
Received: 21 December 2015 Revised: 7 August 2017 Accepted: 27 August 2017
RE S EARCH ART I C L E

DOI: 10.1002/nem.2011
Effective behavior signature extraction method using
sequence pattern algorithm for traffic identification
Kyu‐Seok Shim | Sung‐Ho Yoon | Baraka D. Sija | Jun‐Sang Park | Kyunghee Cho |

Myung‐Sup Kim
Department of Computer and Information
Science, Korea University, Sejong, Korea

Correspondence
Kyunghee Cho and Myung‐Sup Kim,
Department of Computer and Information
Science, Korea University, Sejong, Korea.
Email: misskorea69@korea.ac.kr;
tmskim@korea.ac.kr

Funding information
Institute for Information and Communi-
cations Technology Promotion (IITP),
Grant/Award Number: 2017‐0‐00513
Int J Network Mgmt. 2017;e2011.
https://doi.org/10.1002/nem.2011
Summary

With the rapid development of the internet and a vigorous emergence of new

applications, traffic identification has become a key issue. Although various

methods have been proposed, there are still several limitations to achieving

fine‐grained and application‐level identification. Therefore, we previously pro-

posed a behavior signature model for extracting a unique traffic pattern of an

application. Although this signature model achieves a good identification per-

formance, it has trouble with the signature extraction, particularly from a huge

amount of input traffic, because a Candidate‐Selection method is used for

extracting the signature. To improve this inefficiency in the extraction process,

in this paper, we propose a novel behavior signature extraction method using a

sequence pattern algorithm. The proposed method can extract a signature

regardless of the volume of input traffic because it excludes certain unsatisfac-

tory candidates using a predefined support value during the early stage of the

process. We proved experimentally the feasibility of the proposed extraction

method for 7 popular applications.
1 | INTRODUCTION

Network management aims at reinforcing well‐balanced use of network resources and security. To accomplish these
goals, a network operator should set up a proper network policy. To create an efficient network policy, traffic identifica-
tion should be preemptively achieved because a policy that blocks or adjusts the target traffic is conducted on the basis of
the identification results.1,2 Traffic identification can be defined as the act of ascertaining which application is contrib-
uting to a given network traffic data using distinguishable and unique characteristics and then naming the network traf-
fic data according to the corresponding application or service.

In previous work,3 a new signature model called a behavior signature was proposed. Most internet applications gen-
erate multiple traffic flows when a user conducts a specific function such as a log‐in, chat, or file transfer. Thus, a behav-
ior signature model was devised on the basis of the idea that the unique patterns of several flows can represent a specific
function of a given application. The previous work focused solely on a new signature model and therefore used a very
primitive extraction method called the Candidate‐Selection method, which is used to select candidates exceeding
predefined threshold after extracting all possible candidates. This extraction method results in greater computational
overhead as the volume of input traffic increases.

For an effective behavior signature extraction method, we propose a novel method using a sequence pattern algo-
rithm.4,5 The purpose of a sequence pattern algorithm is to find statistically relevant sequence patterns from a huge
time‐series dataset. This is similar to our behavior signature extraction process for finding unique sequence patterns from
Copyright © 2017 John Wiley & Sons, Ltd.wileyonlinelibrary.com/journal/nem 1 of 15

http://orcid.org/0000-0002-0266-4973
http://orcid.org/0000-0002-3809-2057
mailto:tmskim@korea.ac.kr
https://doi.org/10.1002/nem.2011
https://doi.org/10.1002/nem.2011
http://wileyonlinelibrary.com/journal/nem

2 of 15 SHIM ET AL.
several flows representing the specific function of a given application. In this paper, we attempt to improve the sequence
pattern algorithm to suit our purposes.

The remainder of this paper is organized as follows. We survey several existing traffic identification methods and a
sequence pattern algorithm in Section 2. In Section 3, we describe the concept of a behavior signature in detail. In
Section 4, we propose an extraction algorithm for a behavior signature using a sequence pattern algorithm. In Section 5,
we propose an identification algorithm using a modified version of the Aho‐Corasick algorithm. In Section 6, we discuss
the experimental results proving the feasibility of the proposed method. Finally, we conclude and provide some future
work in Section 7.
2 | RELATED WORK

In this section, we first categorize identification methods on the basis of the traffic unit used for feature extraction and
traffic identification and describe the pros and cons of each method. In addition, we provide the definition, history, and
use of a sequence pattern algorithm.
2.1 | Existing traffic identification methods

The most primitive method for identifying traffic is packet‐level identification. A packet is the minimum unit of network
traffic, and thus, packet‐level identification is conducted by checking the existence of a rule defined as an invariant
pattern of the target application for each packet traveling across the network. Typical examples of this method include
port‐ and payload‐based methods.

A port‐based method checks the port number of each packet and identifies the application according to the Internet
Assigned Numbers Authority (IANA) list of well‐known and registered ports.6,7 In the early days of the internet, this
method performed well; currently, however, its accuracy has become less reliable because of violations to port assign-
ments. A payload‐based method conducts a deep packet inspection to find the substring representing the target applica-
tion from each packet.8-11 The results are robust in terms of completeness and accuracy, and this type of method is
therefore widely used by the industry. However, various limitations, including payload encryption, datasets without a
payload for dealing with privacy issues, computational overhead, and a lack of publicly available documentations for
a proprietary protocol, restrict its use.

