
IEEE Communications Magazine • April 2017100 0163-6804/17/$25.00 © 2017 IEEE

AbstrAct

Software-defined networking is moving from
its initial deployment in small-scale data center
networks to large-scale carrier-grade networks.
In such environments, high availability and scal-
ability are two of the most prominent issues, and
thus extensive work is ongoing. In this article, we
first review the state of the art on high availabil-
ity and scalability issues in SDN and investigate
relevant open source activities. In particular, two
well-known open source projects, OpenDaylight
(ODL) and Open Network Operating System
(ONOS), are analyzed in terms of high availabil-
ity (i.e., network state database replication/syn-
chronization and controller failover mechanisms)
and scalability (i.e., network state database parti-
tion/distribution and controller assignment mech-
anisms) issues. We also present experimental
results on the flow rule installation/read through-
put and the failover time upon a controller failure
in ONOS and ODL, and identify open research
challenges.

IntroductIon
Software-defined networking (SDN) is an emerg-
ing paradigm that can overcome the limitations in
the current network infrastructure. The key idea of
SDN is to separate the network control logic from
the underlying devices that forward the traffic,
and to provide the ability to program the network
by means of a logically centralized controller [1].
The centralized SDN controller can easily obtain
a global network view, and the performance of a
network service can be optimized based on the
global network view. Therefore, SDN brings many
benefits such as efficient control of network traf-
fic, reduced management cost, and rapid service
deployment.

The initial concept of SDN was introduced
by the Security Architecture for Enterprise Net-
work (SANE) project [2] of the National Science
Foundation (NSF) of the United States in which all
routing and access control decisions within enter-
prise networks are made by a logically centralized
server. As a practical instantiation of the SANE
project, the Ethane project [3] was introduced
and designed a more practical network control-

ler. Based on the success of the Ethane project,
a well-known southbound protocol, OpenFlow
[4], for communications between the centralized
controller and networking devices was devised.
In 2011, for more systematic specification, devel-
opment, and commercialization for OpenFlow,
the Open Networking Foundation (ONF) was
launched. Until today, various standardization
organizations such as the Internet Engineering
Task Force (IETF), Internet Research Task Force
(IRTF), and International Telecommunication
Union Telecommunication Standardization Sector
(ITU-T) are working on the standardization related
to SDN technologies.

While SDN was mostly targeted at data center
networks or campus networks in its initial phase,
SDN technologies are evolving toward SDN 2.0,
which is targeted at carrier-grade networks or ser-
vice providers’ networks. Given the mission-critical
and large-scale nature of carrier-grade networks,
the control plane of SDN should be designed in a
highly available and scalable manner. In this con-
text, constructing the control plane with a single
SDN controller can cause the following problems:
• A single SDN controller can become a single

point of failure.
• The size of networks that can be handled by

a single SDN controller is limited.
Therefore, more than one SDN controllers should
be managed as a cluster, and network services/
data provided by a single controller should be
replicated across the cluster for high availability
(HA). At the same time, for high scalability (HS),
workloads should be fairly distributed across the
cluster. To address these HA and HS issues, sev-
eral works have been conducted in the literature,
and open source communities are very active in
developing highly available and scalable SDN
controllers.

In this article, we first review the state of the
art on HA/HS issues in SDN and survey rel-
evant open source activities. In particular, two
well-known open source projects, OpenDay-
light (ODL) and Open Network Operating Sys-
tem (ONOS), are analyzed in terms of the HA/
HS issues. We also carried out an experimental
study for ONOS and ODL to show the flow rule
installation/read throughput depending on the

Toward Highly Available and Scalable
Software Defined Networks for

Service Providers
Dongeun Suh, Seokwon Jang, Sol Han, Sangheon Pack, Myung-Sup Kim, Taehong Kim, and Chang-Gyu Lim

sdn use cAses for servIce ProvIder networks

The authors review the
state of the art on high
availability and scalability
issues in SDN and investi-
gate relevant open source
activities. In particular, two
well-known open source
projects, OpenDaylight
(ODL) and Open Net-
work Operating System
(ONOS), are analyzed in
terms of high availability
and scalability. They also
present experimental
results on the flow rule
installation/read through-
put and the failover time
upon a controller failure
in ONOS and ODL, and
identify open research
challenges.

Dongeun Suh, Seokwon Jang, Sol Han, Sangheon Pack, and Myung-Sup Kim are with Korea University;
Taehong Kim was with the Electronics and Telecommunications Research Institute (ETRI), Korea, and is now with Chungbuk National University;

Chang-Gyu Lim is with the Electronics and Telecommunications Research Institute.

