Hindawi

Security and Communication Networks
Volume 2018, Article ID 8370341, 17 pages
https://doi.org/10.1155/2018/8370341

Review Article

WILEY

Hindawi

A Survey of Automatic Protocol Reverse
Engineering Approaches, Methods, and Tools on

the Inputs and Outputs View

Baraka D. Sija
Huru Hasanova

,» Young-Hoon Goo
, and Myung-Sup Kim

» Kyu-Seok Shim @),

Department of Computer and Information Science, Korea University, Seoul, Republic of Korea

Correspondence should be addressed to Myung-Sup Kim; tmskim@korea.ac.kr

Received 5 August 2017; Revised 16 December 2017; Accepted 2 January 2018; Published 20 February 2018

Academic Editor: Zhe Liu

Copyright © 2018 Baraka D. Sija et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A network protocol defines rules that control communications between two or more machines on the Internet, whereas Automatic
Protocol Reverse Engineering (APRE) defines the way of extracting the structure of a network protocol without accessing its
specifications. Enough knowledge on undocumented protocols is essential for security purposes, network policy implementation,
and management of network resources. This paper reviews and analyzes a total of 39 approaches, methods, and tools towards
Protocol Reverse Engineering (PRE) and classifies them into four divisions, approaches that reverse engineer protocol finite
state machines, protocol formats, and both protocol finite state machines and protocol formats to approaches that focus directly
on neither reverse engineering protocol formats nor protocol finite state machines. The efficiency of all approaches’ outputs
based on their selected inputs is analyzed in general along with appropriate reverse engineering inputs format. Additionally,
we present discussion and extended classification in terms of automated to manual approaches, known and novel categories of
reverse engineered protocols, and a literature of reverse engineered protocols in relation to the seven layers’ OSI (Open Systems

Interconnection) model.

1. Introduction

High demand of reverse engineering protocols in the Internet
comes as an outcome of rapid increase of Internet traffic
volume. Network scholars, researchers, and organizations are
currently focusing mainly on reverse engineering unknown
or undocumented protocols specifications for security and
networks maintenance purposes. Indeed, there are a vast
number of network protocols and network applications
believed to be active on the Internet, whereby only a part of
it is well known or documented. One and major challenge of
Protocol Reverse Engineering (PRE) is that it is mainly done
manually. Since manual PRE is extremely tedious and time
consuming, it may sometimes take several years for certain
protocol specifications to be completely uncovered. Efficient
PRE is prevented by numerous obstacles such as binary
human unreadable protocols, high entropy data, dynamic
protocol fields, and context based fields in which earlier fields

affect the meaning or the form of following fields, encryption,
and so on.

In the following paragraphs of this section, we define
several key terminologies which are commonly used during
Protocol Reverse Engineering. The PRE terminologies con-
secutively defined in detail are Protocol Reverse Engineering
itself, execution trace and network trace, syntax inference
(inferring protocol syntaxes) and semantic inference (infer-
ring protocol semantics), binary protocol and text protocol,
protocol finite state machine (PFSM) and protocol format,
field, keyword, keyword value, delimiter (separator), key-
value delimiter and value-value delimiter, correctness, con-
ciseness, and coverage.

Protocol Reverse Engineering is the process in which
protocol parameters, formats, and semantics are inferred
in the absence of formal specifications [1]. Since protocol
specifications of unknown protocols are mainly kept secret
by developers or owners the only way to uncover the

http://orcid.org/0000-0002-1620-7888
http://orcid.org/0000-0002-3013-7011
http://orcid.org/0000-0002-3317-7000
http://orcid.org/0000-0003-4316-2395
http://orcid.org/0000-0002-3809-2057
https://doi.org/10.1155/2018/8370341

specifications is through reverse engineering. Many reasons
may apply to why the inventors are likely to hide the
specifications of the protocol they develop, but all pertain to
pursuing individual or organization profits. Some protocols
in the Internet are developed solely for surveillance. Such
kind of protocols is hard to uncover their specifications.
Moreover, protocols are constantly evolving due to features
and functionalities changes that lead to even harder and more
complicated Protocol Reverse Engineering, as previously
known protocol specifications turn incomplete and not appli-
cable. Although Automatic Protocol Reverse Engineering
methods are being proposed and developed, the process has
been mostly manually done, which is error-prone and time
consuming. For instance, it took the SAMBA project 12 years
to generate a protocol specification for the Microsoft Server
Message Block (SMB) protocol [1]. Therefore, maximization
of accuracy, automation, and shortening of time for Protocol
Reverse Engineering are the priorities for the modern secu-
rity and Internet communication environment.

Execution trace and network trace are two main inputs of
Protocol Reverse Engineering methods. An execution trace is
a program code executed in a single run of an application
between two or more communicating hosts, [1] while a
network trace is a ground truth traffic captured from a
network by tools such as Tcpdump, Wireshark, and Microsoft
network monitor. Network traces appear in raw packets and
are stored as cap or pcap files. Execution traces are efficient
in identifying relevant fields of a protocol from the multiple
and iterated instruction loops. Compared to static analysis
execution traces are most likely applicable and effective for
dynamic analysis.

Syntax inference and semantic inference are simply nec-
essary stages for a successive Protocol Reverse Engineering
process. Syntax inference (inferring protocol syntaxes) is the
process in which protocol field boundaries, oftset locations,
and endianness are inferred. It is the process in which the
protocol rules that were used to format the messages involved
in communication between two hosts are identified [2].
Semantic inference (inferring protocol semantics) is obviously
the following step after syntax inference. It is the process in
which the data content that was exchanged between two com-
municating machines together with its meaning is inferred.
For instance, in Hypertext Transfer Protocol (HTTP), the
inferred semantic information can be a web page content,
whereas in the case of Distributed Network Protocol Version
3 (DNP3) [1], the inferred semantic information is commands
and control data. For known protocols, their syntaxes and
semantics can easily be found and studied; however for the
unknown and undocumented protocols their syntaxes and
semantics need to be reverse engineered.

Binary protocol and fext protocol are two major cate-
gories to which all protocols fall; however at special cases,
certain protocols can be text-binary. A binary protocol is a
protocol that is oriented in data structures such as Domain
Name System (DNS). It is a protocol that is machines readable
rather than human. A binary protocol is simply a protocol
that is data structures oriented while a text protocol is a
protocol that is oriented around text strings which are human
readable. HTTP is an example of text protocol that is designed

Security and Communication Networks

to be communicated as a flat stream of lines of text. For
instance, in a HTTP response type instead of three characters
“2,”“0,” and “0” the response type appears as integer value of
“200.”

Protocol finite state machine (PFSM) and protocol format
(PF) are two possible target outputs after reverse engineering
a protocol. The PFSM defines timing, orders, and states in
which messages change between two hosts. It is the transition
of states and order from one form to another syntactically
and semantically according to a protocol. In this way, a
protocol can be reverse engineered and fairly presented in
finite state machine. A protocol format is the presentation of
how a field boundary is structured, whereby each field has its
own semantic keyword. A protocol format presents fields in
priorities of positioning from left to right or right to left.

Field, keyword, keyword value, delimiter (separator), key-
value delimiter, and value-value delimiter are terms used to
express mostly text protocol formats. A field is a composition
of contiguous sets of associated bits (bytes) that contain
semantic message data [1]. A field in a protocol message can
be identified from either constant or frequently appearing
features such as bytes, data offset position, and weight.
A protocol can have several fields from which some may
be variable or fixed, as well as their lengths which may
be variable or fixed. A keyword is a semantic word that
differentiates one field from another semantically. Source
IP/port, destination IP/port, checksum, sequence number,
and message type are example of fields, whereas a keyword
value is a unit value of that field. A delimiter (separator [3])
is a nonalphabetic symbol such as “#”, “.”, 7, 7, and “§”
and hexadecimal delimiters such as “0x0DO0A, 0x00, and
0x5C” are used to separate fields, key-values, and value-value.
Therefore, there are three categories of delimiters for text
protocols which are field delimiters, key-value delimiters, and
value-value delimiters. For instance, in a message “TIME-
OUT:60 # ALLOWED PORTS:4534,80,53”, “#” is a field
delimiter, “.” is key-value delimiter, and “,” is value-value
delimiter.

Correctness, conciseness, and coverage are three indepen-
dent metrics that measure how successfully a method can
reverse engineer a protocol [1]. Correctness measures how
accurate the reverse engineered protocol matches the true
specifications of a protocol. For instance, if a protocol has
10 fields and every time the PRE-method is tested about 7
fields are discovered, then the method correctness (accuracy)
is termed as 70%. Conciseness measures how many reverse
engineered messages or states represent a single true message
or that state whereas coverage measures the quantity of
reverse engineered protocol messages or states as compared
to the true protocol specifications.

The remainder of the paper is structured as follows: In
Section 2, we describe the background and motivation of the
paper. Section 3 which is the main area of interest of this paper
chronologically analyzes all the APRE approaches, methods,
and tools’ outputs based on their inputs, evaluating more
appropriate and efficient inputs. Section 4 presents classified
discussion in terms of manual to automated approaches,
reverse engineered or analyzed protocols category, and a
detailed literature of reverse engineered or analyzed protocols

« »

Security and Communication Networks

based on the 7-layers OSI model. Section 5 presents conclu-
sive remarks and potential future research directions of APRE
based on Sections 3 and 4.

2. Background and Motivation

Objectives and interests of Protocol Reverse Engineering may
vary from one approach to another. Major applications of
APRE are Intrusion Detection Systems (IDSs), Deep Packet
Inspection (DPI), efficient fuzzing, identifying and analyzing
botnets command and control message, and integration and
software compliance [1].