A flow is a set of packets that contain the same 5‐tuple packet header information, such as the source and destination
IP address, source and destination port number, and transport layer protocol, which contains all of the forward and
backward packets in a session established between 2 hosts. Flow‐level identification uses statistical flow information,
such as the number of packets and bytes in the flow, as well as the flow bitrate, flow size, flow duration, and interarrival
time between packets. Flow‐based methods can be categorized into 2 types: learning‐ and distribution‐based methods.

A learning‐based method uses an existing machine learning technique that can again be divided into supervised12,13

and unsupervised14,15 learning. In supervised learning, a statistical model based on a machine learning algorithm is
constructed using the ground‐truth traffic (training data) labeled on the basis of the nature of the traffic, and the target
traffic (test data) is classified. This method guarantees highly accurate results in trained applications. However, the
results of this method depend on the quality of the ground‐truth traffic, and unknown applications excluded from the
training data cannot be classified. Unsupervised learning classifies traffic through clustering techniques using similar
statistical information from traffic generated by the same application protocol, does not require a training phase, and
can classify unknown applications. However, the results of this method are affected by tunable parameters, and an
additional process is required to label the application name of each cluster.
2.2 | Sequence pattern algorithm

A sequence pattern algorithm was first introduced in Agrawal and Srikant.5 In this algorithm, which is a type of data
mining technique, time‐series patterns are detected from a database having sequences of values or events. This technique
looks very similar to association rule mining16 because both are similar processes for discovering frequent patterns in
large datasets; however, association rule mining aims to extract concurrent patterns from the same transaction, and a
sequence pattern algorithm aims to extract patterns with a certain order from different transactions.17

SHIM ET AL. 3 of 15
The support value is very important for this algorithm. Support value is the frequency rate of a target event which
compare with minimum support value to determine the event is meaningful or not. A minimum support predefined
by the conductor is used because the number of possible subsequences is very large and conductors have different
interests and purposes. Thus, we have to prune out uninteresting patterns using the minimum support during early
stage. We determined that the signature is most meaningful if it can commonly occur in all cases and analyze the target
application only. Therefore, we extracted the signatures with support value set to 1. If minimum support is set to less
than 1, recall can be increased with more signatures generated, while the precision can be decreased, a part that we leave
as one of our future work. In this paper, the algorithm is performed after setting the minimum support value as 1. The
object of this paper generates highly accurate behavior signatures that can classify a target application traffic.

Several methods have been proposed during recent years. In this section, we describe some typical examples of such
methods. AprioriAll is based on the Apriori property, which means that any subsequence of a frequently occurring
sequence is frequent.5 This method generates candidate sequences and checks the support of each candidate to deter-
mine frequently occurring sequences. PrefixSpan examines the prefix subsequences and projects their corresponding
postfix subsequences into projected databases.18 The philosophy of a sequence pattern algorithm is detecting time‐series
patterns from a huge dataset. This is parallel to purpose of behavior signature in terms of finding unique sequence pat-
terns that can represent the specific function of a given application. We therefore improved a sequence pattern algorithm
to fit the signature extraction.
3 | BEHAVIOR SIGNATURE

Advanced multitasking technology, ie, the sharing of common processing resources, has become possible on various
applications through the rapid growth of the internet and other computer technologies. Using multiple applications,
internet users may intentionally or unintentionally generate various types of concurrent application traffic
simultaneously.

Because several applications generate traffic simultaneously, traffic identification by means of a flow or packet unit
causes a significant amount of overhead in the identification system and cannot guarantee a high accuracy of the iden-
tification result. Most applications generate multiple flows when conducting a particular function, and these flows have
clear patterns, such as their sequence and interval, from the perspective of the application behaviors. Also, most modern
applications generate the multiple flows.19 We can therefore identify these concurrent flows as the application level at
once using their significant patterns. The proposed behavior signature–based identification method extracts a signature
combining traffic features and a unique pattern from the target application and identifies their concurrent traffic (flow)
simultaneously.

Figure 1 shows the various traffic units for traffic identification, ie, the packet, flow, and interflow units. The packet
unit uses the packet header information (IP address, port number, and layer‐4 protocol) and payload in a single packet.
Using the identification results, the packet unit is a suitable means for real‐time control owing to its ability to control
unwanted traffic immediately after a packet inspection. However, it is difficult to extract a signature because the range
of extraction is relatively small. The flow unit, on the other hand, uses not only the packet attributes but also additional
information, such as the interarrival time, packet size distribution, and total byte size. The flow unit is suitable for
extracting signatures because of its relatively large range of extraction. Moreover, it can be applied to encrypted traffic
FIGURE 1 Various traffic units for traffic identification

4 of 15 SHIM ET AL.
using only statistical features. However, limitations such as a low accuracy and real‐time control are incurred. The flow
unit can be used to identify traffic after a flow has ended.

The behavior signature is applied using an interflow unit, as shown in Figure 1, and seeks to minimize the limitations
of both the packet and flow units and maximize their advantages. An interflow is a set of first request packets of several
flows. Therefore, it uses not only packet unit attributes but also unique patterns such as the sequence and interval infor-
mation. It is easy to create a signature because the range of extraction is large owing to the use of plural flows. In other
words, a signature is extracted using various traffic features. In addition, an interflow has the ability to control traffic in
real time because the traffic is identified by the signature in the first request packet located at the beginning of the flow.
A behavior signature consists of several entries with the aforementioned traffic attributes. The following equations can
be used to define a behavior signature.