This work was supported by
the Institute for Information
& Communications Technol-
ogy Promotion (IITP) grant
funded by the Korea govern-
ment (MSIP) (B0101-15-233:
Smart Networking Core
Technology Development
and B0190-15-2012: SDN/
NFV Open-Source Software
Core Module/Function
Development).

Digital Object Identifier:
10.1109/MCOM.2017.1600170

IEEE Communications Magazine • April 2017 101

cluster size and the failover time upon a controller
failure.

The remainder of this article is organized as
follows. In the next section, key issues for high
availability and scalability in SDN are identified,
and relevant works are summarized. After that,
how to address those issues in ODL and ONOS
are discussed, and experimental results on their
performance are given. Finally, this article con-
cludes with open challenges.

HIgH AvAIlAbIlIty And
scAlAbIlIty Issues In sdn

As mentioned before, in order to construct a high-
ly available and scalable control plane, multiple
SDN controllers should be managed as a clus-
ter. Figure 1 shows a general clustering architec-
ture with three synchronized SDN controllers. An
identical set of network services (e.g., forwarding
service, network access control, etc.) are running
in the controllers while their network states are
stored in the distributed network state database
(NSDB).

In Fig. 1, database partition/distribution and
replication/synchronization techniques are
deployed to the NSDB, which are well-known
techniques for high scalability and availability,
respectively, in a distributed database. In order to
distribute data access load among controllers, the
NSDB is logically partitioned into three partitions
(i.e., P1, P2, P3), while replicas of partitions are
fairly distributed across the cluster. Also, to cope
with a controller failure, each partition is replicat-
ed into two replicas, and synchronization among
the replicas is supported to maintain consistency.

Meanwhile, a master/slave model is lever-
aged for controller-to-device connections. That
is, a device in the data plane establishes multiple
connections toward controllers (i.e., master/slave
connections) where a controller who has a mas-
ter connection of the device is only permitted to
control the device. Upon a controller failure, one
of the slave connections becomes a new master
connection. Also, for load balancing, each con-

troller is assigned a subset of master connections
of devices.

In such environments, four technical issues on
high availability and scalability can be identified:
1. How to partition the NSDB and distribute

replicas of NSDB partitions
2. How to replicate NSDB partitions in a con-

sistent manner
3. How to recover master connections from a

controller failure
4. How to assign master/slave connections for

devices
Note that 1 and 4 are related to HS, while 2 and
3 are related to HA. In the following, we elabo-
rate on each issue and summarize existing works
related to the corresponding issue.

network stAte dAtAbAse PArtItIon

By a partitioning strategy, the NSDB is divided
into multiple partitions. Each NSDB partition can
have multiple replicas for high availability, and
replicas are distributed across multiple controllers
for high scalability. As partitioning and distribution
strategies can affect scalability, it should be care-
fully designed.

Özsu et al. [5] presented three basic partition-
ing strategies in the relational database: round-rob-
in, hash, and range partitioning. In round-robin
partitioning, with n partitions, the ith tuple in inser-
tion order is assigned to partition k = (i mod n).
Hash partitioning applies a hash function to some
attributes that yield the partition number. Range
partitioning distributes tuples based on the value
intervals of some attributes. Also, Özsu et al. [5]
introduced a general fragment distribution model,
which minimizes the total cost of query process-
ing and storage on each site under the constraints
of query response time and storage/query pro-
cessing capacities of sites.

Krishnamurthy et al. [6] investigated the
dependency between the application state par-
tition and the devices. They derived the optimal
assignment of switches and state partitions to dis-
tributed controllers that minimizes inter-controller
communications.

By a partitioning strate-

gy, NSDB is divided into

multiple partitions. Each

NSDB partition can

have multiple replicas

for high availability, and

replicas are distributed

across multiple control-

lers for high scalability.

As partitioning and

distribution strategies

can affect scalability,

it should be carefully

designed.

Figure 1. A general clustering architecture with three synchronized SDN controllers.

SDN controller 1

SBIs

•High availability issues
 –NSDB replication/synchronization
 –Controller failover

•High scalability issues
 –NSDB partition/distribution
 –Controller assignment

Synchronization
protocol
Master connection
Slave connection

SDN controller 2 SDN controller 3

NBIs

NSDB NSDB NSDB

Network
services

SBIs SBIs

NBIs NBIs

P1

P3

P1

P2

P3

P2

Network
services

Network
services

IEEE Communications Magazine • April 2017102

network stAte dAtAbAse syncHronIzAtIon

In a database field, synchronization strategies are
used to provide consistency between replicas and
can be classified into two types:
1. Synchronization strategy with strong consis-

tency, which guarantees all replicas to return
the same value when queried with an object

2. Synchronization strategy with eventual con-
sistency, which guarantees that if no new
updates are made to the object, eventually
all accesses return the last updated value [5]

Meanwhile, strong consistency can only be
achieved at the cost of additional latency, and dif-
ferent degrees of consistency can be considered.
Thus, the synchronization strategy among replicas
should be carefully designed.