Protocol analyzers are highly utilized by modern IDSs
to detect and protect against malicious application-layer
communication on networks. In a diverse and high-volume
Internet, APRE tools are essential for analyzing mainly
application-layer network traffic that may contain unknown
communications specifications. Unknown specifications of
network traffic need to be analyzed and uncovered as they
may be malicious and/or surveillance to the network. Pro-
tocol analyzers enhance identification and classification of
application-layer network data through Deep Packets Inspec-
tion (DPI). Indeed, DPI is pre-IDSs as it has been and can
be traditionally deployed in IDS architectures for identifying
malicious payloads through pattern matching. Fuzzing is
a testing technique that tests programs by receiving or
sending data (inputs) from unsafe sources. Communications
protocols can be effectively fuzzed for security vulnerability
detection by APRE and protocols analyzers. Fuzzing plays
an intercepted role with IDSs. Botnets are primary security
concern in the Internet since they infect systems while users
are unaware of them. They consist of hosts in networks
with malicious applications that are monitored by a remote
attacker. APRE and protocols analyzers play a key role in
identifying and analyzing botnets commands and control
messages sent by an attacker. When new hosts are connected
to a network, they sometimes fail to comply with existing
protocol standards. In this case, APRE and protocol analyzers
can infer such differences and make software integration [1].
Conclusively, PRE is highly applicable for network security
and for Internet users’ privacy security.

APRE and protocol analyzers are such necessary for
numerous applications in modern networks; however what
method or approach leads to a successive and perfect APRE
or protocol analyzer is a question at hand motivating this
paper. Taking this question as the main area of interest we
evaluate the outputs of approaches, methods, and tools in
relation to their inputs along with methodologies applied.

3. Automatic Protocol Reverse Engineering
Inputs and Outputs

High correctness (accuracy), conciseness, and coverage of
APRE outputs are the major target and expectation of
any approach, method, or tool. However, due to constant
evolving of unknown network protocols, the evaluations and
estimations of the three metrics are often not satisfactory. The
major cause of unsuccessful APRE is mostly inappropriate

Inputs Outputs

Network N PFSM
trace
Approach
method
tool
Execution Protocol
trace format

FIGURE 1: Major classification of APRE inputs and outputs.

inputs to the proposed approaches or developed methods
and tools. Either network traces or execution traces should
closely consider both sides (the client (the machine side that
sends requests and receives responses (commands) from the
server) and the server (the machine side that sends responses
(commands) and receives requests from the client)) infor-
mation in different levels from a single packets to session
level. This analysis is essential for an efficient Protocol Reverse
Engineering.

Protocol Reverse Engineering outputs can be mainly cat-
egorized into two categories: protocol formats (PFs) and pro-
tocol finite state machines (PFSMs), as depicted in Figure 1.
Approaches that focus on outputting PFSMs of unknown
protocols are highly likely to infer a protocol formats as well,
since PFSMs rely on syntax inference, a necessary protocol
format stage. Therefore, approaches that focus on uncovering
PFSMs have high chance of indirectly uncovering protocol
formats too. Meanwhile, approaches that focus on outputting
the protocol formats are most likely to uncover FPSMs as
well, since they are bound to infer protocol syntaxes in
discovering fields and formats, which is a preprocess for
protocol semantic inference, a key and necessary PFSM step.
Either PFSM or protocol format can be obtained from either
network traces or execution traces; however, the accuracy
may vary from either input.

Bossert et al. [26] points that, due to inappropriate
inputs traces, many studies do not provide accurate results
especially on unknown and complex protocols. And as many
approaches or methods being too theoretical, only few of
them have resulted in the publication of tools that would
allow scientific community to experimentally validate and
compare difference among approaches. One major reason for
this challenge is the fact that network activities in laboratories
never perfectly reflect that observed in the wild [26, 27]. In
the following two subsections the outputs and inputs from
different approaches, methods, and tools are analyzed along
with the applied algorithms towards Automatic Protocol
Reverse Engineering.

3.1. Distribution of Automatic Protocol Reverse Engineer-
ing Outputs. This section analyzes 39 different approaches,
methods, and tools outputs’ focus in relation to the algo-
rithms and/or technique along with architectures applied.

Security and Communication Networks

TABLE 1: Approaches, methods, and tools that focus on reverse engineering PFs; NetT = network traces; ExeT = execution traces.

Input format

Approach, method, tool, or author Year Special remarks
NetT ExeT

Discoverer [4] 2007) PESM for future work
Polyglot [5] 2007 O Dispatcher [6] st work
AutoFormat [7] 2008 @) ~
Tupni [8] 2008 @) PESM for future work
ReFormat [9] 2009 O Decryption before PRE
Prospex [10] 2009 O Reverse engineers PFSM as well
ProDecoder [11] 2012 @) ~
Wang et al. [12] 2013 @) PRE in wireless environment
ProGraph [13] 2015 O Traffic classification
Cai et al. [14] 2016 @) ~
WASp [15] 2016 O IEEE.802.15.4 wireless protocols

Tt message formats of different application protocols. Three

Protocol formats (PFs) PFSMs modules are involved in Discoverer, Tokenization and Initial

~N

FIGURE 2: Four distributions of 39 APRE approaches’ focus (Sections
3.1.1,3.1.2,3.1.3, and 3.1.4).

Among 39 approaches, 11, 9, 4, and 15 approaches focus on
outputting only protocols formats, only protocols finite state
machine, both protocols formats and protocols finite state
machine, and those that do not directly focus on outputting
protocols formats or protocols finite state machines, respec-
tively, as depicted in Venn diagram (Figure 2).

3.1.1. Protocols Formats Focus. Reverse engineering unknown
or undocumented protocols formats are technique that
requires a lot of information and knowledge to completely
and successively reverse engineer an unknown protocol.
Yurichev [43] provides basic and important fundamentals
such as integral datatypes, signed number representations,
AND, AND, and OR as subtraction and addition, XOR
(exclusive OR), Population Count, Endianness, Memory,
CPU, and Hash functions towards reverse engineering. Many
approaches do not consider in great depth the fundamentals
such as those introduces by Yurichev [43], leading to poor
PRE outputs and analysis. With chronological order as shown
in Table 1, this section analyzes 11 approaches that focus on
reverse engineering formats or specifications of unknown
and undocumented protocols.

Discoverer [4] uses network traces to automatically
reverse engineer protocol message formats. The tool is capa-
ble of inferring protocol idioms that can often be seen in

Clustering, Recursive Clustering, and Merging consecutively
functioning.

In the Tokenization and Initial Clustering module, Discov-
erer clusters messages based on their token patterns assigned
in 4-tuple information (dir, class of token 1, class of token 2,. . .,
class of token n) where dir is the direction of the message C2S
or S2C followed by the classes of all tokens in a given message.
Message direction is considered because messages in opposite
directions may have different formats. The 4-tuple example
of token patterns can appear in the form like client to server,
text, binary, and text. Discoverer applies its own developed
formats aligning algorithm based on Needleman and Wunsch
[44]. In general raw packets are utilized. From the raw
packets, message fields’ boundaries are identified with first-
order structure giving to the unlabeled messages. The packets
are reassembled in messages and then broken into a sequence
of tokens fields. The tokens are used to define two major
classes of messages: binary or text. Recursive Clustering is
the second module where binary or text messages are further
divided so that messages in each cluster contain the same
formats. Lastly, messages of the same format are mitigated
and classified into their respective clusters.

Polyglot [5] reverse engineers a protocol message format
by program binaries through shadowing algorithm. The
approach uses dynamic binary analysis with facts on how
a protocol is implemented. Polyglot shadowing approach
has two phases as depicted in Figure 3 {[5], Caballero et al.
(2007)}. It extracts the protocol message format by processing
messages at different time and outputs the formats for each
received message. The execution monitor [45] is the key
runner of polyglot architecture in the first phase. In this
phase, all records of the running program are generated,
while containing necessary information of a particular execu-
tion. Field boundaries and the keywords that forms message
formats are analyzed in the second phase.

Through a protocol field tree generation algorithm, Auto-
Format [7] reverse engineers structures of protocol messages
based on individual extracted protocol fields. In AutoFormat,
each field in a given message format is handled in its own

Security and Communication Networks

Program binary

Keywords
extraction

and message

Execution

Separator

Separators

|—+ Keywords

Message format

—>{ Execution trace

extraction

monitor

Direction field
extraction

\/ extraction

.

Fields direction

Message format

Y Phase 1

—

Phase 2 |

FIGURE 3: Polyglot, shadowing system architecture {Figure reproduced from Caballero et al. (2007), [under the Creative Commons Attribution

License/public domain]}.

of fields

Field Identification of
identification record sequences

Sequence of Sequence of
records records types

€

l_\l/ A

Identification of
record types

FIGURE 4: Tupni architecture {Figure reproduced from Cui et al. (2008), [under the Creative Commons Attribution License/public domain]}.

execution contexts at runtime. The execution contexts are
collected from each message bytes that is annotated with its
offsets to create whole protocol message format. One and
major advantage of AutoFormat is that it can implement
a binary of an unknown protocol to simply recognize its
format perfectly. This is an accurate way to handle different
messages and successfully uncover their formats. To do
this the approach architecture divides in two components,
the part dealing with executing contexts and the part that
identifies each protocol field.

Tupni [8] is a tool capable of discovering protocol formats
with several pieces of information, such as record sequences,
types, and type of input constraints. From this information
further generalization of the format specifications over mul-
tiple inputs files or network messages is done. Based on its
own designed algorithm as shown in Figure 4 {[8], Cui et
al. (2008)}, Tupni first identifies general fields, next records
sequences from which records types are recorded. In the
fields’ identification stage, short sequences of partitioned bytes
are utilized as inputs which carry necessary and correspon-
dent information to basic fields of the input format. Accurate
discovering of fields in Tupni is possible from observation of
the mapped instruction loops in the CPU. In identification
of record sequences, the tool applies its own developed
algorithm to process unbounded sequences and identifying
all the fields.