BS ¼ A; I;E1;E2;…;En∣
n≥1; Src E1ð Þ ¼ Src E2ð Þ ¼ … ¼ Src Enð Þ

� �
(1)

E ¼ 2F jF ¼ ip; port; prot; payload; offsetf g;E≠∅� �
(2)

A behavior signature (BS) consists of the application name (A), interval (I), and entries (En), where n ≥ 1. The entry
(E) is a power set of the destination IP address (ip), destination port (port), layer‐4 protocol (prot), and N‐byte payload
with an offset (payload), where a null set is excluded. In other words, we selectively use the features of entry in the traffic
identification if the selected feature is meaningful. Figure 2 shows an example of a behavior signature. For example, we
extract representative signatures from a Youtube user with clear information, such as log‐in and video functions. We can
prove that several features in the first request packet create a significant pattern representing certain function of a
service.
4 | EXTRACTION ALGORITHM

In this section, we describe an extraction algorithm used for a behavior signature using a sequence pattern algorithm. As
previously stated, we improved our method using the AprioriAll algorithm.5 We apply AproriAll algorithm for quick
search and accurate extraction of behavior signatures. The AprioriAll algorithm is a technique to extract frequent sub-
sequences in a large number of sequences. Table 1 shows list of transaction set generated by 3 hosts. The ultimate pur-
pose of this algorithm is extracting a sequence pattern satisfying certain support value from several hosts accessing a
single application.

Table 2 shows an example of a behavior signature from Table 1 with minimum support of 60% (minimum of 2 hosts).
The example consists of a certain interval and 3 entries. Thus, this signature identifies traffic matching with these 3
entries within a given interval of 13 000 milliseconds. To extract behavior signature, we devise 3 modules. The following
subsections describe these submodules.
4.1 | Sequence extraction module

The sequence extraction module extracts sequence set from the input transaction set consisting of 2 more transactions.
Equations 3 and 4 show definition of the transaction. Each transaction means set of flows generated from a single host.
The flow consists of source IP address, source port, layer‐4 protocol, destination IP address, destination port, payload
data, start time, forward data packet set, and backward data packet set as shown in Equation 5. As output of this module,
Equations 6 and 7 show definition of the sequence set and the sequence, respectively. Each sequence consists of a
sequence id and set of items. The sequence id means a transaction id. Thus, one sequence is extracted from one trans-
action. The definition of item is similar to definition of an entry as described in Section 3. The item is converted to entry
in the sequence module.

T ¼ T1;T2;…;Ttjt≥2f g (3)

Ti ¼ id; F1; F2;…;Fxf gf g (4)

TABLE 1 Transaction set

ID StartTime srcIP srcPort L4Prot dstIP dstPort payload

1 12:30′ 11″ xxx.xxx.xxx.1 51912 6 173.194.126.130 80 pear

2 12:30′ 13″ xxx.xxx.xxx.2 35691 6 173.194.126.131 80 peach
12:30′ 18″ xxx.xxx.xxx.2 35692 6 74.125.23.120 80 kiwi
12:30′ 21″ xxx.xxx.xxx.2 35694 17 173.194.38.76 80 kiwi
12:30′ 26″ xxx.xxx.xxx.2 35693 6 173.194.72.95 80 lemon

3 12:30′ 12″ xxx.xxx.xxx.3 21511 6 173.194.126.133 80 pea
12:30′ 17″ xxx.xxx.xxx.3 21513 6 74.125.23.120 80 kiwiju
12:30′ 22″ xxx.xxx.xxx.3 21519 6 173.194.72.95 80 leek
12:30′ 25″ xxx.xxx.xxx.3 21520 6 173.194.126.137 80 peach

TABLE 2 Example of behavior signature

Behavior Signature (Support > 60%)

13000; 173:194:126:0=24; 80; 6; ˆpea:�; 0f g;
74:125:23:120=32; 80; 6; ˆkiwi:�; 0f g;
173:194:72:95=32; 80; 6; ˆle:�; 0f g

* +

FIGURE 2 Example of header signature of Youtube

SHIM ET AL. 5 of 15

6 of 15 SHIM ET AL.
Fi ¼

srcIP; srcPort;L4Prot; dstIP; dstPort; paylaod;

startTime;

forward ¼ P1;P2;…;PxjP1:5tupe… ¼ Px:5tupe
� �

;

backward ¼ P1;P2;…;PyjP1:5tupe… ¼ Py:5tupe
� �

∣startTime ¼ forward:p1:startTime;

srcIP ¼ forward:srcIP ¼ backward:dstIP;

srcPort ¼ forward:srcPort ¼ backward:dstPort;

L4Prot ¼ forward:L4Prot ¼ backward:L4Prot;

dstIP ¼ forward:dstIP ¼ backward:srctIP;

dstPort ¼ forward:dstPort ¼ backward:srcPort

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

(5)

S ¼ S1; S2;…; Stf g (6)

Si ¼ id; I1; I2;…; Ixh if g (7)

Ii ¼ startTime; 2C

∣C ¼ ip; port; prot; payloadf g; 2C≠∅

()
(8)