Ongaro et al. [7] proposed a synchroniza-
tion strategy with strong consistency, called the
Raft consensus algorithm, in which all read/write
requests can only be handled by a unique leader
replica elected from among candidate replicas,
and the read/write requests on any replicas are
forwarded to the leader to be processed. For pro-
cessing of write requests, the agreement among
the replicas is mandatory to guarantee strong con-
sistency. Also, in order to ensure that the lead-
er replica is alive, the leader replica periodically
sends Raft heart-beat messages to the follower
replicas. If one of the follower replicas does not
receive any response from the leader replica for
a pre-defined election timeout, it requests a new
leader election, and the replica with the most
votes is elected as a new leader replica.

Botelho et al. [8] proposed a novel SDN
architecture that focuses on highly available and
strongly consistent data storage by using state-
of-the-art consistent replication techniques.
Botelho et al. [9] also developed a fault-tolerant
controller architecture with a data store based on
a replicated state machine and a lease manage-
ment algorithm selecting a master controller for
fault-tolerant SDNs.

controller fAIlover

In OpenFlow 1.2 or higher, multiple controllers
for a single device are allowed for reliability, and
a device maintains one of the following roles for
each controller: equal, slave, and master. A device
sends all OpenFlow asynchronous messages to its
master controller and accepts OpenFlow control-
ler-to-switch messages from its master controller.
On the other hand, a device does not send any
asynchronous messages to its slave controller and
allows read-only access for it. Similar to the mas-
ter controller, the equal controller has full access
to the device.

The master/slave connection management is
responsible for assigning new master controllers
for orphan devices (i.e., devices that have lost
their connections with their master controllers)
while satisfying the constraint of at most one mas-
ter controller. By providing such a mechanism,
the number of dropped asynchronous messages
from the orphan devices can be minimized.

Obadia et al. [10] proposed two controller
failover strategies in which active neighbor con-
trollers take over the control of orphan OpenFlow
switches:
1. A Greedy strategy where neighbor control-

lers take over orphan switches from which
they can receive messages

2. A pre-partitioning approach where neighbor
controllers proactively exchange information
with each other on which switches to take
over upon a controller failure

controller AssIgnment

Master/slave connection management is respon-
sible for coordination of master connections of
devices. In a large-scale network consisting of a
number of devices, if only a few controllers act
as masters, the controllers might be overloaded,
resulting in performance degradation. Therefore,
the master controller should be carefully assigned
for each device so that the load from the devices
can be fairly distributed.

Dixit et al. [11] revealed that a static mapping
between a network device and a controller can
result in lack of dynamic load adaptation capabili-
ty and proposed a switch migration protocol that
can dynamically expand or shrink the controller
pool depending on the traffic condition.

oPen source APProAcH for
HIgH AvAIlAbIlIty And scAlAbIlIty:

onos vs. odl
The development of SDN controllers is led by
open source communities such as ONOS and
ODL, and high availability and scalability are two
important issues in ONOS and ODL. In this sec-
tion, we briefly introduce ONOS and ODL, and
explain how to address the aforementioned issues
in ONOS and ODL. Key comparison results are
summarized in Table 1.

HIgH AvAIlAbIlIty And scAlAbIlIty In onos
Figure 2 shows an ONOS clustering architec-
ture that consists of an identical set of network
services running in each ONOS instance (only
shown for ONOS1 for simplicity) and a middle-
ware component, called Distributed Core, that

Table 1. High availability and scalability approaches in ONOS and ODL.

NSDB partition
(granularity/distribution)

NSDB synchronization
(protocol/consistency)

Controller
failover

Controller assignment

ONOS
EventuallyConsistentMap

Store/NA
Anti-entropy protocol/
weaker consistency

Master/slave
Same number of master
connections per controller

ONOS ConsistentMap Map entry/hash-based
Raft protocol/strong
consistency

ODL DistributedDataStore
YANG module/
administrator-defined

Raft protocol/strong
consistency

Master/slave
Same number of master
connections per controller

In a large-scale network

consisting of a number

of devices, if only a

few controllers act as

master, the controllers

might be overloaded

and result in perfor-

mance degradation.

Therefore, the master

controller should be

carefully assigned for

each device so that the

load from the devices

can be fairly distributed.