ReFormat [9] attempts to reverse engineer protocol spec-
ifications of encrypted application messages. The tool first
decrypts all messages involved in a transaction and then
reverse engineers a target protocol. In decryption, algorithms
such as Triple-DES, AES, and RC4 are involved in all bytes of
the original messages. Prospex [10] is a system that focuses
on automatically extracting application-layer protocol spec-
ifications. From executed traces Prospex correctly infers
message formats by the PAM (Partitioning Around Medoids)

clustering algorithm. ProDecoder [11] is a tool that uses
network traces to infer semantics of protocol messages and
formats discovering. In ProDecoder an n-grams concept is
applied where a relationship is checked between prefixes and
suffixes among keywords. If a previous word suffix resembles
a next word prefix, the two are joined to obtain and reveal
possible protocol fields’ semantics. For message clustering
the tool applies IB (Information Bottleneck) algorithm to
group similar messages. ProGraph [13] is a tool that focuses
on reverse engineering a protocol from both its bits-level
and bytes-level information from its own designed graphical
model algorithm. An intrapackets exploitation is conducted
to find dependencies among packets, especially in packet
payloads where many fields can be identified. Such kind of
information is assumed to be rich in the first few bytes of the
packet payloads [46]. Moreover, ProGraph can determine the
task carried out by an individual packet within the protocol
traffic.

Cai et al. [14] aim at selecting fields keywords with their
optimal lengths and finding about how protocol messages
are segmented. Through a hidden semi-Markov model Cai
et al. try to model an entire protocol message format. They
collect training raw data set using tshark [47], in preapplica-
tion of the derived model, Hidden Semi-Markov Modelling
(HsMM). After the raw data capturing process five modules,
session reconstruction, message reassembling, HsMM, message
segmentation, and message type inference, follow. In raw data
traffic collection phase, the approach takes an assumption
that all traffic captured belongs to the same protocol.

After raw data traffic has been collected, session recon-
struction, the second phase follows where sessions are recon-
structed according to the traffic 5-tuple information, which
are Source IB, Destination IB, Source port, Destination port, and
L4 Transport protocol (TCP/UDP). For TCP-based protocol
traffic, a session starts at the packet with the SYN flag in TCP

6 Security and Communication Networks
TABLE 2: Approaches, methods, and tools that focus on reverse engineering PFSMs.
Approach, method, tool, or author Year Input format Special remarks
NetT ExeT

PEXT [16] 2007 O Limitation in extracting semantic information
Xiao et al. [3] 2009 @) @) ~
Trifilo et al. [17] 2009 @) ~
Antunes and Neves [18] 2009 O ~
ReverX [19] 2011 O ~
Veritas [20] 2011 (@) ~
Zhang et al. [21] 2012 (@) ~
Laroche et al. [22] 2013 O ~
Meng et al. [23] 2014 (@) ~

. Automated attacks. Since wireless protocols, especially IEEE 802.15.4

S :’ el | S \; based, are not well studied for PRE, WASp provides key
ackets Packets Packets ackets P : :
collection | 1 | grouping | | analysis | | generation i insights towards reverse engineering such protocols.
\ /

FIGURE 5: WASp: summarized architecture overview {Figure repro-
duced from Choi et al. (2016), [under the Creative Commons
Attribution License/public domain]}.

header and ends when the FIN flag is acknowledged. For UDP
protocol traffic, a session is defined as the packets shared by
the same 5-tuple. In message reassembling phase, messages of
TCP-based protocols are reassembled from packets accord-
ing to their TCP sequence number and acknowledgement
number while the messages of UDP-based protocols are
reassembled based on their arrival time stamp of packets and
the transmission direction of packets.

The key contribution of this approach is the HsMM
phase. In this phase, the message formats are generated
from an algorithm based on the Baum-Welch method, which
is performed to reestimate the parameters of the HsMM-
based protocol model. In the message segmentation phase,
the reestimated HsMM model is applied to obtain optimal
lengths for protocol keywords and to divide a single message
into a sequence fields. The final stage is message type inference,
where protocol messages are clustered using the affinity
propagation mechanism and each cluster will represent a
message type as the final output.

Wang et al. [12] present an approach that utilizes associ-
ation rules among sequential features and identify unknown
protocol formats in wireless environment. The approach uses
captured binary data from an implemented protocol. The
goal of this method is to uncover all vulnerabilities in Wi-
Fi networks, where attackers may secretly exchange data and
spread malicious codes. To extract 4-bit frequent sequences,
determine fields, and discover possible associations among
them, an AC algorithm, about mining association rules [48], is
applied, where unknown possible protocol formats are built.
WPAN automatic spoofer (WASp) [15] is a tool based on
[EEE 802.15.4 wireless protocols, capable of understanding
and reconstructing customized protocols to byte-level and
generating packets that can be used for analysis and spoofing

Figure 5 {[15], Choi et al. (2016)} summarizes four WASp
phases, which are packet collection, packet grouping, protocol
analysis, and packet generation, whereby packets capturing
is conducted manually with the rest modules being fully
automated.

Section 3.1.1 describes 11 approaches that focus on reverse
engineering undocumented and/or unknown protocols and
outputting their general formats. A diversity of techniques
and algorithms towards reaching this goal is observed from
received network traces (packets, flows, and sessions) and
execution traces. However, approaches that utilize network
traces as inputs are 7 out of 11.

3.1.2. Protocols Finite State Machines (PFSM) Focus. PFSM is
an important presentation of a protocol transitions in PRE.
It simply defines orders, states, and transitions of fields in
messages and messages between two or more communicating
machines. This section presents 9 approaches, methods, and
tools that focus on Reverse Engineering Protocols Finite State
Machines from received network traces or execution traces as
shown in Table 2.

PEXT (Protocol EXTraction) [16] is a tool that analyzes
captured packets and reverse engineers PESMs of application-
layer based protocols from its own designed algorithm. In
PEXT, through LibPcap tools packets are first captured from
different binary traces of specific features; second, all packets
are grouped into distinct classes. Third, execution flows
graphs are produced for all the traces using the Longest
Common String (LCS) algorithm to find message states, and
finally, all the separate diagrams are combined to form a
PESM. In this process, identical packets are grouped into
their individual flows and then identical flows are extracted.
These flows are restricted to contain at least two packets
and then form initial states. Since each state is restricted
to constitute same flow packets, distinct states are simply
obtained. Identical flows are identified and labeled as states
with specific IDs. From this step, the (LCS) applies to all
remaining flows to reduce and minimize the states. To this
point, a packet that does not belong to any state yet becomes
a single packet state.

Security and Communication Networks

[Binary features
extraction

Sniffed raw |
IP traces [

[State model
| extraction

p
Visualization }
€

F1GURE 6: Trifilo et al. workflow design {Figure reproduced from Trifilo et al. (2009), [under the Creative Commons Attribution License/public

domain]}.

Partial
language

language

|
|
|
I
|
|
|
Protocol I
|
|
|
!

Sessions of
messages

l

Sequences of
message types

Partial

PESM — PFSM

FIGURE 7: ReverX architecture overview {Figure reproduced from Antunes et al. (2011), [under the Creative Commons Attribution

License/public domain]}.

Xiao et al. [3] introduce a grammatical inference algo-
rithm to model network applications specifications by syntax
inference, under an observation that an implementation of
the protocol is inherently a state transition process. In this
approach, various state protocols are described through mod-
elling methods of protocol state transitions for both known
and unknown protocols. The system architecture proposed by
Yin et al. consists of two major stages, the execution monitor
by [45] where execution traces are outputted and the Protocol
State Machine inference. To obtain a PESM in the second stage,
messages between sessions are separated and the format
of each message is inferred by delimiters obtained in the
execution traces and then the automaton of the protocol is
inferred as the order and transitions of messages indicate in
the extracted execution traces.

Trifilo et al. [17] derives the PFSM of a protocol by
analyzing logics from both sides captured network traces.
Figure 6 {[17], Trifilo et al. (2009)} indicates relevant fields
extraction procedures to determine the general protocol
states and their transitions. As shown in Figure 6, in the first
module, extracted raw data traffic is filtered to separate which
protocol traffic will enter the system for PRE process. In the
second module, fields’ binary features are extracted, where
only target and key protocol fields are identified. Trifilo et al.
assume that key protocol fields contain the general meaning
and logic of the protocol, while other fields are considered
least. For example, in HTTP protocol request, “GET” is a
key and necessary field to understand the protocol logic as
it defines the type of requested action. To achieve this, a
statistical analysis based on the “Variance of the Distribution
of Variances” (VDV) is used. In the state machine model
extraction, based on the features already extracted a PESM for
a target protocol is finally created.

Based on sequence alignment techniques [44], Antunes
and Neves [18] build a PFSM of a network protocol from
network traces. From the sequence alignment techniques,
Greedy algorithm and Partial Order Alignment (POA), they

generally focus on providing solutions to construction of
automata that recognize specific protocols based on their
sampled messages. ReverX [19] is a methodology that, from
real network traffic, automatically infers protocol specifica-
tions and the PFSM. It is a suitable approach and a well-
designed frame work for uncovering both message formats
and PFSMs for unknown/undocumented protocols. ReverX
is divided into two phases, Generalize Protocol Language and
reduced Protocol State Machine as indicated in Figure 7 {[19],
Antunes et al. (2011)}.

