
Automatic Reverse Engineering Method for Extracting

Well-trimmed Protocol Specification
Young-Hoon Goo

Dept. of Computer and
 Information Science

Korea University, Sejong, Korea
+82-44-860-1378

gyh0808@korea.ac.kr

Kyu-Seok Shim
Dept. of Computer and
 Information Science

Korea University, Sejong, Korea
+82-44-860-1378

kusuk007@korea.ac.kr

Myung-Sup Kim
Dept. of Computer and
 Information Science

Korea University, Sejong, Korea
+82-44-860-1347

tmskim@korea.ac.kr

ABSTRACT

Emergence of high-speed Internet and ubiquitous environment has

led to a rapid increase of applications and malicious behaviors

with various functions. Many of the complex and diverse

protocols that occur under these situations, are unknown protocols

that are at least documented. For efficient network management

and network security, protocol reverse engineering that extract the

specification of the protocols is very important. While various

protocol reverse engineering methods are being studied, each of

methods has some limitations. In this paper, we propose the

reverse engineering method for extracting well-trimmed protocol

specification. The proposed method can extract intuitive field

formats, message formats with semantics, flow formats, and

protocol state machine of the unknown protocol. We implement

our approach in a prototype system and demonstrate the validity

of our approach through experimenting it over HTTP protocol.

Keywords

Protocol reverse engineering; Field Format; Message Format;

Flow Format; Finite state machine; CSP Algorithm;

1. INTRODUCTION
Today’s emergence of high-speed Internet has led to not only

generation of massive traffic but also rapid increase of developed

applications and malicious behaviors in various functions. Many

of the complex and diverse protocols that occur under these

situations, are unknown or proprietary protocols that are less

documented. Some of these protocols include the proprietary

protocols, and protocols that are used in various kind of attacks.

For efficient network management and network security, protocol

reverse engineering that extract the specification of the protocols

is very important.

While various protocol reverse engineering methods are being

studied, each of methods has some advantages and some

limitations. Some prior methods are mostly manual, therefore

time-consuming and error-prone. Although many of the automatic

protocol reverse engineering methods are proposed to address this

problem, these methods do not extract intuitive message formats.

Many of previous works extract too specific message formats or

too general message formats. Extracting too specific message

formats means that it cannot extract intuitive protocol

specifications by extracting too many message formats. Extracting

too general message formats means that it cannot extract all the

possible values of the field which belongs to the message format,

or extracts message formats whose fields are sufficiently

subdivided. Another limitation of prior methods is that it can

extracts only part of the protocol specification. Some methods

only extract protocol syntax, protocol semantics or protocol state

machine. However, the ideal protocol reverse engineering is to

extract all of these, protocol syntax, semantics, and state machine.

In this paper, we proposed the reverse engineering method for

extracting well-trimmed protocol specification which can extract

the protocol intuitive syntax, semantics, and finite state machine.

The novelty of the protocol syntax extracted by the proposed

method is that it consists of the field formats, the message formats,

and the flow formats. The proposed method uses the modified

sequential pattern algorithm hierarchically to extract these formats.

Additionally, it uses the modified sequential pattern algorithm

recursively to extract the all the values the fields format can have.

The main advantage of the proposed method is that the extracted

message format is a fully separated message format with fields of

four types without any blank parts.

The rest of this paper is organized as follows. Section II describes

the related works and the scope of the problem. Section III

describes the proposed method in detail, and section IV describes

experiment. Finally, Section V presents conclusive remarks and a

brief look for the future research directions.

2. RELATED WORKS & PROBLEM

SCOPE
Protocol reverse engineering is the process of extracting

specifications of unknown protocols which is deriving

specifications of application layer protocols in general. The goal

of protocol reverse engineering is to extract detailed structures

including syntax, semantics, FSM, and etc. related to the three

main components of the protocol. Extracted specification can

indicate message types the protocol has, the format in which these

types of messages are organized, and the order in which these

operate.

The traditional approach of protocol reverse engineering methods

are mostly manual. A typical example is the Generic Application-

level Protocol Analyzer (GAPA) released by Borisov et al [1].

GAPA is a framework for verifying and parsing network protocol

specifications through hand-written syntax. The manual protocol

reverse engineering is very tedious, time-consuming and error-

prone. In high-speed network environment like today, automatic

protocol reverse engineering rather than manual reverse

engineering is valid to cope with the speed of emergence of new

applications and various highly intelligent attacks.

Automatic protocol reverse engineering can be divided into two

categories: execution trace based protocol reverse engineering and

network trace based protocol reverse engineering.