IEEE Communications Magazine • April 2017 103

manages distributed operations across the cluster
and provides two types of NSDBs with different
partitioning and synchronization strategies:
1) EventuallyConsistentMap
2) ConsistentMap
Each network service implements its own data
storage called Store by means of the two types
of NSDBs and accordingly can be classified by
which type of NSDB it uses. As shown in Fig. 2,
topology and flow rule services are based on
EventuallyConsistentMap, while mastership and
intent services are based on ConsistentMap. Also,
ONOS allows each device to have multiple con-
nections to multiple ONOS controllers, and the
master/slave connection management is provided
for load balancing and controller failover.

In order to detect a controller failure, ONOS
leverages a -accrual failure detector [12] where
controllers exchange heartbeat messages period-
ically to keep track of the suspicion level of fail-
ure  for each controller. Each ONOS controller
calculates the values of  for other controllers
as  = –log10(1 – F(t)) where F(t) is the cumula-
tive distribution function of a normal distribution
with mean and standard deviation estimated from
historical heartbeat inter-arrival times t. If a value
of  for an ONOS controller is greater than a
pre-defined threshold F, the controller is consid-
ered as failed.

Network State Database Partition: Eventual-
lyConsistentMap is partitioned into S partitions
where S denotes the number of network ser-
vices, and each partition contains data of each
network service (i.e., Store). As shown in Fig. 2,
PTopology and PFlowRule contain data of topology
and flow rule services, respectively. Meanwhile,
all partitions of EventuallyConsistentMap are fully
replicated into all controller instances joining the
cluster.

On the other hand, ConsistentMap is parti-

tioned into n partitions where n is configurable by
the administrator and set to the number of con-
trollers in the cluster by default. Data to be con-
tained in each partition is determined by a hash
value of each ConsistentMap entry’s key where
the hash range is [1, N]. For example, in Fig. 2, P1
contains ConsistentMap entries whose hash val-
ues are 1. For ConsistentMap, each partition has
R replicas where R is a configurable parameter,
and each replica is assigned to the controller that
has the least number of replicas. Figure 2 shows a
case when R = 3.

Network State Database Synchronization: For
EventuallyConsistentMap, replicas of each par-
tition are synchronized based on the anti-entro-
py protocol [14]; it provides weaker consistency
guarantee in return for superior read/write per-
formance. All replicas of a partition of Eventual-
lyConsistentMap can handle read/write requests.
Specifically, read requests are handled only by
the local replica, whereas write requests are han-
dled by the local replica first and the updates are
subsequently propagated to other replicas. In
order to resolve write conflict and ensure replica
convergence, upon receiving an update event
for an EventuallyConsistentMap entry, a repli-
ca assigns the logical timestamp to the update.
Then the update is committed into the Eventual-
lyConsistentMap entry and, in parallel, broadcast-
ed along with the timestamp to other replicas.
Upon receiving the broadcasted update event,
each replica checks if it has a more recent update
for the entry. If the received timestamp is older,
it discards the update. Otherwise, the update is
committed into its EventuallyConsistentMap entry.
By doing so, the system state across all replicas
eventually converges to the correct state.

Also, in order to promptly synchronize a repli-
ca of a newly joining or restarted controller, at
fixed intervals, each replica randomly selects

Figure 2. An example of NSDB partitioning/synchronization in ONOS.

Raft protocol

Anti-entropy
protocol

ONOS 1

SBIs

Distributed core

EC-Map

C-Map

PFlowRule

PTopology

P3 (F)

ONOS 2

SBIs

NBIs

Distributed core

EC-Map

…

PFlowRule

PTopology

ONOS 3

SBIs

NBIs

Distributed core

EC-Map

…

P FlowRule

PTopology

…

C-Map C-Map

P3 (L)

P2(F)

S1 S2 S3 S4 S5 S6

Master connection

Slave connection
R W R W R W

R WR WR W

R W

R

W

Read permission

Write permission

Network services

EC-MAP based NS

Topology

FlowRule

C-Map based NS

Mastership

Intent

…
…

NBIs

P2(F)

P1(L)

P3 (F)

P2(L)

P1(F) P1(F)
R W

R W

EC-MAP

C-MAP

EventuallyCon-
sistentMap

ConsistentMap

IEEE Communications Magazine • April 2017104

another replica, and they both synchronize their
states. If one replica is aware of more recent
EventuallyConsistentMap entries that the another
replica does not have, they exchange the entries.
For example, in Fig. 2, consider that a topology
service running in ONOS3 received a topology
update event from S6 and issued a write request
to the topology state. The write request is commit-
ted into the local replica (i.e., PTopology in ONOS3)
immediately and, in parallel, propagated to other
replicas. Meanwhile, before the write request is
committed into PTopology in ONOS1 and ONOS2,
read requests to PTopology in ONOS1 and ONOS2
may observe stale topology state.