Algorithm 1 Sequence extraction algorithm

Input :T={T1,T2,…,Tt}
Output∶ S={S1,S2,…,St}
Function extract(F)
1: for i=1 to t do
2: Si. id=Ti. id
3: foreach flow fj in Ti do
4: Si. Ij. startTime= fj. startTime
5: Si. Ij. ip= first 24 bits of fj. dstIP
6: Si. Ij. port= fj. dstPort
7: Si. Ij. prot= fj. L4Prot
8: N= getMaxLength(fj. payload)
9: Si. Ij. payload= first N bytes of fj. payload
10: return S

Algorithm 1 shows the sequence extraction algorithm. In the case of dstIP, we consider the first 24 bits (C class) to
extract the same values in same server farm (line:5). In the case of payload, we consider the first N bytes (line:8~9). Here,
N is determined by using string tree as shown in Figure 3. The string tree is created using all flow payloads. A single node
means a 1‐byte character of payload, and each node has a support value. The support means the ratio of hosts having a
character string from root node to target node. For example, node “c” at a depth of 4 has 0.67 (2/3) as a support because 2
hosts have the character string “peac” (ID 2 and 3). Excluding a variable length string such as a user ID and time value,
we can extract F.payload using the maximum substring within nondecreasing support. Thus, 3 payloads of Table 1 such
as “pear,” “pea,” and “peach” are extracted as “pea.” Table 3 shows the actual sequence output for Figure 3. The
sequence includes not only payload but also time, IP, port, and protocol information. The system extracts the pattern
using the following information.
4.2 | Sequence pattern extraction module

The sequence pattern extraction module extracts sequence pattern set with a certain support from the input sequences.
This pattern is considered a candidate behavior signature. To calculate support, we use the Equation 9. The support used

FIGURE 3 Example of string tree

TABLE 3 Result of sequence extraction module

Si Si. Iid Si. Ij. startTime Si. Ij. ip Si. Ij. port Si. Ij. prot Si. Ij. payload

S1 1 12:30′ 11″ 173.194.126.0 80 6 pea

S2 1 12:30′ 13″ 173.194.126.0 80 6 pea
2 12:30′ 18″ 74.125.23.0 80 6 kiwi
3 12:30′ 21″ 173.194.38.0 80 17 kiwi
4 12:30′ 26″ 173.194.72.0 80 6 le

S3 1 12:30′ 12″ 173.194.126.0 80 6 pea
2 12:30′ 17″ 74.125.23.0 80 6 kiwi
3 12:30′ 22″ 173.194.72.0 80 6 le
4 12:30′ 25″ 173.194.126.0 80 6 pea

SHIM ET AL. 7 of 15
in this module is the ratio of supporting sequences to total sequences.

Support ¼ Number of support transactions sequencesð Þ
Total number of transactions sequencesð Þ (9)

Algorithm 2 shows the sequence pattern extraction algorithm. This algorithm extracts sequence patterns form the
sequence set. First, this algorithm extracts length 1 candidate pattern C1 (line:1~3). Exploring all candidate patterns
Ck− 1, we measure the support and move it to Lk− 1 if the pattern has support values exceeding the minimum support
(α) (line:6~11). Next, we create length K candidate pattern Ck using Lk− 1 in the candidate pattern extraction algorithm

8 of 15 SHIM ET AL.
(line:12). This iteration is repeated until no more candidates are created (line:5~13). Finally, all extracted patterns in Lk
become candidate behavior signatures (line:14).
Algorithm 2 Sequence pattern extraction algorithm

Input :S= {S1,S2,…,St},minsupp=α
Output∶ BStemp = {BS1, BS2, …, BSb}
Function sequence(S,α)
1: for i=1 to t do
2: foreach item I in Si do
3: C1=C1∪ I
4: k=1
5: while Ck≠ ∅do
6: Lk≠∅
7: foreach candidate c in the candidate set Ck do
8: count=0
9: for i=0 to t do
10: if(Si include c) then count= count+1
11: if((count/t)≥α) then Lk=Lk∪ c
12: Ck+ 1=new candidates generated from Lk using candidate_gen()
13: k= k+1
14: BStemp=∪kLk
15: return BStemp

Algorithm 3 shows the candidate pattern extraction algorithm. This algorithm inputs length k − 1 sequence pat-
terns Lk− 1 and outputs length K candidate patterns Ck. The length K candidate pattern is created using length
K − 1 patterns p and q, if the subpattern of p excluding the first entry and the subpattern of q excluding the last entry
are the same (line:7).

Table 4 shows the results of the sequence pattern extraction module. As an intuitive explanation of this, we transform
the items of the sequence into symbols. After extracting length 1 pattern C1, we measure the support of each pattern
using Equation 9. We move C1 to L1 only when exceeding minimum support α (which is set at 60%). The support value
is very important in extracting signatures in this system. The minimum support value is used as a baseline threshold to
extract signatures from candidates. The minimum support value with 60% means that candidates with over 60% support
will be extracted as signatures. Candidates with 100% support value indicate that they appear in all the sequences. The
lower the minimum support is, the more candidates are extracted as signatures, which result in increased coverage but
decreased accuracy. On the other hand, the higher the minimum support is, the less candidates are extracted as the sig-
natures. In that case, the accuracy can increase, but the coverage will decrease. We then make length 2 patterns C2 using
L1. This iteration is repeated until no more candidates are created. Finally, we consider all candidate patterns exceeding
minimum support α as candidate behavior signatures.
Algorithm 3 Candidate pattern extraction algorithm

