
978-1-5386-1101-2/17/$31.00 ©2017 IEEE

Survey on Network Protocol Reverse Engineering
Approaches, Methods and Tools

Baraka D. Sija1 , Young-Hoon Goo1, Kyu-Seok-Shim1, Sungyun Kim2, Mi-Jung Choi2 and Myung-Sup Kim1

Department of Computer and Information Science, Korea University, Sejong, Korea1

Department of Computer Science, Kangwon National University, Chuncheon, Korea2

{sijabarakajia25, gyh0808, kusuk007, tmskim} @korea.ac.kr1, {kyun, mjchoi} @kangwon.ac.kr2

Abstract— A network protocol defines rules that control
communications between two or more hosts on the Internet,
whereas Protocol Reverse Engineering (PRE) defines the process
of extracting the structure, attributes and data from a network
protocol. Enough knowledge on protocol specifications is essential
for security purposes, network policy implementation and
management of network resources. Protocol Reverse Engineering
is a complex process intended to uncover specifications of
unknown protocols. The complexity of PRE, in terms of time
consumption, tediousness and error-prone, has led to short and
diverse outcomes of Protocols Reverse Engineering approaches.
This paper, surveys outputs of 9 PRE approaches in three divisions
with methodology analysis and its possible applications. Moreover,
in the introductory part we provide a general PRE literature in
great depth.

Keywords— Network Protocols; Unknown Network Protocols;
Protocol Reverse Engineering; PRE Outputs; Survey

I. INTRODUCTION
There is a vast number of network protocols and network

applications that are active on the Internet, however only a part
of it is well-known. One and major challenge of Protocol
Reverse Engineering (PRE) is that it is mainly done manually
and since manual PRE is extremely tedious and time consuming,
sometimes it may take several years to uncover certain protocol
specifications. Efficient PRE is prevented by numerous
obstacles but the major obstacle is lack of protocol reverse
engineering knowledge [1].

In the following paragraphs of this section, we discus several
key terminologies which are commonly used in PRE and their
relations.

Protocol Reverse Engineering is an entire process in which
protocol parameters, formats and semantics are inferred in the
absence of formal specifications [2]. PRE developed
approaches, methods and tools use either execution traces or
network traces as their inputs to analyze protocols formats or
Protocol Finite State Machines (PFSMs). An execution trace is
a sequence of instructions output that is executed during a single

run of an application between multiple communicating hosts
whereas a network trace is a ground truth traffic extracted from
well-known tools such as Wireshark and Microsoft network
monitor in cap or Pcap format.

When two or more machines communicate in the Internet all
transmissions are grammatically and semantically controlled.
From this point of view, protocol reverse engineering is
conducted to infer such unknown syntaxes and semantics of a
protocol. Syntax inference (inferring protocol syntaxes) is the
process in which protocol grammars are inferred, where field
boundaries, offset locations and endianness are discovered. It is
the process in which the protocol rules that were used to format
the messages involved in communication between two hosts are
identified [3]. Semantic inference (inferring protocol semantics)
is the process in which the data content that were exchanged
between two communicating machines together with its
meaning are inferred. In this process, protocols that are oriented
in data structures such as Domain Name System (DNS) are
inferred as binary protocols while text strings oriented protocols
such as HTTP are classified as text protocols.

PRE results can be presented in two ways, either Protocol
Format or PFSM for both binary and text protocols. The PFSM
defines timing, orders or states in which fields in a message or
messages in flow are exchanged between two hosts whereby a
protocol format is a structural presentation of how fields are
bounded in a message semantically with independent syntaxes.
A field in a message composition of contiguous sets of
associated bits(bytes) that contain semantic message data [2]. A
protocol can have several fields from which some may be
variable or fixed, as well as their lengths. A keyword is a word
that differentiate one field from another semantically. In TCP/IP
protocols source IP/port, destination IP/port, checksum, data
offset, sequence number and acknowledgement are examples of
fields keywords. In text protocols fields, key-values or values
are separated by delimiters (separators [4]). A delimiter is a non-
alphabetic symbol such as ‘#’, ‘:’, ‘;’, ‘,’, ‘LF’ or hexadecimal
such as “0x0D0A, 0x00, 0x5C, etc.”.

Although several evaluation metrics exist, correctness,
conciseness and coverage are mainly involved in evaluation of
PRE methods [2]. Correctness measures how accurate the
reverse engineered protocol matches the true specifications of a
protocol. Conciseness measures how many reverse engineered
messages or states represent a single true message or that state

__
This work was supported by Institute for Information &
communications Technology Promotion(IITP) grant funded by the
Korea government(MSIT) (No. 2017-0-00513, No. 2017-0-00158)

271978-1-5386-1101-2/17/$31.00 ©2017 IEEE APNOMS 2017

whereas coverage measures the quantity of reverse engineered
protocol messages or states as compared the true protocol
specifications.