For ConsistentMap, replicas of each partition
are synchronized based on the Raft protocol [7],
which provides strong consistency at the cost of
inferior read/write performance. For example, in
Fig. 2, consider that an intent service running in
ONOS1 has issued a write request to the Con-
sistentMap entry contained in P3. Since the local
replica is a follower (i.e., P3(F) in ONOS1), the
request cannot be handled locally and should
be forwarded to the leader replica (i.e., P3(L)
in ONOS3). Then, after obtaining agreements
among the replicas, the leader replica commits
the write request.

Controller Failover: Upon an ONOS control-
ler failure, other ONOS controllers in the clus-
ter detect the failure by the failure detector, and
re-assign a new master controller for orphan
devices. The newly elected master controller for
each device sends a role request message to the
device to set its role to the device as master, and
if successful, it receives a role reply message from
the device. As a result, all the orphan devices can
recover their master connections.

Controller Assignment: When a new device is
connected to multiple ONOS controllers, its mas-
ter controller is set to the controller that has the
smallest number of master connections. By doing
so, the number of devices that each controller
serves as the master becomes balanced.

HIgH AvAIlAbIlIty And scAlAbIlIty In odl
Figure 3 shows an ODL clustering architecture
that consists of an identical set of network ser-
vices running in each ODL instance (only shown
for ODL1 for simplicity) and a middleware
component, called the model driven-service
abstraction layer (i.e., MD-SAL), that manag-
es distributed operations across the cluster and
provides an NSDB called DistributedDataStore.
Different from ONOS, each network service in
ODL models its data as a form of the YANG
module [13] where YANG is a data modeling lan-
guage. Based on the YANG modules, Distributed-
DataStore is constructed to store data of network
services. Also, similar to ONOS, ODL provides
the master/slave connection management and
uses a -accrual failure detector.

Network State Database Partition: In ODL,
the administrator partitions DistributedDataStore
into several partitions and selects which YANG
module is to be contained in the partitions. There
is one special partition called Default Shard,
which contains all data except the data defined by
the selected YANG modules by the administrator.
As shown in Fig. 3, YANG modules of topology
and flow rules can be selected by the administra-
tor, and DistributedDataStore can be partitioned
into three partitions accordingly. Each partition is
replicated into R replicas where R is configurable
by the administrator. Figure 3 shows a case when
R = 3. Similar to ONOS, each replica is assigned
to the controller with the least number of replicas.

Network State Database Synchronization: As
in ConsistentMap in ONOS, ODL uses the Raft
protocol [7] for synchronization between replicas
of a partition. Different from ONOS, all network
services in ODL are provided with the Raft proto-
col for synchronization between their replicas. For
example, in Fig. 3, consider that a topology ser-
vice running in ODL3 received a topology update
event from S6 and issued a write request to the
topology state. Since the local replica is a follower
(i.e., PTopology(F) in ODL3), the request cannot

Figure 3. An example of NSDB partitioning/synchronization in ODL.

Raft protocol
ODL 1

SBIs

NBIs

MD-SAL

Distributed
DataStore

PDefault (F)

ODL 2

SBIs

NBIs

MD-SAL

ODL 3

SBIs

NBIs

MD-SAL

S1 S2 S3 S4 S5 S6

Master connection

Slave connection
Distributed
DataStore

Distributed
DataStore

PDefault (L)

PFlowRule(F)

R W

R

W

Read permission

Write permission

Network services

Topology

FlowRule

Entity
ownership

…

PFlowRule(F)

PTopology(L)
R W

PDefault (F)

PFlowRule(L)

PTopology(F)

R W

PTopology(F)

IEEE Communications Magazine • April 2017 105

be handled locally and thus should be forwarded
to the leader replica (i.e., PTopology(L) in ODL1);
upon obtaining agreements among replicas, the
leader replica commits the write request. There-
fore, although the consistency between topology
state replicas is guaranteed all the time in ODL,
read/write performances can be degraded.

Controller Failover and Controller Assign-
ment: The controller failover and controller
assignment mechanisms in ODL are similar to
those of ONOS; therefore, we have omitted the
corresponding descriptions.

exPerImentAl results
For comparative study, we evaluate the per-
formance of ONOS and ODL in terms of flow
rule installation/read throughput and controller
failover time. We run each ODL controller in 6
GB RAM and a 2 CPU core virtual machine (VM)
with Ubuntu 14.04.2 LTS and each ONOS con-
troller in 6 GB RAM and a 2 CPU core VM with
CentOS 6.7, respectively. In terms of version of
ODL and ONOS, we use ODL lithium-SR3 dis-
tribution and ONOS-1.4 (Emu) distribution. Each
experiment is repeatedly carried out to obtain reli-
able sample values, and the results are obtained
by averaging the sample values.

