be applied, is not
considered. As with AutoReEngine, for the methodology
proposed in this paper, a single field is properly constructed
into one or two True Fields. Unlike AutoReEngine, we
improved performance by removing noise fields through the
inclusion relationship removal module. It is also believed
that more specific fields were extracted by extracting fields
that frequently appear in all three support units.

V. CONCLUSION

In this paper, we proposed and verified clearly how fields
are extracted from Protocol Reverse Engineering. The
proposed method explicitly extracts fields from entered
network traffic, taking advantage of all possible statistical
and positional information of the field. But there is still more
to be done. Due to nature of the Apriori algorithm, this
methodology depends on the value of Minimum Support.
Therefore, in future studies, we plan to conduct a study to
find the optimum Minimum Support value to maximize the
two evaluation metrics we presented.

1401

REFERENCES

[1] Young-Hoon Goo, Kyu-Seok Shim, Jee-Tae Park, Byeong-Min Chae,
Ho-Won Moon, Myung-Sup Kim, “A Method of Protocol Reverse
Engineering for Clear Protocol Specification Extraction”, KNOM
Review, Vol. 20, No. 2, pp. 11-23, Dec.2017

[2] Young-Hoon Goo, Baraka D. Sija, Sung-Ho Lee, Myung-Sup Kim,
“Analyzing the Difference Between Network Trace-based and
Execution Trace-based Protocol Reverse Engineering in Three
Perspectives”, Proceedings of Symposium of the Korean Institute of
communications and Information Sciences, pp. 82-83, Jeju Island,
Korea, June 2017.

[3] Jia-Zhen Luo, Shun-Zheng Yu “Position-based automatic reverse
engineering of network protocols”, Jounal of Network and Computer
Applications, Vol. 36, No. 3, Issue. 3, pp. 1070–1077 Feb.2013K.
Elissa, “Title of paper if known,” unpublished.

[4] Bossert, Georges, Frederic Guihery, and Guillaume Hiet, "Towards
automated protocol reverse engineering using semantic information.",
Proceedings of the 9th ACM symposium on Information, computer
and communications security. ACM, pp. 51-62, Kyoto, Japan,
June.2014

[5] Trifilo, A., Burschka, S., & Biersack, E. ,“Traffic to protocol reverse
engineering”, In Computational Intelligence for Security and Defense
Applications, 2009. CISDA 2009. IEEE Symposium on IEEE, pp. 1-8,
Ottawa, Canada, Dec.2009

[6] Wang, Y., Zhang, Z., Yao, D. D., Qu, B., & Guo, L., “Inferring
protocol state machine from network traces: a probabilistic approach”,
In International Conference on Applied Cryptography and Network
Security, pp. 1-18,Nerja, Spain, June.2011

[7] Antunes, Joao, Nuno Neves, and Paulo Verissimo, "Reverse
engineering of protocols from network traces.", Reverse Engineering
(WCRE), 2011 18th Working Conference on. IEEE, pp. 169-178,
Limerick, Ireland, Oct.2011

[8] Shevertalov, Maxim, and Spiros Mancoridis, "A reverse engineering
tool for extracting protocols of networked applications", Reverse
Engineering (WCRE), 2007 14th Working Conference on. IEEE, pp.
229-238, Vancouver, Canada, Oct.2007

1402