Objectives, interests and applications of PRE may vary from
one approach to another, such as involvement in IDSs, deep
packet inspection (DPI), efficient fuzzing, identifying and
analyzing botnets command and control message and integration
and software compliance [2]. Of these motivations, PRE mostly
relies on network and the Internet security purposes. Protocol
formats and Protocol Finite State Machines(PFSMs)
presentations are significant since they offer network
administrators whole views of protocols for analysis and
detection of abnormalities for security.

The rest of the paper is structured as follows: In Section II,
we analyze approaches that Reverse Engineer the protocols
formats. Section III, presents approaches that Reverse Engineers
PFSMs. In Section IV, we present approaches that focus on
Reverse Engineering neither protocol formats nor PFSMs
directly. Conclusive analysis and future work are given in
section V.

II. PRE FOR PROTOCOL FORMAT
PRE and protocol analyzers are such necessary for numerous

applications in modern networks, however what outputs are
resulted and what contribution do they bring, is more important.
The following three sections, presents three divisions of PRE
outputs as summarized in Table 1.

A protocol format is the general structure of how different
fields of a protocol appear, when such a protocol is involved in
real environment of network communications. Although some
approaches, methods or Tools claim to reverse engineer a
protocol format from a single message extracted from either side
of the two communicating network machines, several messages
from both sides need to be extracted and critically analyzed for
complete uncovering of a protocol format.

TABLE 1. THREE DIVISIONS OF PROTOCOL REVERSE ENGINEERING OUTPUTS

Approach, Method
Tool or Author

OUTPUTS
ProtoForm PFSM OTHER

Tupni [4] ○
ReFormat [5] ○
J. Cai et al [6] ○

ReverX [7] ○
PEXT [8] ○

A. Trifilo et al [9] ○
ASAP [10] ○-Semantics

ScriptGen [11] ○-Dialogs
PowerShell [12] ○-Scripts

A. Tupni
Tupni [5], is a tool that reverse engineers an input format with

record sequences, record types and input constraints. Different
format specifications can be generalized by the tool over
multiple inputs. When aggregated over multiple protocol source
files, it can derive more complete format specifications.

• Tupni Architecture

Tupni architecture has three major modules; F-I (Field
Identification whose raw input is i (network message), I-RS
(Identification of Record Sequences) whose input is S (Sequence
of Fields) and I-RT (Identification of Record Types) whose input
is S (Sequence of Records) as shown in Fig.1. An output O, is a
Sequence of Record Types.

Fig.1. Tupni; Summarized Architecture Overview

The tool analyzes a single run of a parsing application on a
target input. For a single run of the application, the sequence of
instructions that is executed during this run is called the
execution trace of the run. Each execution trace is associated
with the list of binaries that were loaded during the run and the
base addresses at which the binaries were loaded. Byte positions
in the input are referred as offsets. The term position is used to
identify instructions in the execution trace. For example, a ‘mov’
instruction in the application binary may appear at multiple
positions in the execution trace [5]. Sequences of contiguous
positions in the execution trace are termed as subsequences.
After several runs, Tupni finally aggregates the results of its
analysis of the same application on different inputs to uncover
the format.

B. ReFormat
ReFormat is a system that focus on deriving the message

format for even encrypted messages [6]. An assumption is taken
that after you decrypt a message a normal reverse engineering
process takes place. Thus, ReFormat divides in two major steps,
decryption of messages and reverse engineering.

• ReFormat Architecture

ReFormat [6] takes four key phases which are Execution
Monitor, Phase Profiler, Data Lifetime Analyzer and Format
Analyzer as shown in Fig.2. In Execution Monitor phase, the
application execution is monitored and an execution trace is
collected with records of how an application decrypts a
message. In phase profiler, the execution trace is analyzed to
identify both message decryption and normal protocol
processing. Next, data lifetime analysis is done to locate buffers
containing the decrypted messages. The last phase conducts
dynamic data flow analysis on the buffers located in the
previous step to uncover the format of the decrypted messages.

Fig. 2. ReFormat System Architecture

272

C. J. Cai et al
J. Cai et al. determine the optimal length of protocol

keywords and recover message formats of Internet protocols by
maximizing the likelihood probability of message segmentation
and keyword selection [7]. Through a hidden semi-Markov
model, J. Cai et al. attempt to model the whole protocol message
format. Based on Hidden Markov Model functions, an affinity
propagation mechanism based on clustering technique is
introduced to determine type of messages. In the beginning the
raw data set is collected using tshark belonging to one protocol.
Next, session are messages are formed, HsMM is modeled with
message segmentation and type inference.