Veritas system [20] is a statistical based analysis method
that can automatically infer target PESM from captured real-
world network traffic. The key feature of a tool is that it
is based on statistical information of target protocol and
it is designed to deal with both text and binary protocols.
The system has four modules, collection of network traffic,
analysis of captured packets, inference of messages, and state
machines.

In first module, target network traffic is collected based
on target transport layer port of an application. In the second
phase, message units with high frequency are identified
in an offline means and the K-S (Kolmogorov-Smirnov)
test is applied to obtain optimal units for a message. The
phase where message states are inferred, and from each
protocol format message distinctive features are extracted to
measure the similarity between message formats. Next, the
PAM (Partitioning Around Medoids) clustering algorithm
applies to classify similar messages in their respective clusters.
Finally, the state machine inference phase infers a PFSM by
building flows of a specific protocol from labeled states.

Zhang et al. [21] present an architecture of three com-
ponents, packets analyzing stage, Protocol State Machines
exploring stage, and the QSM (Query-driven State Machine)
Learner [48]. The components describe a method for con-
structing and parsing real packets to their formats and
generating packets queries for exploration to mine PFSMs.
In the learning process, an interactive grammar inference

technique is involved to generate queries to the protocol
implementation. The architecture functions as follows: first
it uses Wireshark [49] to capture raw network traffic of a
targeted protocol as implemented by ends user and then
saves the captured sessions in pcap file. Second, the packets
analyzing module converts all the packets to xml-based
files that appropriately describe the packet structure. Third,
the Protocol State Machines Space Explorer creates several
sequences to communicate with the target protocol. Lastly,
protocol formats and specifications are mined from the
QSM Learner algorithm combined with EDSM algorithm
[48].

Laroche et al. [22] explore a Linear Page Based Genetic
Programming (NimsGP), an evolutionary approach, and
propose a solution for analyzing and discovering PFSMs and
specifications. By using a Genetic Programming (GP) based
technique with a priori algorithm implementation, a given
Protocol State Machine can be analyzed. By this method two
text protocols, FTP and DHCP, are analyzed. Meng et al.
[23] propose an approach capable of mining protocol state
machines for unknown binary protocols. The methodology
aligns corresponding fields and extracts the state relevant
fields from binary protocol communication traces and finally
the protocol state model is constructed based on the state
relevant fields.

Four functional modules, communication data frame
capture, alignment of corresponding fields, state relevant
fields identification, and state machine reconstruction, are
involved in the proposed architecture. In the communication
data frame capture tools, such as Wireshark, are used to
capture and filter the raw traffic. Next, corresponding fields
are aligned by an improved progressive multiple sequence
alignment technique. Third, in the state relevant fields identi-
fication module, only certain fields of a protocol frame are
captured by the logic of the protocol. For example, flags
fields are state relevant fields in TCP. A statistical analysis,
“Distribution of the Distribution of the Variances (DDV)”
for each field in the binary protocol frame is applied to
identify state relevant fields. Finally, a Protocol State Machine
is reconstructed based on the state relevant fields.

Section 3.1.2 describes 9 approaches that focus on reverse
engineering undocumented and/or unknown protocols and
outputting their general PFSMs. In this section as well, a
diversity of techniques and algorithms towards reaching this
goal is observed from received network traces (packets, flows,
and sessions) and execution traces, whereby approaches that
utilize network traces are much more than those utilizing
execution traces. Out of 9 approaches, 7 utilize network traces
based inputs and 1 approach utilizes both network trace and
execution trace whereas 1 approach utilizes execution traces
based input.

3.1.3. Both Protocols Formats and PFSM Focus. This section
consists of four approaches that provide architectures and
literatures on reverse engineering both general protocol for-
mats and PFSMs. Table 3 summarizes all the four approaches
chronologically with their input formats.

GAPA [24] is a protocol analyzer and open language
that is designed to satisfy three key goals, safety, real-time

Security and Communication Networks

TABLE 3: Approaches, methods, and tools that focus on RE both PFs
and PFSMs.

Approach, method, Input format Special
Year

Tool, or author NetT ExeT remarks

GAPA [24] 2005 o BNF based

Biprominer [25] 2011 @) ~

Netzob [26, 27] 2012 O O ~

AutoReEngine [28] 2013 (@) ~

analysis and response, and rapid development of analyzers.
The language is basically developed for integrating it into
other network monitoring and packets analyzing tools, such
as Ethereal and Shield to allow rapid development of protocol
analyzers. GAPA language (GAPAL) uses a standard protocol
analyzer specification called Spec that takes care of three
tasks, specifying how to parse the message format used by
a protocol (by BNF (Backus-Naur Form)), correctly tracking
sessions and applications context, and performing analysis
based on the message content and the application context.
A Spec can also potentially carry out decisions, such as
terminating a connection depending on conditions involved
whether satisfying or not.

Biprominer [25] is a statistical nature tool that is designed
to extract different formats of binary protocol messages and
present its PESM. Its architecture has three major parts, the
learning phase (the learning process that provides several
pattern messages called cells), the labeling phase (marks
samples with cells obtained from the learning phase), and
the transition probability model building phase (which gives
a probabilistic description of reverse engineered protocol
formats). Figure 8 {[25], Wang et al. (2011)} shows a whole
architecture of Biprominer in three parts.

Netzob [26, 27] is a tool capable of inferring both
PFs and PFSMs for complex protocols. The tool takes its
inputs as communication traces and reverses the involved
protocol vocabularies by considering embedded contextual
information. From this information, clustering of messages
and protocol fields’ boundaries identification is improved.
In vocabulary and grammar inference, Netzob semiauto-
matically undergoes three steps, clustering of messages and
message fields partitioning, message fields characterization
and abstraction of similar messages in symbols, and inferring
the transition PFSM graph. Moreover, Netzob extends the
Needleman and Wunsch [44] sequence alignment algorithm
to leverage message semantic definition so that message
classification and format inference are much effective from
considering both protocol semantics and syntaxes, in the
sequences of static and dynamic fields.

In AutoReEngine [28], PFSMs of application-layer proto-
cols are automatically inferred from network traces. The sup-
portvalues and variance positions are applied to extract fields’
keywords. Frequent strings in a given message are extracted
to identify fields and keywords. For instance, since the field
keyword “GET” has high frequency in HTTP sessions, it is
considered as a field keyword. This is an Apriori property
implementation (Agrawal and Srikant, 1994). AutoReEngine

Security and Communication Networks

Learning phase

= [romil)>

U
je=BilecRilos o~]

W W W
W W W=

Labeled

Remining data

|
|
|
|
|
|
l
|
! Unlabeled
|
|
|
|
|
|
|
|
|

I =

model

w W W W
B W W @

1
|
i Transition probability
|
I

B Byte
I Packet header

Initial state

Accepting state

FIGURE 8: Biprominer architecture {Figure reproduced from Wang et al. (2011), [under the Creative Commons Attribution License/public

domain]}.
Re -t s N N R - T T T mmm AN

/ \ /

I [

! Data P Protocol keyword

} Pre-processing | ! extraction

I b

I b

I b
|

l o

| Message o Frequent string

i reassembling ! | extraction

| I

I b

I T b J/

I b

l o

| |

! Session | i Variance

! reconstruction P analysis

I b

I /‘« b

w B —

I b

I b

| P!)

I Lo

: Data set L Protocol

I : I

| ;o keywords

I | v
1

\\ N ! \\ N ,

- N - N
, NI N
/ \ / \
1 ’ 1
Message format ! State machine |
. | : 1
generation | ! inference |
|
T [
I I
el |
L Sequence }
Message T . |
P labeling |
formats ' |
[I
| | |
| | |
| |
B |
|
. L Frequent !
Fields ! |
. \ sub-sequence
inference L : !
P extraction |
|
[|
| | |
| | |
| | |
| |
I : I
[I
i | |
Keywords series ! !
extraction | ! |
I I
I 1 I
1 \ 1
N // N //

FIGURE 9: AutoReEngine architecture {Figure reproduced from Luo and Yu (2013), [under the Creative Commons Attribution License/public

domain]}.

defines a message format as a series of frequent keyword
appearing in a target protocol message format. State machines
in AutoReEngine can be achieved through two steps, labeling
all messages according to whichever message format they belong
to and applying the Apriori algorithm to extract frequent
subsequence for transitions identification. As indicated in
Figure 9 {[28], Luo and Yu (2013)}, the architecture of
AutoReEngine has four main modules, data preprocessing,

second, extraction of protocol keywords, third, message
formats generation, and lastly PFSMs inference.

Section 3.1.3 describes 4 approaches that focus on reverse
engineering undocumented and/or unknown protocols and
outputting both their possible general Protocol Formats and
Protocol Finite State Machines (PFSM). Various techniques
and algorithms are involved towards reaching this goal.
Among 4 approaches shown in Table 3, 2 approaches utilize

10

TABLE 4: Approaches that focus on neither reverse engineering
general PFs nor PFSMs.

Approach, method, Input format

tool, or author Year NetT ExeT Special remarks
ScriptGen [29] 2005 O Dialogs/scripts
RolePlayer [30] 2006 O Dialogs/scripts
Ma et al. [31] 2006 O App-identification
Boosting [32] 2008 (@) Field(s)
Dispatcher [6] 2009 @) CeC malware
ASAP [33] 2011 O Semantics
Dispatcher2 [34] 2013 (@) Ce+C malware
ProVeX [35] 2013 (@) Signatures
PIP [36] 2014 O Keywords/ fields
FieldHunter [37] 2015 @) Fields

RS Cluster [38] 2015 O Grouped-messages
UPCSS [39] 2015 O Proto-classification
PowerShell [40] 2017 O Dialogs/scripts
ProPrint [41] 2017 O Fingerprints
ProHacker [42] 2017 @) Keywords

network traces based inputs and 1 approach utilizes both
network trace and execution trace based inputs whereas 1
approach utilizes execution traces based input.