To evaluate the flow rule installation through-
put, we run C ONOS/ODL controllers, assign
one ONOS/ODL controller as a master control-
ler of nine devices, and install 500 flow rules per
device through the master controller. Also, the
partition that contains the flow rule state is fully
replicated into all controllers in ONOS/ODL. For
ODL, flow rules are generated, contained in HTTP
POST messages, and then transmitted through the
northbound REST application programming inter-
face (API) of the master controller to add/delete
the bulk of the flow rules into the Inventory Shard
that contains flow rules. After that, the Open-
Flow controller service in ODL is notified of the
data change in Inventory Shard and installs the
flow rules to OpenFlow switches. On the other
hand, a flow rule installation request tool is used
in ONOS.1 Specifically, the tool requests instal-
lation of flow rules to the flow rule throughput
test application running in the master controller.

After that, the test application creates flow rules
randomly and writes the flow rules into the local
FlowRule Store, which is based on the Eventu-
allyConsistentMap. As a sequel, the OpenFlow
controller service in ONOS installs the flow rules
to OpenFlow switches. Since the flow rule installa-
tion procedures of ONOS and ODL are different
from each other, flow rule installation throughput
values of ONOS and ODL are not directly com-
parable. Therefore, we consider the normalized
flow rule installation throughput for ONOS and
ODL where the flow rule installation throughput
values of ONOS and ODL are normalized by the
flow rule installation throughput values when C is
1 for ONOS and ODL, respectively.2

Figure 4a shows the normalized flow rule
installation throughput depending on the num-
ber of controllers in the cluster, C. For ONOS, it
can be seen that the throughput is rarely affected
by C. This is because since all replicas can han-
dle read/write requests, upon receiving flow rule
installation requests, the master controller updates
its local replica first. On the contrary, in ODL, two
different results are obtained when:
1. The master controller contains a leader repli-

ca.
2. The master controller contains a follower

replica.
For case 1, agreement among the follower repli-
cas is mandatory before committing the flow rules
into the leader replica. Consequently, the laten-
cy for committing flow rules increases and the
throughput decreases with the increase of C. Also,
in case 2, degraded throughput is observed as C
increases due to the increased commitment laten-
cy. Moreover, case 2 shows drastically reduced
throughput compared to case 1. In case 2, when
the master controller receives flow rule installation
requests, it forwards the requests to the controller
that contains the leader replica. Only after the
flow rules are committed into the leader replica,
the master controller is notified with the flow rule
changes remotely. This forwarding of flow rule
installation requests and remote flow rule change
notifications cause additional latency; therefore,
case 2 shows drastically reduced throughput.

Meanwhile, there is a trade-off between

1 The northbound REST API
for the bulk flow rule instal-
lation is under development
and unavailable in ONOS-1.4
(Emu) distribution.

2 The flow rule installation
throughput values of ONOS
and ODL when C is 1 are
13,436.7 flows/s and 4672.4
flow/s, respectively.

Figure 4. Normalized flow rule installation/read throughput: ONOS vs. ODL.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 3 5

No
rm

ali
ze

d
th

ro
ug

hp
ut

Cluster size, C
(a) Write throughput.

ONOS (write)
ODL leader (write)

ODL follower (write)

ONOS (read)
ODL leader (read)

ODL follower (read)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 3 5

No
rm

ali
ze

d
th

ro
ug

hp
ut

Cluster size, C
(b) Read throughput.

The newly elected mas-

ter controller for each

device sends a role

request message to the

device to set its role to

the device as master,

and if succeeded, it

is replied with a role

reply message from the

device. As a result, all

the orphan devices can

recover their master

connections.

IEEE Communications Magazine • April 2017106

ONOS and ODL in terms of the flow rule consis-
tency and the flow rule installation throughput. As
ODL provides strong consistency for flow rules,
the flow installation throughput can be degraded
compared to ONOS, which provides eventual
consistency for flow rules. However, the eventual
consistency for flow rules in ONOS may poten-
tially present a temporal inconsistency and cause
undesired behavior of network services that sub-
scribe flow rules.