Execution trace based protocol reverse engineering is the methods

of analyzing execution traces logged how the program binary that

implements the protocol processes messages by using dynamic

taint analysis. Since these methods analyze the execution of actual

program binaries, the accuracy of the format extraction can be

improved, but it is practically difficult to obtain the program

binary of the unknown protocol. Besides, in general, only the

received messages of the host receiving the protocol message are

analyzed.

On the other hand, network trace based protocol reverse

engineering methods analyze network traces captured by

monitoring network packets of the protocol. Therefore, there is no

need to access the program binaries, so much more convenient,

and it can analyze not only received messages but also send

messages by monitoring the routers connecting the external and

target network. Hence, we focus on network trace based protocol

reverse engineering because of practicability and convenience.

The output of protocol reverse engineering is largely composed of

syntax, semantics, and protocol state machines. Ideally, for

extracting a detailed protocol specification, all possible

information should be inferred, including protocol syntax,

semantics, and protocol state machine, and the syntax is to be

clear. However, previous methods have some limitations.

First, many of previous methods only extract some part of syntax,

semantics and protocol state machine [2].

Second, many of these methods extract too specific syntax. Too

specific syntax is to extract too many message formats, which

means it is not intuitive message format of the protocol. Therefore,

that syntax can be efficient for analyzing each packet, but it is not

effective in understanding intuitive structure of protocol. To

address this problem, we define three levels of formats which are

field format, message format, and flow format and extract them

using hierarchically modified sequential pattern algorithm. We

call this algorithm Hierarchical Contiguous Sequential Pattern

(Hierarchical CSP) algorithm. The propose method extract not

only sufficient summarized message formats with semantics but

also flow formats. The meaning of each format is described in

section III.

Third, many of these methods extract too general syntax. These

methods are mostly use the way based on the frequency, such as

entropy filter, LDA with the appearance probability. Therefore,

these methods can extract only one value that is the most frequent,

rather than extracting all the possible values for each fields.

Another case is to extract syntax that is not sufficiently subdivided

into the fields that make up the message formats. Figure 1 shows

this problem by exemplifying the HTTP protocol.

Figure 1. The example of a too general syntax as output and

clear syntax as output

To address this problem, the proposed method extracts all the

possible values for each field using Recursive CSP algorithm.

Besides, since the method has a module for dividing the additional

fields that are not extracted by the field format extraction module

into four types of fields, it is possible to extract a completely

divided message format without an empty portion.

3. THE PROPOSED METHOD

3.1 Terminology and the Overview of the

Proposed Methodology
The proposed methodology extracts field formats, message

formats, and flow formats step by step using Hierarchical CSP

algorithm.

The field format consists of four types of SF(v), DF(v), DF, and

GAP. “(v)” means “value”, and “(v)” marked field format is the

field in which values can be predicted. SF(v) denotes a field

having a static value and a fixed length. DF(v), DF and GAP are

fields whose values are dynamic. These dynamic fields may be

fixed in length or may be variable. DF(v) is a dynamic field

whose value is predictable. DF and GAP are fields whose values

are too extremely dynamic to predict their values. The difference

between DF and GAP is that DF is a field whose length can be

predicted to some extent, but GAP is a field cannot be predicted

because its length is too variable.

A SF(v) is the single contiguous substring in messages. A

message format is the contiguous sequence of these field formats

that appear in the same message. The message formats also

includes the semantics of the fields. A flow format is a contiguous

sequence of these message formats that appear in the same flow.

Flow formats can help to understand the typical flow types of

protocols and can be used for minimization of protocol state

machines.

Figure 2 shows the overview of the proposed method for

extracting well-trimmed specification. The method largely

consists of four phases which are Message Assemble, Syntax

Inference, Semantics Inference, and the Behavior Inference. The

preprocessing phase is to collect network traces of unknown

protocol in flow units which are sets of bidirectional packets with

the same 5-tuple (source address, destination address, source port,

destination port, L4 protocol).

Figure 2. The overview of proposed method

In Message Assemble phase, flows of the unknown protocol is

loaded first, and then the system splits flows to message units.

In Syntax Inference phase, the system extracts SF(v) using 1st

step of Hierarchical CSP algorithm, and extracts all possible

values for some extracted SF(v) to find DF(v) using Recursive

CSP algorithm. Then, it extracts the message formats with SF(v)

and DF(v) using 2nd step of Hierarchical CSP algorithm. After

extracting the message formats, the system extracts additional

field formats for the blank parts of the message formats.