3.1.4. Neither Protocols Formats Nor PFSMs Focus. Most of
the approaches target directly on reverse engineering either
general protocol formats or PFSMs. As shown in Table 4,
this section presents approaches, methods, and tools that
focus on reverse engineering directly neither PFs nor PFSMs,
instead they focus on identifying either individual fields,
conversations carried between two entities (scripts/dialogs),
applications identification, signatures generation, or seman-
tics inference.

ScriptGen [29], RolePlayer [30], and PowerShell [40] are
approaches that focus on generating new scrips or dialogs
between two hosts based on the network protocols involved,
for attacks and network vulnerability detections. RolePlayer
[30], given session samples of transmission or communica-
tion between two entities, can analyze application protocols
in wide varieties. RolePlayer applies bytes streams technique
to align and compare different session instances to determine
which session side fields to replay. The method can heuris-
tically detect network information such as addresses, ports,
cookies, and length fields confined in a session. Meanwhile,
PowerShell [40] is a tool that investigates, analyzes, and
generates protocol catalogs or scripts models involved during
two communicating machines without installing third-party
tools, such as Wireshark and Tcpdump. The generated scripts
allow evaluating an environment for any potential vulnera-
bilities.

ScriptGen [29] is a method consisting of four modules
(factorization of message sequence, state machine building,
state machine simplification, and generation of scripts).

Security and Communication Networks

ScriptGen can generate scripts for exploiting possible attacks
in networks.

In the first module, TCP protocols based messages that
exchanged between the receiver and the sender sides are
extracted by Tcpdump and all the TCP streams are recon-
structed and reordered. In state machine building stage, states
representing blocks are built. To avoid a high redundant
among state machines, thresholds are defined and applied
to control the complexity and limit the number of unsatis-
fying block edges for each state. Threshold application has
a disadvantage, since when it is strictly implemented, the
scripts produced may not represent real behaviors of the
targeted server. Simplification of protocol states machines is
the core module of ScriptGen, where analysis of raw state
machines is done. In this stage target protocol key semantics
are introduced from the two distinct algorithms, the PI
algorithm [50] and the Region Analysis algorithm (developed
by ScriptGen). Finally, a simpler and reduced state machine
is obtained. The last module, Script Generator, creates some
compatible scripts from the simplified PFSMs.

Interests of Protocol Reverse Engineering may vary from
one approach and another. Ma et al. [31] use PRE techniques
to identify application based on their applications-layer
protocols. To achieve this goal, protocol models, product dis-
tribution model, and Markov process model are implemented
with unsupervised algorithms, LCS, and Smith-Waterman
algorithm. The approach can identify known applications
regardless of their port numbers while unknown traffic
applications can distinctively be identified from the known
ones. Besides, Ma et al. utilize real-world traffic traces to
evaluate each mechanism for applications’ classification.

Boosting [32], PIP [36], and FieldHunter [37] are
approaches solely focusing on identifying and reverse engi-
neering protocol fields or fields of interest. Boosting [32]
is an algorithm applied to extract specific fields of interest
in an unknown protocol, from an active learning frame-
work, in which the user presents the system with a small
number of labeled instances and the system automatically
generates sufficient features and classifiers of targeted fields
or interested fields. PIP [36] is a Protocol Informatics Project
that discusses four algorithms for similarities alignment
when given two or more sequences. The algorithms show
promising performance in protocol fields identification, espe-
cially text based protocols. PIP discusses four algorithms,
which are Needleman-Wunsch [44] (Sequence Alignment),
BLOSUM&PUM (Similarity Matrices), UPGMA (Phyloge-
netic Trees), and Phylogeny (Multiple Alignment).

FieldHunter [37] is a self-developed algorithm system,
which can automatically extract fields of binary and text
protocols and infer their types by computing statistical
correlations of collected target application messages from
multiple sessions. The computed statistical correlations here
come from different messages or other associations in meta-
data such as message length, client, or server IP addresses.
FieldHunter first studies well known protocols to identify
fields boundaries and infer their types which is statistical
and heuristic information gathering and can be applicable in
many security applications. The general focus of the system
is to identify Message Types, such as flags in DNS protocol

Security and Communication Networks

MSG
[0:57]

Payload

Msg_Len
[2:57]

[0:1]

1

]

Version
[2:3]

Type
[4:5]

BotID
[6:13]

Length Host info Padding
[14:15] [16:51] [52:57]
CPU-ID | | _____ IP addr
[16:19] [48:51]

FIGURE 10: Dispatcher: message field tree for MegaD host information message {Figure reproduced from Caballero et al. (2009), [under the

Creative Commons Attribution License/public domain]}.

or GET/POST keywords in HTTP, Message Lengths, mostly
found in TCP protocols to delimit application messages in
streams, Host Identifiers such as Client ID and Server ID,
Session Identifiers such as cookies, Transaction Identifiers such
as sequence/acknowledgement numbers, and Accumulators
such as generic counters and timestamps.

FieldHunter is composed of twosteps modules, the field
extraction step and the field type inference step. In the field
extraction step, fields are extracted from target protocol
messages in different techniques depending on whether the
messages belong to textual or binary protocols. In the field
type inference step both textual and binary protocols apply
common statistical properties and heuristic techniques to
infer types of messages. This message types’ inference step
is a potential step in discovering the whole protocol format
and/or the PFSM of a target protocol. Thus, iterated applica-
tion of FieldHunter system for single target undocumented
protocol may result in a protocol general format or its
PFSM.

Uncovering of the C&C used by a botnet in network
hosts is essential for infiltration and security analytical
measures. Dispatcher [6] 2009 and Dispatcher2 [34] 2013 are
two consecutive works that attempt to uncover the C&C
used by a botnet in network hosts. They present techniques
for extraction of message formats and semantics sent or
received by the client side or the server side. Although,
both Dispatcher [6] 2009 and Dispatcher2 [34] 2013 Protocol
Reverse Engineering techniques focus on extracting message
formats and protocol fields semantics for unknown protocols,
Dispatcher2 [34] goes further and extracts a program that
implements the protocol for even encrypted protocol traffic.
An example of message format parsing and fields tree for
C&C message generation and extraction by Dispatcher is
shown in Figure 10 {[6], Caballero et al. (2009)}.

As Figure 10 {[6], Caballero et al. (2009)} shows, a single
message in a formation of several fields that appear syntac-
tically and semantically. In this example, a single message of
captured protocol traffic is presented in a tree form and all
the node leaves are fields of the message where child nodes
represent subfields of their parents. The root node stands for
the whole message with 58 bytes [6]. From offset 0 to offset 57,

each field is situated at its own offset range carrying specified
bytes and a meaning for the protocol. In this example, all
fields clearly show what kind of information they do carry.
For instance, in the payload, a subfield (6-13) indicates the
Bolt ID while a subfield (16-51) indicates host information
such as a CPU ID (16-19), an IP identifier (48-51), and other
pieces of host related information (19-48).

A three-step framework for semantics analysis of net-
work payloads is proposed by ASAP [33], where semantics
of unknown protocols fields can be inferred. The ASAP
framework divides into three major steps, extraction of
network payloads alphabet, matrix factorization analysis, and
construction of communication templates. ASAP focuses on
protocol field semantics rather than syntaxes. ProVeX [35] is
a designed system to detect and discover C&C botnets’ traffic
that is encrypted in their C&C protocols by probabilistically
learning C&C inputs. To attain this goal, all packets captured
from potential malware C&C protocols are first decrypted
and their bytes are evaluated to generate the signatures
to identify the protocol syntax of C&C botnets messages.
ProVeX functions as follows: First, it uses an n-gram based
analysis to find botnets which do not have characteristic
payload strings in their encrypted network traffic data. Next,
it reverse engineers and reimplements decryption routines
of all bots, based on a fact that botnets are symmetric in
encryption. Lastly, probabilistic C&C models and protocol
syntaxes are inferred.

RS Cluster [38] is an unsupervised method capable of
reverse engineering different protocols by implementing a
rough set-based technique. The technique is suitable for
clustering network traffic and group protocol messages
according to their types and can analyze multidimension
of uncertain information in multiple categorical attributes
based on Rough Sets theory [51]. UPCSS (Unknown network
Protocol Classification method based on Semi-Supervised
learning) [39] is a semisupervised learning method, proposed
to identify applications from unknown protocols by labeling
small training sample set. Based on Erman’s semisupervised
approach, UPCSS is designed to detect unknown samples
generated by unknown protocols with the help of flow corre-
lation information and semisupervised clustering techniques.

12

ProPrint [41] is a network trace based protocol fingerprint
inference approach that focuses on distinguishing individual
application protocols. Fingerprints are set of bytes subse-
quences in packet payload which can act as application
protocols classifiers. To attain this goal ProPrint builds a
nonparametric and modified Bayesian statistical protocol
language model and next uses a corresponding protocol
language model to identify field boundaries in packet payload
to segment each payload into a set of protocol feature words.
ProPrint applies its own developed ranking algorithm to
select true protocol fingerprints from the candidate protocol
feature words. ProHacker [42] is a network traces based sys-
tem that attempts to extract protocol keywords and identify
the protocol trace from mixed Internet traffic. It uses the n-
grams of protocol traces to predict statistical nature that can
be captured from statistical language models. ProHacker in
similar fashion to ProPrint [41] uses nonparametric Bayesian
statistical model, a corresponding protocol keywords to
extract protocol keywords and classify protocol traces by a
semisupervised learning algorithm.