To evaluate the flow rule read throughput, we
installed 3000 randomly generated flow rules into
C ONOS/ODL controllers and transmitted a flow
rule read request through the northbound REST
API of a target controller. Upon receiving the
read request, the target controller replies with the
requested flow rule. Similar to the flow rule instal-
lation experiment, the flow rule read throughput
values of ONOS and ODL are normalized by the
flow rule read throughput values when C is 1.3

As shown in Fig. 4b, the throughput of ONOS
is rarely affected by C for to the same reason as in
the flow rule installation throughput experiment.
On the other hand, the two cases described in the
flow rule installation experiment are considered
in ODL. For case 1, the flow rule read requests
do not require any agreement among the repli-
cas. Therefore, a flow read request can be locally
processed by the leader replica, and the through-
put remains constant even with the increase of C.
Also, in case 2, it can be seen that the through-
put is rarely affected by C as the flow rule read
requests do not require any agreement among
the replicas. Meanwhile, case 2 shows drastically
reduced read throughput compared to case 1,
which can be explained by the same reason as in
the flow rule installation experiment in ODL.

In the controller failover experiment, we run
three ONOS/ODL controllers and select one
ONOS/ODL controller as a master controller of
D devices. For the failover scenario, the master
controller is intentionally turned down, and the
elapsed time from the last heartbeat message of
the failure detector running in the master control-
ler to the time when a role reply message from
the last orphan device is received by a new mas-
ter controller is measured.

Figure 5a shows the effect of the number of

devices, D, on the failover time when F = 8. For
both ONOS and ODL, as D increases, the num-
ber of orphan devices upon a failure increases and
the number of role request messages to be sent
increases. As a result, the failover time increases
with the increase of D as shown in Fig. 5a.

Figure 5b demonstrates the effect of F on
the failover time when D = 5. It can be seen
that the failover time increases as F increases
both in ONOS and ODL. This can be explained
as follows. As F increases, the cluster in ODL
and ONOS becomes more conservative in
determining a controller failure. Therefore, the
elapsed time between the failure event and the
failure detection event is incremental to F, and
the failover time for ONOS and ODL increases
accordingly.

conclusIon
In this article, we discuss high availability and
scalability issues in SDN, and analyze ONOS and
ODL approaches. Experimental results demon-
strate that:
1. The flow rule installation throughput of ODL

is significantly affected by the cluster size.
2. There is a trade-off between ONOS and

ODL in terms of the flow rule consistency
and the flow rule installation throughput.

3. The controller failover time is dependent on
the number of devices and the failure detec-
tion threshold.

As open challenge:
1. There is a trade-off between inconsistency of

network states and performance of network
services.

2. The controller assignment problem in
large-scale WAN environments must be
addressed, where latencies between control-
lers and switches are significant.

3. Stability analysis in large-scale SDNs with
a few tens or hundreds of controllers in a
cluster should be further investigated, and
ONOS and ODL will evolve to address these
challenges.

references
[1] D. Kreutz et al., “Software-Defined Networking: A Compre-

hensive Survey,” Proc. IEEE, vol. 103, no. 1, Jan. 2015, pp.
14–76.

Figure 5. Controller failover time: ONOS vs. ODL.

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

10 30 50 70

Re
co

ve
ry

 ti
m

e
(m

s)

Number of devices, D

(a) Effect of D

ONOS (Φ = 8.0)
ODL (Φ = 8.0)

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 4000

8.0 16.0 24.0 32.0

Re
co

ve
ry

 ti
m

e
(m

s)

Threshold, Φ

(b) Effect of Φ

ONOS (D = 5)
ODL (D = 5)

As ODL provides strong

consistency for flow

rules, the flow installa-

tion throughput can be

degraded compared to

ONOS which provides

eventual consistency for

flow rules. However, the

eventual consistency

for flow rules in ONOS

may potentially present

a temporal inconsisten-

cy and cause undesired

behavior of network

services that subscribe

flow rules.

3 The read throughput values
of ONOS/ODL when C is 1
are 13,946.7 and 20,813.8
flows/s, respectively.

IEEE Communications Magazine • April 2017 107

[2] Security Architecture for Enterprise Network (SANE) project.
http://yuba.stanford.edu/sane/.

[3] M. Casado et al., “Ethane: Taking Control of the Enterprise,”
ACM SIGCOMM Comp. Commun. Review, vol. 37, no. 4,
Oct. 2007, pp. 1–12.

[4] N. McKeown et al., “Openflow: Enabling Innovation in Cam-
pus Networks,” ACM SIGCOMM Comp. Commun. Review,
vol. 38, no. 2, Apr. 2008, pp. 69–74.

[5] M. T. Özsu and P. Valduriez, Principles of Distributed Data-
base Systems, Prentice-Hall, 2007.