The contribution of this approach is the HsMM modeling
where message formats are generated from an algorithm based
on the Baum-Welch method, performed to re-estimate the
parameters of the HsMM protocol model. In the message
segmentation phase, the re-estimated HsMM model is applied to
determine the optimal length of protocol keywords and divide
message into field sequence. The final stage is message type
inference, where protocol messages are clustered by affinity
propagation mechanism and each cluster represents a message
type.

III. PRE FOR PROTOCOLS FINITE STATE MACHINES(PFSM)
Protocol Finite State Machine (PFSM) is one and important

presentation of a protocol transitions in PRE. It simply defines
orders, states and transitions of fields in a message or messages
in a flow between two or more communicating machines.

A. ReverX
ReverX is a methodology that automatically infers a

specification of a protocol from real environment network
traces, that will generate automata for the protocol language and
state machine. Since ReverX focuses on only protocols sample
interactions, it is a well-suited approach for uncovering the
message formats and protocol states of closed protocols and
automating most of the processes that specifies open protocols.

Fig. 3. ReverX Architecture Overview

ReverX is divided in two phases, Generalized Protocol
Language and reduced Protocol State Machine as indicated in
Fig. 3. In the first phase, the construction of a Prefix Tree
Acceptor (PTA) is done from the protocol messages of the
network traces (Partial Language), which is then generalized
with the intention of producing an FSM that could accept the
same message types in different payloads (Protocol Language)

[8]. In the second phase, it deduces the protocol state machine
from the causal relations among different messages present in
the network traces and resorts to a more accurate and highly
reduced PFSM.

B. PEXT
In PEXT (Protocol EXTraction) [9], networked applications

protocols are reverse engineered by raw packets of an
application captured at runtime. Packets are first captured from
distinct execution traces and grouped to distinct classes.
Identical packets are grouped into their individual flows and then
identical flows are extracted. These flows which are restricted to
contain at least two packets, form initial states. Since each state
is restricted to contain packets of the same flow, distinct states
are classified. Identical flows are identified and labeled as states
with specific IDs. To this point, longest common substring
algorithm (LCS) applies to all leftover flows to derive all the
other states. Finally, each packet that does not belonging to any
state yet becomes a single state to form a general minimized state
machine.

C. A. Trifilo et al

Fig. 4. Workflow Overview of A. Trifilo et al

In [10], A. Trifilo et al propose an approach that derives the
protocol state machines from network traces. As shown in Fig.
4, raw traffic data are sniffed and filtered to select the protocol
to be reverse engineered and then stored in a standard Tcpdump
file. The extraction of binary features is done on only target
fields of a protocol message. For example, in a HTTP request
“GET /d3/ko/ HTTP/1.1” only the field“GET” is necessary to
understand the basic logic of the protocol as it defines the type
of action requested. In this approach, a statistical analysis of
several flows based on the “Variance of the Distribution of
Variances” (VDV) is used to achieve the reduction to a subset
of interested features in each byte of the binary protocol
message. Through a State Splitting Algorithm, the PFSM is
constructed from the selected features [10].

IV. PRE FOR OTHER OUTPUTS
Apart from Protocol Formats and Protocol Finite State

Machine (PFSM), which are two and major focus outputs of
PRE, this section summarizes three works that do not directly
focus on Reverse Engineering either Protocol Format or PFSMs.

A. ASAP
ASAP (Automatic Semantics-aware Analysis of network

Payloads) is a framework for protocol semantics inference and
analysis from network traffic [11]. The method maps network
payloads to a vector space and identifies communication

273

templates corresponding to base directions in the vector space.
ASAP is applicable in different security applications such as
automatic discovery of patterns in honeypot data, analysis of
malware communication and network intrusion detection.

B. Script-Gen
Script-Gen, is a tool for automatically generating scripts

from two communicating machines.

Fig. 5 shows four modules of the Script-Gen framework,
where TCP based protocol messages that are exchanged between
a client and a server are first extracted by Tcpdump. To this point
TCP streams that correctly handle retransmissions and
reordering are reconstructed. Next, the extracted messages are
used as building blocks to build a state machine where the built
states lead to a generation of redundant and highly inefficient
state machine. To control such redundant, thresholds that limit
the number of outgoing edges for each state are applied.

The State Machine Simplifier is the core module in which
raw state machine and semantics are analyzed and achieved
through two algorithms, the PI and the Region Analysis, newly
introduced by Script-Gen [12]. From the two algorithms, simpler
state machine for scripts generation is obtained.