Section 3.1.4 describes 15 approaches that focus on neither
reverse engineering general PFs nor PFSMs of unknown
protocols. However, all the approaches provide detailed
literature, techniques, and algorithms that end in uncovering
both PFs and PFSMs. Among 15 approaches, 13 approaches
utilize network traces based inputs and 2 approaches utilize
execution traces based inputs.

3.2. Analysis on Automatic Protocol Reverse Engineering
Inputs. Automatic Protocol Reverse Engineering inputs divide
into two major categories, network traces and execution traces;
however, they may vary as well from one approach to another
in each single category. Section 3.1 describes 39 approaches,
methods, and tools’ outputs in four divisions, whereby 29
approaches utilize only network traces, 8 approaches utilize
only execution traces, and 2 approaches utilize both network
and execution traces as their systems inputs.

Regardless of the fact that network traces based ap-
proaches are often faced with significant challenges, such as
reconstruction of application-layer messages and synchro-
nization on the start of the message prior to any clustering
algorithms or format extraction, we have found that many
approaches, methods, and tools are utilizing more network
traces to execution traces in reverse engineering unknown
or undocumented protocols. A key drawback of network
traces based approaches is that they rely solely on defined
message boundaries to infer protocol format [1]. ReFormat
[9] emphasizes that APRE based on network traces is limited
by the lack of semantic information. Besides, [34] points that
using dynamic program binary analysis (execution traces)
is more efficient in analyzing unknown or undocumented
protocols since execution traces are more efficient to infer
specification of unknown and even encrypted protocols.

Most network traces based approaches have resulted in
trustful methods or developed tools [26]. However, these
methods are often neither suitable nor applicable in real
operations. Only few of these methods are significant to
allow scientific community to experimentally validate and
compare them when taken into applications in real network

Security and Communication Networks

environment. One major reason for this challenge is the fact
that network activities in laboratories never perfectly reflect
that observed in the wild [26]. Although more approaches
use network to execution traces, execution traces are more
appropriate inputs that results to more accurate reverse
engineered protocol fields. Execution traces are binaries that
indicate instructions loops’ (commands) starts and ends of
a communication, hence allowing effective Protocol Reverse
Engineering.

4. Discussion

This section discusses APRE approaches, methods, and tools
based on automated to manual approaches, text to binary,
binary to hybrid, and other reverse engineered protocols.
Additionally, the detailed literature of the approaches based
on the 7-layer OSI model is discussed.

4.1. Automated to Manual PRE Approaches. In practice,
almost all PRE approaches, methods and tools undergo man-
ual techniques at either module in their systems. However,
in presentation almost all PRE approaches claim to be full
automated. Indeed, PRE is still a highly manual process,
moreover an error-prone, tedious and time consuming [4],
due to lack of basic PRE knowledge as such that given
by Yurichev [43]. For open protocols such as HTTP and
DNS, the specifications are open in RFCs (Request for Com-
ments) while for unknown/undocumented protocols their
specifications need to only be reverse engineered. Numerous
obstacles such as binary human unreadable protocols, high
quantities of high entropy data, dynamically sized message
fields, context specific fields in which earlier fields in a
message change the meaning of following fields, and the
possibility of data protection schemes within the data such as
encryption, prevent efficient Protocol Reverse Engineering.

4.2. Categories of Reverse Engineered or Analyzed Protocols.
This section presents four divisions of the reverse engineered
or analyzed protocols, Text, Binary, Hybrid, and Others
(unknown/undocumented protocols which may be text,
binary, or hybrid) by four approaches outputs categories pre-
sented in Section 3.1. Protocols are mostly categorized as text
or binary; however in this paper we find four possible divi-
sions of reverse engineered or analyzed protocols, whereby
Discoverer [4] and RolePlayer [30] specifically categorize SMB
and CIFS protocols as hybrid. However, in Prospex [10],
ProDecoder [11], and Netzob [26] SMB protocol is termed
as binary protocol, from which we conclude that SMB is
a binary-hybrid protocol. A hybrid protocol is basically a
crossed protocol or a protocol that is multifunctions, more
efficient, and more reliable than previous versions or previous
protocols such as HRP (Hybrid Routing Protocol). Text and
binary protocols are well defined in the sixth paragraph
of Section 1. Protocols that are unknown/undocumented
protocols and that do not fall to either of the three, text,
binary, or hybrid fall to the other category.

Table 5 shows four divisions of reverse engineered or
analyzed protocols by approaches that focus on reverse

Security and Communication Networks

13

TaBLE 5: Four divisions of reverse engineered or analyzed protocols by PFs approaches.

Approach, method, tool, or author

Protocols analyzed or reverse engineered

Text Binary Hybrid = Others (unknown/undocumented)
Discoverer [4] HTTP RPC SMB, CIFS None
Polyglot [5] HTTP, Samba, ICQ DNS, IRC None None
AutoFormat [7] HTTP, SIP DHCP, RIP, OSPF SMB, CIFS None
Tupni [8] HTTP FTP RPC, DNS, TFTP None WME BMP, JPG, PNG, TIF
ReFormat [9] HTTP, MIME IRC None One unknown protocol
Prospex [10] SMTP, SIP SMB None Agobot (C&C)
ProDecoder [11] SMTP SMB None None
Wang et al. [12] ICMP ARP None None
ProGraph [13] HTTP DNS, BitTorrent, WeChat None None
Cai et al. [14] HTTP, SSDP DNS, BitTorrent, QQ, NetBios None None
WASp [15] None None None Smart plug & PSD systems

TABLE 6: Four divisions of reverse engineered or analyzed protocols by PFSMs approaches.

Approach, method, tool, or author

Protocols analyzed or reverse engineered

Text Binary Hybrid Others (unknown/undocumented)
PEXT [16] FTP None None None
Xiao et al. [3] HTTP, FTP, SMTP None None None
Trifilo et al. [17] None TCP, DHCP, ARP, KAD None None
Antunes and Neves [18] FTP None None None
ReverX [19] FTP None None None
Veritas [20] SMTP PPLIVE, XUNLEI None None
Zhang et al. [21] HTTP, SNMP, ISAKMP None None None
Laroche et al. [22] FTP DHCP None None
Meng et al. [23] None TCP, ARP None None

engineering protocol formats while Table 6 shows four
divisions as well, of reverse engineered or analyzed protocols
by approaches that focus on reverse engineering PFSMs.
Table 7 shows four divisions of reverse engineered or analyzed
protocols by approaches that can reverse engineer both
PFs and PFSMs. Lastly, Table 8 shows four divisions of
reverse engineered or analyzed protocols by approaches that
do not focus directly on either RE protocol formats or
PFSMs.

Several challenges are mentioned in Section 1, such
as binary human unreadable protocols, high entropy data,
dynamic protocol fields, and context based fields in which
earlier fields affect the meaning or the form of following
fields, encryption, and so on. To this point there is no single
approach that specifically deals with a particular challenge.
However, we find that for binary human unreadable proto-
cols, execution trace inputs utilization is a better choice to
approach uncovered fields, their syntaxes, and semantics. For
high entropy of data and dynamic protocol fields, collection
of statistical large data set of the target protocol may be a bet-
ter solution from which noise traffic data can be eliminated
and fields’ dynamic can easily be studied. For context based
fields in which earlier fields affect the meaning or the form
of the following field, application of association rules related
algorithms may be effective.

Automatic Protocol Reverse Engineering approaches,
methods, and tools are essential in modern network technol-
ogy for parsing the protocols and for security in general. This
paper sees the challenges of unskilled network administrators
if these approaches, methods, and tools were not open.
Furthermore, this paper sees a high risk of certain networks
to be under surveillance while administrators are unaware.
Attackers may take advantage of this unawareness and may
figure out how to play with hosts in a network. Some
traffic applications pretend to be certain protocols only for
surveillance and finding possible vulnerabilities in a network
to launch attacks. Since HT'TP is the most used application
protocol in the Internet by far, we observe high risks of web
servers and web applications where most of these protocols
are involved in one way or another. Being aware of how to
reverse engineer protocols in a specific layer or in all the 7
layers of the OSI model in important, however, this paper
finds that knowing more about how HTTP protocol operates
in web servers and web applications is even more important.
For instance, in HT'TP protocol requests and responses, there
are header fields such as Cookie, User-Agent, Referer, and Host
that need to be well studied. Within these header fields there
are distinctive feature vectors between normal and abnormal
traffic that if deeply studied will enhance security in web
servers and web applications.

14

Security and Communication Networks

TaBLE 7: Four divisions of reverse engineered or analyzed protocols by approaches focusing both PFs and PFSMs.

Approach, method, tool, or author

Protocols analyzed or reverse engineered

Text Binary Hybrid Others (unknown/undocumented)
GAPA Spec [24] HTTP None None None
Biprominer [25] None XUNLEL QQLive, None None
SopCast
Netzob [26, 27] FTP, Samba SMB None Unknown P2P protocol &

HTTP, POP3, SMTP,

AutoReEngine [28] FTP

VoIP commercial product protocol

DNS, NetBIOS None None

TaBLE 8: Four divisions of reverse engineered or analyzed protocols by approaches that do not directly focus on reverse engineering PFs or

PFSMs.