In Semantics Inference phase, the system find the meaning of the

field formats that make up the message formats.

In Behavior Inference phase, the system extracts protocol state

machine, and flow formats. The protocol state machine is

extracted based on observation of input traffic data by using the

extracted message format. The flow formats extracted using the

3rd step of Hierarchical CSP algorithm.

3.2 Contiguous Sequential Pattern Algorithm
For protocol reverse engineering, we develop the Contiguous

Sequential Pattern (CSP) algorithm. It is a modified sequential

pattern algorithm suitable for extracting protocol syntax. The

original version of sequential pattern algorithm targeted purchase

history data of a market to find sequential purchase patterns.

However, the protocol syntax is not just a time-series

subsequences of a message, but a contiguous subsequence of a

message. For example, to obtain value of field format, we must

extract not a sequence of discrete bytes, but byte-stream that is

contiguous. Therefore, the objective of CSP algorithm is to extract

contiguous sequential pattern for protocol syntax. This algorithm

is based on the Apriori property that any subsequence of a

frequently occurring sequence is also frequent. This method

generates candidate subsequences and checks the support value of

each candidate to determine frequently occurring subsequences. In

addition, this algorithm improves performance by integrating

modified algorithms such as AprioriAll, AprioriTID, AprioriHash,

etc.

When extracting the 3 types of formats mentioned above, the

system perform the Hierarchical CSP consisting of three steps and

the CSP algorithm applied is exactly same and only the input

transactions(sequences), length-1 item unit constituting the

sequence, and support units are different. Figure 3 shows

intuitively the process of Hierarchical CSP.

Figure 3. The process of Hierarchical CSP

The 1st step of Hierarchical CSP extracts common subbytestreams

that satisfy certain frequencies as SF(v). These are contiguous

characters, hex values or combination of them, in a set of message

sequences. The 2nd step of Hierarchical CSP extracts a

contiguous series of SF(v) which satisfy certain frequencies

appearing in the same message sequences. These are skeletons of

message formats. The extracted message formats are completed

through the "Extract Additional Field Format of Message Format"

module and the Semantics Inference phase as shown in Figure 2.

The 3rd step of Hierarchical CSP extracts a contiguous series of

message formats which satisfy certain frequencies appearing in

the same flow. These are flow formats. Figure 4 shows the pseudo

algorithm for CSP.

Input : SequenceSet, Min_Supp

Output : SubSequenceSet

01: foreach sequence S in SequenceSet do

02: foreach item i in sequence do

03: L1 ←L1 ∪ i ;

04: end

05: end

06: k ←2 ;

07: while Lk-1 ≠ ф do

08: foreach candidate c in Lk-1 do

09: supp ← calSupport(c, SequenceSet);

10: if(supp < Min_Supp) then

11: Lk-1 ← Lk-1 – c ;

12: end

13: end

14: Lk-1 ← extractCandidate(Lk-1);

15: k++;

16: end

17: SubSequenceSet ← ∪kLk ;

18: deleteSubset(SubSequenceSet);

19: return SubSequenceSet ;

Figure 4. The pseudo algorithm of CSP

3.3 Message Assemble
As described above, in Message Assemble phase, flows of the

protocol is loaded, and then each flow is split to messages.

We defined a methodology for assembling packets of each flow

into message units: for messages transported over UDP it is

assumed that each one packet is one message; for messages

transported over TCP it is assumed that each consecutive set of

packets with the same direction is one message.

3.4 Syntax Inference
The objective of Syntax Inference phase is to extract intuitive

message formats that all the fields of message format are fully

categorized into SF(v), DF(v), DF, and GAP as shown in Figure 1

and 2.

In the first module, “Extract Field Format{SF(v)}”, the system

extracts SF(v) using 1st step of Hierarchical CSP.

In the second module, “Extract Field Format{DF(v)}”, the system

selects SF(v) that is likely to be converted to DF(v) from among

the all extracted SF(v) by checking the condition. This condition

is that the support value is not 100% and the position variance is

low enough (we use 200). The system then performs Recursive

CSP for each selected SF(v).

The system performs the following procedure on all SF(v)

satisfying the condition that can be DF(v) mentioned above. First,

the system create a database that does not contain the SF(v) from

the original database. The system truncates these message

sequences which not contain the SF(v) based on the minimum

offset and maximum depth of the SF(v). Next, it perform CSP

from these message sequences. The system stores the value which

has the highest support value among the output of the CSP in the

value array of the SF(v). The above process is repeated until no

more new values are extracted. Then, this SF(v) has a set of

values, so it is converted to DF(v). Therefore, This DF(v) has all

the possible values. Figure 5 shows the process of Recursive CSP

by exemplifying the method field and status code field of the

HTTP protocol.