Input ∶ Lk − 1

Output ∶ Ck

candidate_gen(Lk − 1)
1: foreach sequence p in Lk− 1 do
2: foreach sequence q in Lk− 1 do
3: if(p. E2=q. E1) then
4: if(p. E3=q. E2) then…
5: if(p. Ek− 1=q. Ek− 2) then
6: Ck=Ck∪ ⟨p. E1,p. E2,…,p. Ek− 1,q. Ek− 1⟩
7: return Ck

TABLE 4 Result of sequence pattern extraction module

Si Si Transformed as Symbol

{1, {12 : 30′11″, {173.194.126.0, 80, 60, pea}}} A

2;

12:30′13″ 173:194:126:0; 80; 6; peaf g� �
;

12:30′18″ 74:125:23:0; 80; 6; kiwif g� �
;

12:30′21″ 173:194:38:0; 80; 17; kiwif g� �
;

12:30′26″ 173:194:72:0; 80; 6; lef g� �

8>>>><
>>>>:

9>>>>=
>>>>;

ABCD

3;

12:30′12″ 173:194:126:0; 80; 6; peaf g� �
;

12:30′17″ 74:125:23:0; 80; 6; kiwif g� �
;

12:30′22″ 173:194:72:0; 80; 6; lef g� �
;

12:30′25″ 173:194:126:0; 80; 6; peaf g� �

8>>>><
>>>>:

9>>>>=
>>>>;

ABDA

C1

1‐Sequences Support, count/s

⟨A⟩ 1.00

⟨B⟩ 0.67

⟨C⟩ 0.34

⟨D⟩ 0.67

MinSupp = 60%

C2

2‐Sequences Support, count/s

AAh i 0.00

⟨AB⟩ 0.67

⟨AD⟩ 0.67

BAh i 0.34

BBh i 0.00

⟨BD⟩ 0.67

DAh i 0.34

DBh i 0.00

DDh i 0.00

MinSupp = 60%

C3

3‐Sequences Support, count/s

⟨ABD⟩ 0.67

MinSupp = 60%

SHIM ET AL. 9 of 15
4.3 | Optimization pattern module

The optimization pattern module eliminates the redundancy of the input behavior signatures and maximizes the interval
(I), destination IP address (dstIP), and payload (payload) of the behavior signature through a comparison with the
original input traffic. This checks their inclusion relation among extracted behavior signatures and deletes unnecessary
signatures. It also optimizes the extracted behavior signature and extracts effective behavior signature that reduces false‐
positive rate with high coverage.

Algorithm 4 shows the optimization pattern algorithm. This algorithm takes traffic in the form of a flow and the
behavior signatures and creates optimized signatures. First, exploring all behavior signatures, it eliminates subsignatures
that are included in other signatures (line:1~4). Exploring all signatures, it then assigns intervals based on the capture
time of the input traffic (line:7). If the amount of identified traffic of the candidate signature and the amount of identified

10 of 15 SHIM ET AL.
traffic of the optimized signature are the same, we convert the signature to optimized signature (line:8~12). Optimizing
the interval here refers to measuring the intervals among flow sets, where each set is identified by the same BS and
selects the maximum value as the interval of behavior signature. In case of the dstIP, we maximize to 32 bits of length
of dstIP if the amount of identified traffic using it and those of 24 bits of dstIP is the same. In case of the payload, we
increase N (payload length) unless the amount decreases.

Algorithm 4 Optimization pattern algorithm

Input :F={F1,F2,…,Ff},BStemp={BS1,BS2,…,BSb}
Output ∶ BS = {BS1, BS2, …, BSc }, (c ≤ b)
optimize(F, BStemp)
1: for i = 0 to b do
2: for j=0 to b do
3: if(BSi include BSj) then
4: BS=BS−BSj
5: c= size(BS)
6: for i=0 to c do
7: BSi. I= find BSi. Imax using F
8: BSi.optimize=BSi
9: BSi.optimize. dstIP= exchange_32(BSi. dstIP)
10: BSi.optimize. N(payload length)= increase(BSi. N(payload length))
11: if(F(BSi)= =F(BSi.optimize)) then
12: BSi=BSi.optimize

13: return BS
5 | IDENTIFICATION ALGORITHM

In this section, we describe the identification method using a behavior signature. Figure 4 shows the network environ-
ment when adopting a behavior signature to identify the traffic. We capture the traffic using a network tap or switch
located in the middle of an internet link to enable all internet traffic to be captured between the internet and the target
network. The captured traffic in the form of a packet input into the flow generator (FG) in real time. The FG creates a
flow using input packets having same 5‐tuple (source IP address, source port, layer‐4 protocol, destination IP address,
and destination port). The identifier based on an identification algorithm takes 2 types of traffic from the FG. A first
request packet (FRP) is transmitted because the behavior signature only uses it to identify traffic. The FRP indicates
FIGURE 4 Traffic identification network environment using behavior signature

SHIM ET AL. 11 of 15
the first request packet with a payload in the flow. When the FG process completes, the FG transmits the flows to the
identifier to measure the completeness (volume) of the identified traffic.