Protocols analyzed or reverse engineered

Approach, method, tool, or author T) brid Others
ext Binary Hybri (unknown/undocumented)
ScriptGen [29] HTTP NetBios None DCE
NFS, FTP, HTTP,
RolePlayer [30] SMTP, TFTP DNS SMB, CIFS None
FTP, SMTP, HTTP, DNS, NetBIOS,
Maetal. [31] HTTPS (TCP-Protos) SrvLoc (UDP-Protos) None None
Boosting [32] None DNS None None
Dispatcher [6] HTTP FTP, ICQ DNS None None
HTTP, FTP,
ASAP [33] IRC, TFTP None None None
Dispatcher2 [34] HTTP FTP, ICQ DNS SMB None
ProVeX [35] HTTP, SMTP, IMAP DNS, VoIP, XMPP None Malware Family Protocols
PIP [36] HTTP None None None
FieldHunter [37] MSNP DNS None SopCast, Ramnit
DNS, XunLei,
RS Cluster [38] HTTPS, POP3, SMTP, BitTorrent, BitSpirit, None MSSQL, Kugoo, PPTV
FTP
QQ, eMule
IMAP, HTTP, SMTP,
UPCSS [39] FTP, POP3 DNS, SSL, SSH SMB None
ARP, OSPF, DHCP, CDP/DTP/VTP, HSRP, LLDP,
PowerShell [40] None STP None LLMNR, mDNS, NBNS, VRRP

4.3. Protocols Classification by 7 Layers of the OSI Model. The
OSI model covers a large spectrum of typical communication
functions from its electrical aspects with the physical layer
to the application layer. Thus, in real network environment
communication or transmission between two endpoints,
seven protocols are possibly involved. This kind of protocols
layering is known as protocol family. From this point of
view if an approach considers every layer to uncover spec-
ifications of a target or unknown protocol, the process may
turn extremely hard. Therefore, many approaches reverse
engineer target protocols in a particular layer. However, given
a communication or transmission, reverse engineering an
involved protocol from layer 1 to layer 7 and vice versa would
indicate a complete behavior and perfect protocol format.
GAPA [24] attempts to consider protocol layering with a
developed GAPAL Spec, whereas at each layer the language
reverse engineers and connects pre- and postlayer protocols.

As a single universal protocol would be very hard to
design and implement correctly, similarly a single unknown
protocol would be very hard to reverse engineer when only
one and specific layer is considered. The challenge to this
impossibility is due to the fact that network protocols operate
in very heterogeneous environments that consist of very
different network technologies and sometimes having very
rich set of applications. To ease protocols design a layered
architecture of protocols is promoted by the OSI model
and retained in very most network related communication
protocols [52], which in reverse simplifies the whole process
of reverse engineering both known and unknown protocols
in a specific layer and in the whole OSI model.

In Table 9, we show a category of reverse engineered or
analyzed protocols based on the OSI model with approaches
for each layer. Application-layer protocols appear to be highly
analyzed or reverse engineered, whereby 33 protocols are

Security and Communication Networks

15

TaBLE 9: Classification of analyzed or reverse engineered protocols based on the 7-layer OSI Model.

OSI-layer

Analyzed/reverse engineered protocols

Related approach, method, or tool

HTTP, HTTPS, DNS, SIP, FTP, TFTP, IMAP, SSH, IRC,
XMPP, SMTP, BitTorrent, MIME, SNMP, MSNP, POP3,

7-application

DHCP, SMB, CIFS, Samba, XunLei, BitSpirit, QQLive,

[3-11, 13, 14, 16-22, 24-26, 28-30, 32-37, 39, 41, 42]

eMule, ICQ, SopCast, PPLIVE, PPTV, KAD, ISAKMP,

SSDP, WeChat, Kugoo

6-presentation SMB, WME BMP, JPG, PNG, TIE, MIME, SSL [8-11, 29, 39]
5-session RPC, NetBIOS, NFS, SSL [8, 14, 29, 30, 39, 40]
4-transport TCP, UDP, SrvLoc [17, 23, 31, 38]
3-network ICMP, OSPE RIP [7,12, 40]
2-data link ARP, STP [12, 15,17, 23]
1-physical none [15]

analyzed or reverse engineered by 33 out of 39 approaches,
methods, and tools presented in this paper. HTTP protocol
appears in 21 approaches as the most analyzed protocol.
WASp [15] which is explained in Section 3.1.1 is the only
approach generally focusing on analyzing physical layer
protocols, although no single specific protocol of the physical
layer is mentioned as analyzed or reverse engineered.

5. Conclusion and Potential Future Research

This paper, discusses 39 approaches, methods, and tools that
focus on automatic reverse engineering network protocols,
especially unknown and undocumented ones. In Sections 3.1
and 3.2, we evaluate the approaches outputs in four divisions
based on their inputs, network traces, and execution traces.
We further present discussion about the reviewed approaches
in terms of automated to manual, categories of analyzed or
reverse engineered protocols in terms of text, binary, hybrid,
or others (unknown or undocumented) and analyze in depth
the seven layers of OSI model in relation to APRE along with
classification for all analyzed or reverse engineered protocols
based on the OSI model. Moreover, in the introductory part,
Section 1, a detailed literature and general key terminologies
of PRE are provided.

We now draw future and potential research directions of
APRE based on Sections 3 and 4. Automatic Protocol Reverse
Engineering is an increasingly important field in modern net-
work communication environment and security. However,
this paper finds that poor knowledge on reverse engineering
unknown protocols is the first major drawback. Having
little background on the PRE and APRE, many approaches
propose frameworks and architectures that do not result into
promising outputs. For instance, most approaches utilize net-
work traces to execution traces. Utilization of network traces
provide few syntax and semantic information of protocol
messages, hence always outputting protocol specifications
that have low correctness, coverage, and conciseness. From
the reviewed approaches, those that utilize execution trace
analysis result in promising outputs which almost match true
specifications of the analyzed protocols. Additionally, almost
all the reviewed approaches do not consider more that on
layers of the OSI model. Since at every layer of the OSI model

a single protocol is involved to handle a communication [53],
to be accurate and efficient, Protocol Reverse Engineering
approaches should consider and analyze messages at each
layer (from physical layer to application layer) to uncover all
protocols involved in the OSI model and draw a much wider
and detailed format or behavior of a certain network and
Internet transmission or communication.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by Basic Science Research
Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education
(2015R1D1A3A01018057) and by Institute for Information
& Communications Technology Promotion (IITP) grant
funded by the Korea Government (MSIT) (no. 2017-0-
00513).

References

[1] J.Narayan, S. K. Shukla, and T. C. Clancy, “A survey of automatic
protocol reverse engineering tools,” ACM Computing Surveys,
vol. 48, no. 3, article 40, 2015.

[2] X.Liand L. Chen, “A survey on methods of automatic protocol
reverse engineering,” in Proceedings of the 7th International
Conference on Computational Intelligence and Security (CIS ’11),
pp- 685-689, December 2011.

[3] M.-M. Xiao, S.-Z. Yu, and Y. Wang, “Automatic network
protocol automaton extraction,” in Proceedings of the 3rd Inter-
national Conference on Network and System Security (NSS "09),
pp- 336-343, October 2009.

[4] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: automatic
protocol description generation from network traces,” in Pro-
ceedings of the USENIX Security Symposium, 2007.

[5] J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: auto-
matic extraction of protocol message format using dynamic
binary analysis,” in Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS *07), pp. 317-329,
ACM, November 2007.

16

(6]

N

(8]

5

(10]

(12

(13]

(14]

(16]

(17]

J. Caballero, P. Poosankam, C. Kreibich, and D. Song, “Dis-
patcher: enabling active botnet infiltration using automatic
protocol reverse-engineering,” in Proceedings of the 16th ACM
Conference on Computer and Communications Security (CCS
’09), pp. 621-634, ACM, Chicago, Ill, USA, November 2009.

Z. Lin, X. Jiang, D. Xu, and X. Zhang, “Automatic protocol
format reverse engineering through context-aware monitored
execution,” in Proceedings of the 15th Symposium on Network and
Distributed System Security (NDSS *08), February 2008.

W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz,
“Tupni: automatic reverse engineering of input formats,” in
Proceedings of the 15th ACM Conference on Computer and Com-
munications Security (CCS *08), pp. 391-402, ACM, Alexandria,

Va, USA, October 2008.

Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace, “ReFormat:
automatic reverse engineering of encrypted messages,” in Com-
puter Security—ESORICS 2009. ESORICS 2009, M. Backes and
P. Ning, Eds., vol. 5789 of Lecture Notes in Computer Science, pp.
200-215, Springer, Berlin, Germany, 2009.

P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda,
“Prospex: protocol specification extraction,” in Proceedings of
the 30th IEEE Symposium on Security and Privacy, pp. 110-125,
Berkeley, Calif, USA, May 2009.

Y. Wang, X. Yun, M. Z. Shafiq et al., “A semantics aware
approach to automated reverse engineering unknown proto-
cols,” in Proceedings of the 20th IEEE International Conference on
Network Protocols (ICNP ’12), pp. 1-10, IEEE, Austin, Tex, USA,
November 2012.

Y. Wang, N. Zhang, Y.-M. Wu, B.-B. Su, and Y.-]. Liao, “Protocol
formats reverse engineering based on association rules in
wireless environment,” in Proceedings of the 12th IEEE Interna-
tional Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom ’13), pp. 134-141, Melbourne,
Australia, July 2013.

Q. Huang, P. P C. Lee, and Z. Zhang, “Exploiting intra-
packet dependency for fine-grained protocol format inference,”
in Proceedings of the 14th IFIP Networking Conference (NET-
WORKING ’15), Toulouse, France, May 2015.

J. Cai, J. Luo, and E Lei, “Analyzing network protocols of appli-
cation layer using hidden Semi-Markov model,” Mathematical
Problems in Engineering, vol. 2016, Article ID 9161723, 14 pages,
2016.