Figure 5. The process of Recursive CSP by exemplifying the

HTTP protocol

In the third module, “Extract Message Format”, the system

extracts message formats using 2nd step of Hierarchical CSP

under the condition that length-1 items are extracted SF(v) and

DF(v).

In the fourth module, “Extract Additional FieldFormat of

MessageFormat”, it classifies all the part between the SF(v) and

the DF(v) constituting each message format as new SF(v), DF(v),

DF or GAP. In each extracted message format, the method to

classify the part between the preceding field format and the

following field format to SF(v), DF(v), DF, or GAP is as follows.

Two thresholds are used in this module. The first is the ‘variance

of length of the part between the preceding field format and the

following field format’ and the second is the ‘maximum length of

the part’. Firstly the system only collects a set of message

sequences from the original database (original message

sequences) belonging to the message format to analyze. The

system find the dataset corresponding to the part to be classified

in the collected a set of message sequences. The system calculates

the maximum length and variance of the lengths of the found

dataset. If the variance is greater than the first threshold (we use

5000), it is classified as GAP, otherwise it is classified as not-

GAP field. The GAP field means that length and value are very

variable. Next, if the maximum length of the not-GAP field is less

than the second threshold (we use 25), it is classified as DF (v),

otherwise it is classified as DF. DF means that the value is

extremely dynamic, but the length is somewhat fixed. If the part is

classified as DF(v), the system stores all the values which are in

the part. Next, If the part has only one value, it is classified as

SF(v). Do this for all the part between the initial field formats of

the message format. Finally, do above procedure for all message

formats.

3.5 Semantics Inference
In Semantics Inference phase, the system finds fields

corresponding to 6 predefined types of semantics through

algorithms of each semantics type. We borrow FieldHunter [3]'s

methodology to find the semantics of the fields that make up the

message formats. This is because methodology of FieldHunter

extracts the most specific kind of semantics among many

semantics extraction methodologies.

The 6 predefined semantics types are MSG-Type, MSG-Len,

Host-ID, Session-ID, Trans-ID, and Accumulators. To infer this,

as in the fourth module of Syntax Inference, the system collects

only the data corresponding to a specific field format in a specific

message format in the whole message sequences, and determines

whether each of the 6 semantics types corresponds. Thus, one

field format can have multiple semantics. This process is

performed for all DF(v) in all message formats.

3.5.1 MSG-Type
The field corresponding to MSG-Type is dynamic field whose

value is neither too random nor constant, and this field has

opposite fields to match. In other words there is a causal

relationship likewise request/response. The algorithm uses

entropy metric: H(x) = −∑pilog2pi and causality metric: I(q;r) /

H(q) to find this field. I(q;r) is mutual information which

represents H(q)+H(r)-H(q,r) of information theory. q means the

value of the field, r means the value of opposite field which has

opposite direction.

3.5.2 MSG-Len
The field corresponding to MSG-Len is dynamic field whose

value means length of the message. The algorithm uses Pearson

correlation coefficient to verify that the values of the fields are in

a linear relationship.

3.5.3 Host-ID
The field corresponding to Host-ID is dynamic field whose value

is specific to source address, such as email address, user id, and

host IP address. The algorithm uses categorical metric: R(x,y) =

I(x;y)/H(x,y) to find this field.

3.5.4 Session-ID
The field corresponding to Session-ID is dynamic field whose

value is specific to session. The algorithm uses categorical metric

like the algorithm of finding Host-ID.

3.5.5 TRANS-ID
The field corresponding to TRANS-ID is dynamic field whose

value is specific to transaction which is pair of values of request

and response. The algorithm uses H(x) metric and verify that the

value of the field is same with the value of the opposite field to

find this field.

3.5.6 Accumulators
The field corresponding to Accumulator is dynamic field whose

value constantly increases over time. The algorithm verifies if

there is a constant increment to find this field.

3.6 Behavior Inference
In Behavior Inference phase, the system extracts protocol state

machine and flow formats.

3.6.1 Extract Protocol FSM
In the proposed method, a state (node) of the finite state machine

is the single extracted message format, which means a set of

messages with same type. This module extracts the transitions

between states by matching the extracted message formats which

are states to the input traffic to extract the protocol state machine.