The behavior signature identifies the FRP in a real‐time network environment, as shown in Figure 4. Thus, each time
the FRP of a flow is entered into an identifier, the identifier carries out the identification algorithm. For this reason, we
improved on the Aho‐Corasick algorithm20 to adopt traffic identification. The purpose of this algorithm is detecting
predefined words in a string. Similarly, the proposed algorithm detects an FRP pattern using a behavior signature.
The difference between the 2 algorithms is that Aho‐Corasick detects only continuative characters, whereas our algo-
rithm can detect noncontinuous patterns on several hosts.

Algorithm 5 Traffic identification algorithm

Input :F={F1,F2,…,Ff},BS={BS1,BS2,…,BSb}
Output ∶ F' = {F1, F2, … , Ff }
identifyTraffic(F, BS)
1: Ttransition,Toutput,Ttimeout← constructTable(BS)
2: while true do
3: FRP←wait(getFirstRequestPacket())
4: Tstatus← insertStatus(FPR,Tstatus,Ttransition)
5: Tstatus←updateStatus(FRP,Tstatus,Ttransition)
6: F′← outputStatus(FRP,Tstatus,Toutput)
7: return F′

The traffic identification algorithm consists of 1 preparation phase and 4 identification phases as shown in Algorithm
5. When the algorithm starts, constructTable module creates a Transition Table, Output Table, and Timeout Table using
behavior signature, as the preparation phase (line:1). The created tables are used for maintaining the Status Table during
the identification phase. The identification phase consists of 3 detailed modules, where each every FRP is entered, and
these 3 modules are conducted repetitively (line:2~6). When an FRP is entered (line:3), referring to Transition Table,
insertStatus module inserts the Status Record to Status Table (line:4), and updateStatus module updates Status Record
of Status Table (line:5). Finally, outputStatus module determines a list of identified traffic if a certain Status Record of
Status Table reaches the output_state by referring to Output Table (line:6). Thus, the input FRP history of Status Record
used to transfer their state is identified as traffic by the signature.
6 | EXPERIMENT AND RESULTS

This section details the experimental results and feasibility of the proposed method on the basis of 7 popular applications.
We selected the 7 applications shown in Table 5. To collect pure traffic (ground‐truth) of the target application, we
deploy a Traffic Measurement Agent on the selected hosts generating the target application traffic.21 This agent contin-
uously monitors the network interface information and transfers the log‐data to the designated server. The log‐data
TABLE 5 List of selected applications

Application Type Name

For Extraction For Identification

Flow Bytes Flow Bytes

P2P (file sharing) uTorrent 14 430 19 398 M 5819 366 048 K

Web storage DropBox 1110 186 989 K 38 62 357 K

Social network service FaceBook 10 860 1914 M 130 45 221 K

Messenger Line 1980 104 393 K 36 4329 K
Skype 26 850 143 599 K 43 5845 K

Video streaming TVPot 21 690 9190 M 480 258 242 K

Video sharing Youtube 17 010 18 178 M 216 137 508 K

12 of 15 SHIM ET AL.
includes not only socket data but also process information responsible for the opening and closing of the socket. Thus,
we can obtain the absolute ground‐truth traffic of the target application.
6.1 | Signature extraction

To maximize the accuracy of a signature, we set the minimum support (α) as 100%. This means that common patterns
observed in all hosts are extracted as a signature. On the other hand, we actually plan to study a method that can keep
precision while decreasing the support value. We extract length‐1 behavior signatures containing only one entry.
Although these signatures cannot be applied to the identification of a specific application function, they are sufficient
for identifying the target application because they are commonly observed in the traffic of all hosts using the target appli-
cation. Table 6 shows some examples of a behavior signature using the proposed method.
6.2 | Performance of extraction algorithm

We measured the accuracy (precision and recall) of the proposed signature method using a mixture of traffic from the 7
applications considered. The following equations are used to measure the precision and recall.

Precision ¼ TP
TP þ FPð Þ (10)

Recall ¼ TP
TP þ FNð Þ (11)

The precision is the ratio of accurately identified traffic to the total amount of identified traffic, and the recall is the
ratio of accurately identified traffic to the amount of application traffic.

Table 7 shows the accuracy (precision and recall) of a behavior signature for the 7 applications. All signatures identify
the traffic precisely, ie, with a precision of 1.00, for all applications, which is achieved because the signatures are
extracted from several different hosts. This test result proves that the behavior signature is very accurate. However,
the test results in terms of recall vary according to the type of application. For example, Skype has a low recall rate
because this application is operated using peer‐to‐peer (P2P) networking technology and most of its traffic is encrypted.
The traffic features of Skype used by the proposed method are the header information and payload data for entry extrac-
tion. Therefore, in our method, some applications using both peer‐to‐peer networking and encryption may remain in a
blind area. However, if various features such as the statistical characteristics are used in extracting an entry, the recall
performance will increase. We have left this issue for future work.