K. Choi, Y. Son, J. Noh, H. Shin, J. Choi, and Y. Kim, “Dissect-
ing customized protocols: automatic analysis for customized
protocols based on IEEE 802.15.4, in Proceedings of the 9th
ACM Conference on Security and Privacy in Wireless and Mobile
Networks, pp. 183-193, Darmstadt, Germany, July 2016.

M. Shevertalov and S. Mancoridis, “A reverse engineering tool
for extracting protocols of networked applications,” in Proceed-
ings of the 14th Working Conference on Reverse Engineering
(WCRE °07), pp. 229-238, October 2007.

A. Trifilo, S. Burschka, and E. Biersack, “Traffic to protocol
reverse engineering,” in Proceedings of the IEEE Symposium
on Computational Intelligence for Security and Defense Applica-
tions, pp. 1-8, July 2009.

J. Antunes and N. Neves, “Building an automaton towards
reverse protocol engineering,” 2009, http://www.di.fc.ul.pt/
~nuno/PAPERS/INFORUMO09.pdf.

J. Antunes, N. Neves, and P. Verissimo, “Reverse engineering
of protocols from network traces,” in Proceedings of the 18th
Working Conference on Reverse Engineering (WCRE ’11), pp.
169-178, October 2011.

(20]

(21]

(22]

(27]

(28]

(29]

(31]

(33]

(34]

Security and Communication Networks

Y. Wang, Z. Zhang, D. D. Yao, B. Qu, and L. Guo, “Inferring
protocol state machine from network traces: a probabilistic
approach,” in Proceedings of the 9th Applied Cryptography and
Network Security International Conference (ACNS ’11), pp. 1-18,
2011.

Z. Zhang, Q.-Y. Wen, and W. Tang, “Mining protocol state
machines by interactive grammar inference,” in Proceedings of
the 2012 3rd International Conference on Digital Manufacturing
and Automation (ICDMA ’12), pp. 524-527, August 2012.

P. Laroche, A. Burrows, and A. N. Zincir-Heywood, “How far
an evolutionary approach can go for protocol state analysis and
discovery;” in Proceedings of the IEEE Congress on Evolutionary
Computation (CEC ’13), pp. 3228-3235, June 2013.

E Meng, Y. Liu, C. Zhang, T. Li, and Y. Yue, “Inferring
protocol state machine for binary communication protocol,” in
Proceedings of the IEEE Workshop on Advanced Research and
Technology in Industry Applications (WARTIA ’14), pp. 870-874,
September 2014.

N. Borisov, D. J. Brumley, H. J. Wang, J. Dunagan, P. Joshi,
and C. Guo, “Generic application-level protocol analyzer and
its language,” MSR Technical Report MSR-TR-2005-133, 2005.
Y. Wang, X. Li, J. Meng, Y. Zhao, Z. Zhang, and L. Guo,
“Biprominer: automatic mining of binary protocol features,” in
Proceedings of the 12th International Conference on Parallel and
Distributed Computing, Applications and Technologies (PDCAT
’11), pp. 179-184, October 2011.

G. Bossert, F. Guihéry, and G. Hiet, “Towards automated
protocol reverse engineering using semantic information,” in
Proceedings of the 9th ACM Symposium on Information, Com-
puter and Communications Security, Kyoto, Japan, June 2014.
G. Bossert and F. Guihéry, “Reverse and simulate your enemy
botnet C&C,” in Proceedings of the Mapping a P2P Botnet with
Netzob, Black Hat 2012, Abu Dhabi, UAE, December 2012.

J-Z. Luo and S.-Z. Yu, “Position-based automatic reverse
engineering of network protocols,” Journal of Network and
Computer Applications, vol. 36, no. 3, pp. 1070-1077, 2013.

C. Leita, K. Mermoud, and M. Dacier, “ScriptGen: an automated
script generation tool for Honeyd,” in Proceedings of the 2Ist
Annual Computer Security Applications Conference (ACSAC
’05), pp. 203-214, Tucson, Ariz, USA, December 2005.

W. Cui, V. Paxson, N. C. Weaver, and R. H. Katz, “Protocol-
independent adaptive replay of application dialog,” in Proceed-
ings of the 13th Symposium on Network and Distributed System
Security (NDSS °06), 2006.

J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. Voelker,
“Automatic protocol inference: unexpected means of identi-
fying protocols,” UCSD Computer Science Technical Report
CS2006-0850, 2006.

K. Gopalratnam, S. Basu, J. Dunagan, and H.]. Wang, “Automat-
ically extracting fields from unknown network protocols,” in
Proceedings of the 15th Symposium on Network and Distributed
System Security (NDSS °08), 2008.

T. Krueger, N. Krmer, and K. Rieck, “Asap: automatic semantics-
aware analysis of network payloads,” in Proceedings of the
ECML/PKDD, 2011.

J. Caballero and D. Song, “Automatic protocol reverse-
engineering: message format extraction and field semantics
inference,” Computer Networks, vol. 57, no. 2, pp. 451-474, 2013.
C. Rossow and C. J. Dietrich, “PROVEX: detecting botnets
with encrypted command and control channels,” in Detection of
Intrusions and Malware, and Vulnerability Assessment, Springer,
2013.

http://www.di.fc.ul.pt/~nuno/PAPERS/INFORUM09.pdf
http://www.di.fc.ul.pt/~nuno/PAPERS/INFORUM09.pdf

Security and Communication Networks

[36] M. Beddoe, “The protocol informatics project,” 2014, http://
www.4tphi.net/~awalters/PI/PLhtml.

[37] I.Bermudez, A. Tongaonkar, M. Iliofotou, M. Mellia, and M. M.
Munafo, “Automatic protocol field inference for deeper protocol
understanding,” in Proceedings of the 14th IFIP Networking
Conference (Networking ’15), pp. 1-9, May 2015.

[38] J.-Z. Luo, S.-Z. Yu, and J. Cai, “Capturing uncertainty informa-
tion and categorical characteristics for network payload group-
ing in protocol reverse engineering,” Mathematical Problems in
Engineering, vol. 2015, Article ID 962974, 9 pages, 2015.

[39] R. Lin, O. Li, Q. Li, and Y. Liu, “Unknown network protocol
classification method based on semi supervised learning,” in
Proceedings of the IEEE International Conference on Computer
and Communications (ICCC’15), pp. 300-308, Chengdu, China,
October 2015.

[40] D.R. Fletcher Jr., Identifying Vulnerable Network Protocols with
PowerShell, SANS Institute Reading Room site, 2017.

[41] Y. Wang, X. Yun, Y. Zhang, L. Chen, and G. Wu, “A nonparamet-
ric approach to the automated protocol fingerprint inference,”
Journal of Network and Computer Applications, vol. 99, pp. 1-9,
2017.

[42] Y. Wang, X. Yun, Y. Zhang, L. Chen, and T. Zang, “Rethinking
robust and accurate application protocol identification,” Com-
puter Networks, vol. 129, pp. 64-78, 2017.

[43] D. Yurichev, 2013~2016, Reverse Engineering for Beginners.

[44] S. B. Needleman and C. D. Wunsch, “A general method appli-
cable to the search for similarities in the amino acid sequence
of two proteins,” Journal of Molecular Biology, vol. 48, no. 3, pp.
443-453,1970.

[45] H. Yin, D. Song, E. Manuel, C. Kruegel, and E. Kirda,
“Panorama: capturing system-wide information flow for mal-
ware detection and analysis,” in Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS
’07), Alexandria, Va, USA, October 2007.

[46] H. Kim, K. C. Clafty, M. Fomenkov, D. Barman, M. Faloutsos,
and K. Lee, “Internet traffic classification demystified: myths,
caveats, and the best practices,” in Proceedings of the ACM
CoNEXT Conference—4th International Conference on Emerg-
ing Networking EXperiments and Technologies (CONEXT ’08),
December 2008.

[47] R. Agrawal, T. Imielinski, and A. Swami, “Mining association
rules between sets of items in large databases,” in Proceedings of
the ACM SIGMOD International Conference on Management of
Data (SIGMOD ’93), pp. 207-216, May 1993.

[48] P. Dupont, B. Lambeau, C. Damas, and A. Van Lamsweerde,
“The QSM algorithm and its application to software behavior
model induction,” Applied Artificial Intelligence, vol. 22, no. 1-2,
pp. 77-115, 2008.

[49] Wireshark: the world’s most popular network protocol analyzer,
http://www.wireshark.org/.

[50] M. A. Beddoe, “Network protocol analysis using bioinformatics
algorithms,” 2005, http://www.insidiae.com/PI.

[51] L. J. Mazlack, A. He, and Y. Zhu, “A rough set approach in
choosing partitioning attributes,” in Proceedings of the 13th ISCA
International Conference (CAINE *00), pp. 1-6, New Orleans, La,
USA, March 2000.

[52] A. Leon-Garcia and I. Widjaja, Communication Networks:
Fundamental Concepts and Key Architectures—Chapter 2, Appli-
cations and Layered Architectures, Tata McGraw-Hill, 2004.

[53] G. Bossert, Exploiting Semantic for the Automatic Reverse
Engineering of Communication Protocols, Supélec, NNT:
2014SUPL0027, 2014.

17

http://www.4tphi.net/~awalters/PI/PI.html
http://www.4tphi.net/~awalters/PI/PI.html
http://www.wireshark.org/
http://www.insidiae.com/PI

International Journal of

Rotating
Machinery

The Scientific
quld Journal

Journal of

Sensors

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of
Navigation and
Observation

Aoet®

International Journal of
Anten nas and
Propagation

International Journal of
Chemical Engineering

Hindawi

Submit your manuscripts at
https://www.hindawi.com

Active and Passive
Electronic Components

Modelling &
Simulation
in Engineering

ekt sty S
e L

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of

Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering

and Vibration