In this process, record the number of matches for each transition

to calculate the transition probability of each state. It is very

useful for packet replay because it helps predict what message

types will occur. The extracted finite state machine can help to

confirm in what order the protocol message types operate. Each

path connected from the Start state to the End state means each

flow type.

3.6.2 Extract Flow Format
This module extracts flow formats using 3rd step of Hierarchical

CSP under the condition that length-1 items are extracted message

formats. The extracted flow formats represents the main flow

types of the protocol, hence can help to understand the

specification of the protocol. In addition, these flow formats can

be used to generalize and minimize the protocol FSM.

4. Experiment and Result
In this section we evaluate the efficacy of our approach in

inferring protocol specification of known protocol. We implement

our approach in a prototype system in C++ code on Linux. The

system takes a network capture file either in the libpcap or

Netmon format as input. The system extracted 4 xml files which

describes information of field format, message format, flow

formats, and finite state machine and 1 png file which shows finite

state machine.

Data was 4 traffic traces of HTTP protocol which collected from 4

different host. Table 2 shows quantitative information of data and

summary of experimental result.

Table 1. Summary of experimental results

Traffic Info.

Flow : 359, packet : 3841, byte : 4.67MB

Message Assemble result

- messages : 1189(req. : 598, res : 591)

Format info.

Field Format : 49(req. : 26, res. : 23)

Message Format : 31(req. : 17, res. : 14)

- Coverage : 99.92%(1188/1189)

- Correctness : 98.44%(127/129)

Flow Format : 3

FSM info. State : 15, transition : 54

Time 11.65s

The precondition for correct semantics and finite state machine is

that the protocol syntax is correct. Therefore, the main

performance evaluation of protocol reverse engineering is whether

the protocol syntax represents the correct message format. To

evaluate the message formats, we use two metrics which are

correctness and coverage. Correctness means how many of the

true formats can be analyzed by the extracted message formats. It

is calculated as the number of true message format which are

matched with the extracted message formats / the number of

whole true message format. Coverage means how many of

messages can be analyzed by the extracted message formats. It is

calculated as the number of messages which are matched with

extracted message formats / the number of whole messages.

Figure 6 shows summary of structure of the extracted message

formats. The system compressed 1189 messages into 31 message

formats, and each message format was appropriately subdivided

into field formats without any empty part.

Figure 5. The Summary of Structure of the Message Formats

Figure 7 shows Message Format ID 30 as a sample, one of the

message formats in Figure 6. This sample represents the HTTP

request message format which is subdivided into 14 fields. The

fields are in the order of Method [DF(v)] - URL [DF] - Version

and Host [SF(v)] - value of Host field [DF(v)] - ... - GAP. It

reflects the mandatory components: Method field, URL field,

Version field and some optional HeaderName field of the HTTP

request message format in a non-GAP format. It provides

information about minimum offset, maximum depth, minimum

length, maximum length, average length, and semantics of all

field formats which make up the message formats. This

information indicates whether the field format has a fixed position,

fixed length, static value, and etc.

Figure 6. Sample of One of Extracted Message Format

5. Conclusion and Future work
In this paper, we propose a reverse engineering method for well-

trimmed protocol specification. We have defined three types of

formats which are field format, message format, and flow format

to acquire a clear protocol specification and proposed a

hierarchical CSP and a recursive CSP to extract such formats. The

novelty of this method is that it extracts sufficiently fine-grained

message formats and extracts a sufficiently compressed message

types for input messages so that we can know the intuitive

structure of the unknown protocol. As the future work, we plan to

improve the method to be able to extract specification of protocol

of all layer of OSI 7 layers.

6. ACKNOWLEDGMENTS
This work was supported by Institute for Information &

communications Technology Promotion(IITP) grant funded by the

Korea Government(MSIT) (No.2018-0-00539-001) and by

Institute for Information & communications Technology

Promotion(IITP) grant funded by the Korea government(MSIT)

(No. 2017-0-00513)

7. REFERENCES
[1] Nikita Borisov, David J. Brumley, Helen J. Wang, and

Chuanxiong Guo. 2007. Generic application-level protocol

analyzer and its language. In Network and Distributed

System Security Symposium.

[2] John Narayan, Sandeep K. Shukla, T. Charles Clancy, A

Survey of Automatic Protocol Reverse Engineering Tools,

Journal ACM Computing Survey, Vol. 48, Issue. 3, No. 40,

2016.

[3] I. Bernudez, A. Tongaonkar, M. Iliofotou, M. Mellia, M.

Munafo. Automatic Protocol Field Inference for Deeper

Protocol Understanding, IFIP Networking Conference, 2015.