Figure 5 compares the test results between the Candidate‐Selection (CS) and Sequence Pattern (SP) in terms of mem-
ory use and execution time. The CS method proposed in a previous work determines a signature after listing all possible
TABLE 6 Example of behavior signature

Application Examples

uTorrent <0,{any,any,17,""d1:ad2:id20:\"",0}>
<21406,{any,any,6,"GET /utorrent‐onbording" ,0}, {any,any,6,"POST /e?",0}, {any,any,6,"GET /images/" ,0}>

DropBox <3825,{108.160.0.0/16,80,6, "GET /subscribe?host_int=",0},{108.160.0.0/16,443,6, "0x41 0x01 0x00 0x00 0x3D 0x03 0x01
0x54",4}>

FaceBook <7896,{23.65.188.0/24,443,6,"0xE0 0x01 0x00 0x00 0xDC 0x03 0x03",4}, {31.13.0.0/16,443,6,"0xDA 0x01 0x00 0x00 0xD6 0x03
0x03",4}>

Line <6555,{23.76.153.88/32,80,6, "GET /client/win",0}, {119.235.235.84/32,443,6, "0xE8 0x01 0x00 0x00 0xE4 0x03 0x03",4},
{125.209.222.0/24,443,6, "0xE8 0x01 0x00 0x00 0xE4 0x03 0x03",4}>

Skype <4542,{any,any,6, "0x82 0x01 0x00 0x00 0x7E 0x03 0x01 0x54 0x48",4}, { any,any,6, "0x7A 0x01 0x00 0x00 0x76 0x03 0x01 0x54
0x48",4}, { any,any,6, " 0x77 0x01 0x00 0x00 0x73 0x03 0x01 0x54 0x48",4}>

TVPot <5445,{any,any,6, "GET /api/open/live",0},{any,any,6, "SET PRIVATE TRUE",0},{any,any,6, "GET /v",0}>

Youtube <2472,{173.194.127.0/24,80,6, "GET /generate_204",0},{173.194.127.0/24,80,6, "GET /pagead/",0}>

TABLE 7 Accuracy of behavior signature

Name

Precision Recall

Flow Bytes Flow Bytes

uTorrent 100% 100% 90.29% 75.77%

DropBox 100% 100% 100% 100%

FaceBook 100% 100% 78.46% 93.71%

Line 100% 100% 100% 100%

Skype 100% 100% 53.49% 6.32%

TVPot 100% 100% 97.08% 99.95%

Youtube 100% 100% 68.52% 93.16%

FIGURE 5 Comparison of memory use

and execution time between Candidate‐

Selection (CS) and Sequence Pattern (SP)

SHIM ET AL. 13 of 15
candidate signatures over a certain threshold. In contrast, the SP method proposed in this paper uses a sequence pattern
algorithm for extracting a signature. For a precise performance measurement of these 2 methods, we tested them under
various conditions while increasing the number of hosts generating the test traffic. Traffic volume increases as the num-
ber of hosts increases.

In terms of memory use, the proposed method is about 6 to 3563 times faster and 2 to 11 times lighter than the pre-
vious method. The CS method shows a large amount of memory use and a longer execution time because it should list all
possible combinations from all extracted entries. If the number of entries from the test traffic is n, the number of com-
binations is 2n. However, the proposed SP method only uses length L candidate signatures over a certain support value to
generate length L + 1 candidate. Again, any candidates under the support value are eliminated in the early stage,
increasing the efficiency of the proposed method over the previous method.
7 | CONCLUSION AND FUTURE WORK

In this paper, we proposed an effective behavior signature extraction method using sequence pattern algorithms to over-
come the limitations of previous works. We used 7 popular applications to prove the feasibility of the proposed signature
method. Although some applications show a slightly low recall, the precision is 100% for all applications, which means
that all extracted signatures correctly identified the corresponding traffic. A comparison test against a previous method,
Candidate‐Selection, shows that the proposed method is faster and lighter.

As future research, we plan to improve the extraction algorithm by applying it to various networks and applications.
Moreover, we plan to develop an identification system on the basis of the proposed signature for operation in a real net-
work. Although the use of an interflow unit has many advantages, it also has certain disadvantages. As an example, an
interflow unit operates under the assumption that plural flows occur when a single function is conducted. If a single

14 of 15 SHIM ET AL.
function makes a single flow, a behavior signature is not applicable. We plan to address the solution of this limitation in
our future work.
ACKNOWLEDGEMENTS

This work was supported by the Institute for Information and Communications Technology Promotion (IITP) grant
funded by the Korea government (MSIT) (no. 2017‐0‐00513, developing threat analysis and response technology based
on Security Analytics for Heterogeneous security solution).
ORCID

Sung‐Ho Yoon http://orcid.org/0000-0002-0266-4973
Myung‐Sup Kim http://orcid.org/0000-0002-3809-2057
REFERENCES

1. Wang Y, Xiang Y, Zhou WL, Yu SZ. Generating regular expression signatures for network traffic classification in trusted network manage-
ment. Journal of Network and Computer Applications. May 2012;35:992‐1000.

2. Park B, Won Y, Chung J, Kim MS, Hong JWK. Fine‐grained traffic classification based on functional separation. International Journal of
Network Management. Sep 2013;23:350‐381.

3. Sung‐Ho Y., Jun‐Sang P., Myung‐Sup K., ChaeTae L., and JunHyung C. Behavior signature for big data traffic identification. In Big Data
and Smart Computing (BIGCOMP), 2014 International Conference on 2014; 261‐266.

4. Agrawal R. and Srikant R. Fast algorithms for mining association rules. In Proc. 20th int. conf. very large data bases, VLDB, 1994; 487‐499.

5. Agrawal R. and Srikant R.. Mining sequential patterns. In Data Engineering, 1995. Proceedings of the Eleventh International Conference
on 1995; 3‐14.