[6] A. Krishnamurthy, S. Chandrabose, and A. Gember-Jacob-
son, “Pratyaastha: An Efficient Elastic Distributed SDN
Control Plane,” Proc. ACM SIGCOMM Wksp. Hot Topics in
Software Defined Networking 2014, Chicago, IL, Aug. 2014.

[7] D. Ongaro and J. Ousterhout, “In Search of an Understand-
able Consensus Algorithm,” Proc. USENIX Annual Technical
Conf. 2014, Philadelphia, PA, June 2014.

[8] F. Botelho et al., “On the Feasibility of a Consistent and
Fault-Tolerant Data Store for SDNs,” Proc. Euro. Wksp. Soft-
ware Defined Networks 2013, Berlin, Germany, Oct. 2013.

[9] F. Botelho et al., “On the Design of Practical Fault-Tolerant
SDN Controllers,” Proc. Euro. Wksp. Software Defined Net-
works 2014, Budapest, Hungary, Sept. 2014.

[10] M. Obadia et al., “Failover Mechanisms for Distributed
SDN Controllers,” Proc. IEEE Int’l. Wksp. Network of the
Future 2014, Paris, France, Dec. 2014.

[11] A. Dixit et al., “Towards an Elastic Distributed SDN Con-
troller,” Proc. ACM Wksp. Hot Topics in Software-Defined
Networking 2013, Hong Kong, Aug. 2013.

[12] N. Hayashibara et al., “The  accrual Failure Detector,”
Proc. IEEE Int’l. Symp. Reliable Distributed Systems 2004,
Florianpolis, Brazil, Oct. 2004.

[13] M. Bjorklund, “YANG — A Data Modeling Language for
the Network Configuration Protocol (NETCONF),” IETF RFC
6020, Oct. 2010.

[14] A. Demers et al., “Epidemic Algorithms for Replicated Data-
base Maintenance,” Proc. ACM Symp. Principles of Distribut-
ed Computing 1987, Vancouver, BC, Aug. 1987.

bIogrAPHIes
Dongeun Suh [M] (fever1989@korea.ac.kr) received his B.S.
degrees from Korea University, Seoul, in 2012. He is currently
a Ph.D. student in the School of Electrical Engineering, Korea
University. From 2012 to 2016, he received a scholarship from
Samsung Electronics. His research interests include SDN/NFV/
DTN and multimedia streaming.

Seokwon Jang (imsoboy2@korea.ac.kr) received his B.S. degree
from Korea University in 2015. He is currently an M.S. and
Ph.D. integrated course student in the School of Electrical Engi-
neering, Korea University. His research interests include SDN/
NFV, future Internet, and programmable networking.

Sol han (hs1087@korea.ac.kr) received his B.S. degree from
Korea University in 2015. He is currently an M.S. and Ph.D.
integrated course student in the School of Electrical Engineer-
ing, Korea University. His research interests include SDN/NFV,
future Internet, and programmable networking.

Sangheon Pack [SM] (shpack@korea.ac.kr) received his B.S.
and Ph.D. degrees from Seoul National University, Korea, in
2000 and 2005, respectively, both in computer engineering. In
2007, he joined the faculty of Korea University, where he is cur-
rently a professor in the School of Electrical Engineering. He was
the recipient of the Korean Institute of Communications and
Information Sciences (KICS) Haedong Young Scholar Award
2013 and the IEEE ComSoc APB Outstanding Young Researcher
Award in 2009. His research interests include future Internet,
softwarized networking (SDN/NFV), mobility management, and
mobile cloud networking/edge computing.

Myung-SuP kiM (tmskim@korea.ac.kr) received his B.S., M.S.,
and Ph.D. degrees in computer science and engineering from
POSTECH, Korea, in 1998, 2000, and 2004, respectively. He
joined Korea University in 2006, where he is currently a profes-
sor in the Department of Computer and Information Science.
His research interests include Internet traffic monitoring and
analysis, SDN/NFV, and Internet security.

Taehong kiM (taehongkim@cbnu.ac.kr) received his Ph.D.
degree in computer science from the Korea Advanced Institute
of Science and Technology (KAIST) in 2012. He has been an
assistant professor with the School of Information and Com-
munication Engineering, Chungbuk National University, Korea,
since March 2016. He worked as a research staff member with
Samsung Electronics and ETRI from May 2012 to February
2016. His research interests include wireless sensor networks,
the Internet of Things, and SDN/NFV.

chang-gyu liM (human@etri.re.kr) is a senior engineer of SDN
Research Section, ETRI, Korea. He received his Master’s degree
at KAIST in 2002. His key research interests are: future Internet,
software defined networking, and transport networks.