Fig. 5. ScriptGen Summarized Structure

C. PowerShell
Microsoft Windows PowerShell[13] is a tool that has led to

several exploit frameworks such as PowerSploit, PowerView
and PowerShell Empire. However, only some of these
frameworks investigate network traffic for exploitative
potential. The tool includes several network analysis and
network traffic related capabilities to explore capturing, analysis
and identification of protocols without installation of any other
supporting tool in Microsoft Windows environment. PowerShell
may investigate protocols that indicate potential vulnerabilities
within a network environment, for both attackers and defenders.

The scripts generated by PowerShell can currently fully
support IPv4 traffic and protocols where by the environment for
IPv6 are also being developed [13]. In general, a script produced
by PowerShell, provides an easy method to identify many of the
protocols in different vulnerable conditions and is useful to both
network defenders and penetration testers for identification of
network protocol based vulnerabilities.

V. CONCLUSION AND FUTURE WORK
Protocol Reverse Engineering (PRE) is an increasingly

important field in modern network environment and security. In
a summarized way, this paper discusses PRE outputs of 9
approaches, methods and tools, dividing them in three divisions,

PRE for Protocol Format, PRE for Protocol Finite State Machine
(PFSM) and Other outputs which can either be semantics-
contents or scripts. One of the major motivations of this paper is
how risk are the Internet users’ privacy, when their packets will
be involved and controlled by an unknown or undocumented
protocol, without knowing?

Many and different research on PRE have been done and
promising outputs have been obtained, however due to frequent
environment changes that lead to current protocols updates or
inventions of new protocols, PRE as well need to be conducted
in modern and highly automated fashion to match the evolving
of protocols and network environment changes.

REFERENCES

[1] Dennis Yurichev, 2013~2016, Reverse Engineering for Beginners
[2] John Narayan, Sandeep K. Shukla, and T. Charles Clancy. 2015. A survey

of automatic protocol reverse engineering tools. ACM Comput. Surv. 48,
3, Article 40 (December 2015), 26 pages. DOI:
http://dx.doi.org/10.1145/2840724.

[3] XiangDong Li and Li Chen, “A Survey on Methods of Automatic
Protocol Reverse Engineering”, 2011 Seventh International Conference
on Computational Intelligence and Security, 685 - 689, DOI:
10.1109/CIS.2011.156 .

[4] Mingming Xiao, Shunzheng Yu, Yu Wang. "Automatic network protocol
automaton extraction". The 3 International Conference on Network and
System Security (NSS 09), 2009: 336-343.

[5] Weidong Cui, Marcus Peinado, Karl Chen, Helen J. Wang, and Luis Irun-
Briz. 2008. Tupni: Automatic reverse engineering of input formats. In
15th ACM Conference on Computer and Communications Security
(CCS’08). ACM, New York, NY, 391–402.
[DOI:10.1145/1455770.1455820].

[6] Wang Z., Jiang X., Cui W., Wang X., Grace M. (2009) ReFormat:
Automatic Reverse Engineering of Encrypted Messages. In: Backes M.,
Ning P. (eds) Computer Security – ESORICS 2009. ESORICS 2009.
Lecture Notes in Computer Science, vol 5789. Springer, Berlin,
Heidelberg

[7] Jun Cai, Jian-Zhen Luo, and Fangyuan Lei, “Analyzing Network
Protocols of Application Layer Using Hidden Semi-Markov Model”,
Mathematical Problems in Engineering, Volume 2016 (2016), Article
ID 9161723, 14 pages http://dx.doi.org/10.1155/2016/9161723

[8] Jo˜ao Antunes, Nuno Neves, and Paulo Verissimo. 2011. Reverse
engineering of protocols from network traces. In 2011 18th Working
Conference on Reverse Engineering (WCRE), 169,178.
DOI:10.1109/WCRE.2011.28 (ReverX)

[9] Maxim Shevertalov and Spiros Mancoridis. 2007. A reverse engineering
tool for extracting protocols of networked applications. In 14th Working
Conference on Reverse Engineering (WCRE’07). 229–238.
DOI:10.1109/WCRE.2007.6

[10] Antonio Trifilo, Stefan Burschka, and Ernst Biersack. 2009. Traffic to
protocol reverse engineering. In 2009 IEEE Symposium on
Computational Intelligence for Security and Defense Applications, 1–8.
DOI:10.1109/CISDA.2009.5356565

[11] T. Krueger, N. Kramer, and K. Rieck, “ASAP: automatic semantics-aware
analysis of network payloads”, In Proceedings of ECML/PKDD, 2011.

[12] Corrado Leita, Ken Mermoud, and Marc Dacier. 2005, “ScriptGen: An
automated script generation tool for HoneyD” In 21st Annual Computer
Security Applications Conference (ACSAC’05), 200–214.
DOI:10.1109/CSAC.2005.49

[13] David R Fletcher Jr, “Identifying Vulnerable Network Protocols with
PowerShell”, 2017, SANS Institute Reading Room site

274