6. CAIDA CoralReef Software Suite. Available: http://www.caida.org/tools/measurement/coralreef/

7. IANA port number list. Available: http://www.iana.org/assignments/service‐names‐port‐numbers/service‐names‐port‐numbers.xml

8. Choi T., Kim C., Yoon S., Park J., Lee B., Kim H.. et al.. Content‐aware internet application traffic measurement and analysis. In Network
Operations and Management Symposium, 2004. NOMS 2004. IEEE/IFIP. 2004; 511‐524.

9. Roesch M., Snort: lightweight intrusion detection for networks. In LISA, 1999; 229‐238.

10. Moore AW, Papagiannaki K. Toward the accurate identification of network applications. In Passive and Active Measurement Workshop
2005. PAM 2005: Boston, MA, USA; 2005:41‐54.

11. Kim H, Jang JW. Reduction of power consumption for pipelined DPI systems on FPGA. J Inf Sci Eng. 2014;30:1395‐1406.

12. Soysal M, Schmidt EG. Machine learning algorithms for accurate flow‐based network traffic classification: evaluation and comparison.
Performance Evaluation. Jun 2010;67:451‐467.

13. Yuan RX, Li Z, Guan XH, Xu L. An SVM‐based machine learning method for accurate internet traffic classification. Information Systems
Frontiers. 2010;12:149‐156.

14. Dong S, Zhou DD, Ding W, Gong J. Flow cluster algorithm based on improved K‐means method. Iete Journal of Research. 2013;59:326‐333.

15. Hu CC, Luo NAX, Yan XH, Shi WZ. Traffic flow data mining and evaluation based on fuzzy clustering techniques. International Journal of
Fuzzy Systems. 2011;13:344‐349.

16. Agrawal R., Imieli T., #324, ski, and Swami A.. Mining association rules between sets of items in large databases. Presented at the Proceed-
ings of the 1993 ACM SIGMOD international conference on Management of data, Washington, D.C., USA. 1993:207‐216.

17. Zhao Q. and Bhowmick S. S., Sequential pattern mining: a survey. ITechnical Report CAIS Nayang Technological University Singapore.
2003; 1‐26.

18. Pei J., Han J., Mortazavi‐Asl B., Pinto H., Chen Q., Dayal U. et al.. PrefixSpan: mining sequential patterns efficiently by prefix‐projected
pattern growth. In 2013 IEEE 29th International Conference on Data Engineering (ICDE). 2001; 0215‐0215.

19. Park JS, Yoon SH, Lee SK, Won YJ, Kim MS. Performance improvement of traffic classification based on application traffic locality. J Inf
Sci Eng. 2016;32(5):1241‐1259.

20. Aho AV, Corasick MJ. Efficient string matching: an aid to bibliographic search. Commun ACM. 1975;18:333‐340.

21. Park B.‐C., Won Y. J., Kim M.‐S., and Hong J. W.. Towards automated application signature generation for traffic identification. In Net-
work Operations and Management Symposium, 2008. NOMS 2008. IEEE. 2008; 160‐167.

http://orcid.org/0000-0002-0266-4973
http://orcid.org/0000-0002-3809-2057
http://www.caida.org/tools/measurement/coralreef/
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml

SHIM ET AL. 15 of 15
Kyu‐Seok Shim is a PhD degree student in the Department of Computer and Information Science, Korea University,
Korea. He received his BS and MS degree in the Department of Computer Science and the Department of Computer
and Information Science, Korea University, Korea, in 2014 and 2016, respectively. His research interests include
internet traffic classification and network management.

Sung‐Ho Yoon received his BS, MS, and PhD degree in Computer Science from Korea University, Korea, in 2009,
2011, and 2015, respectively. He is currently a researcher of Vehicle Components Company, LG Electronics, Korea.
His research interests include internet traffic classification and network management.

Baraka D. Sija is an MS degree student in the Department of Computer and Information Science, Korea University,
Korea. He received his BS degree in Information and Communication System from Semyung University, Korea, in
2016. His research interests include internet traffic monitoring and analysis, service and network management,
and internet security.

Jun‐Sang Park received the BS and MS degree in Computer Science from Korea University, Korea, in 2008 and 2010,
respectively. He is currently a PhD candidate student of Korea University, Korea. His research interests include inter-
net traffic classification and network management.

Kyunghee Cho received her BA in English Literature from Syung‐gyul University in 1994 and her MA in English
Education from Yonsei University in 1997. In 2013, she started her PhD work in Computer Science at Korea Univer-
sity. Her current work in Software Engineering Lab is focused on the home network system related to internet of
things.

Myung‐Sup Kim received his BS, MS, and PhD degree in Computer Science and Engineering from POSTECH,
Korea, in 1998, 2000, and 2004, respectively. From September 2004 to August 2006, he was a postdoctoral fellow in
the Department of Electrical and Computer Engineering, University of Toronto, Canada. He joined Korea University,
Korea, in 2006, where he is working currently as an associate professor in the Department of Computer and Informa-
tion Science. His research interests include internet traffic monitoring and analysis, service and network manage-
ment, and internet security.

How to cite this article: Shim K‐S, Yoon S‐H, Sija BD, Park J‐S, Cho K, Kim M‐S. Effective behavior signature
extraction method using sequence pattern algorithm for traffic identification. Int J Network Mgmt. 2017;e2011.
https://doi.org/10.1002/nem.2011

https://doi.org/10.1002/nem.2011

