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AbstrAct

Software-defined networking is moving from 
its initial deployment in small-scale data center 
networks to large-scale carrier-grade networks. 
In such environments, high availability and scal-
ability are two of the most prominent issues, and 
thus extensive work is ongoing. In this article, we 
first review the state of the art on high availabil-
ity and scalability issues in SDN and investigate 
relevant open source activities. In particular, two 
well-known open source projects, OpenDaylight 
(ODL) and Open Network Operating System 
(ONOS), are analyzed in terms of high availabil-
ity (i.e., network state database replication/syn-
chronization and controller failover mechanisms) 
and scalability (i.e., network state database parti-
tion/distribution and controller assignment mech-
anisms) issues. We also present experimental 
results on the flow rule installation/read through-
put and the failover time upon a controller failure 
in ONOS and ODL, and identify open research 
challenges.

IntroductIon
Software-defined networking (SDN) is an emerg-
ing paradigm that can overcome the limitations in 
the current network infrastructure. The key idea of 
SDN is to separate the network control logic from 
the underlying devices that forward the traffic, 
and to provide the ability to program the network 
by means of a logically centralized controller [1]. 
The centralized SDN controller can easily obtain 
a global network view, and the performance of a 
network service can be optimized based on the 
global network view. Therefore, SDN brings many 
benefits such as efficient control of network traf-
fic, reduced management cost, and rapid service 
deployment.

The initial concept of SDN was introduced 
by the Security Architecture for Enterprise Net-
work (SANE) project [2] of the National Science 
Foundation (NSF) of the United States in which all 
routing and access control decisions within enter-
prise networks are made by a logically centralized 
server. As a practical instantiation of the SANE 
project, the Ethane project [3] was introduced 
and designed a more practical network control-

ler. Based on the success of the Ethane project, 
a well-known southbound protocol, OpenFlow 
[4], for communications between the centralized 
controller and networking devices was devised. 
In 2011, for more systematic specification, devel-
opment, and commercialization for OpenFlow, 
the Open Networking Foundation (ONF) was 
launched. Until today, various standardization 
organizations such as the Internet Engineering 
Task Force (IETF), Internet Research Task Force 
(IRTF), and International Telecommunication 
Union Telecommunication Standardization Sector 
(ITU-T) are working on the standardization related 
to SDN technologies.

While SDN was mostly targeted at data center 
networks or campus networks in its initial phase, 
SDN technologies are evolving toward SDN 2.0, 
which is targeted at carrier-grade networks or ser-
vice providers’ networks. Given the mission-critical 
and large-scale nature of carrier-grade networks, 
the control plane of SDN should be designed in a 
highly available and scalable manner. In this con-
text, constructing the control plane with a single 
SDN controller can cause the following problems:
• A single SDN controller can become a single 

point of failure.
• The size of networks that can be handled by 

a single SDN controller is limited.
Therefore, more than one SDN controllers should 
be managed as a cluster, and network services/
data provided by a single controller should be 
replicated across the cluster for high availability 
(HA). At the same time, for high scalability (HS), 
workloads should be fairly distributed across the 
cluster. To address these HA and HS issues, sev-
eral works have been conducted in the literature, 
and open source communities are very active in 
developing highly available and scalable SDN 
controllers.

In this article, we first review the state of the 
art on HA/HS issues in SDN and survey rel-
evant open source activities. In particular, two 
well-known open source projects, OpenDay-
light (ODL) and Open Network Operating Sys-
tem (ONOS), are analyzed in terms of the HA/
HS issues. We also carried out an experimental 
study for ONOS and ODL to show the flow rule 
installation/read throughput depending on the 
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cluster size and the failover time upon a controller 
failure.

The remainder of this article is organized as 
follows. In the next section, key issues for high 
availability and scalability in SDN are identified, 
and relevant works are summarized. After that, 
how to address those issues in ODL and ONOS 
are discussed, and experimental results on their 
performance are given. Finally, this article con-
cludes with open challenges.

HIgH AvAIlAbIlIty And 
scAlAbIlIty Issues In sdn

As mentioned before, in order to construct a high-
ly available and scalable control plane, multiple 
SDN controllers should be managed as a clus-
ter. Figure 1 shows a general clustering architec-
ture with three synchronized SDN controllers. An 
identical set of network services (e.g., forwarding 
service, network access control, etc.) are running 
in the controllers while their network states are 
stored in the distributed network state database 
(NSDB).

In Fig. 1, database partition/distribution and 
replication/synchronization techniques are 
deployed to the NSDB, which are well-known 
techniques for high scalability and availability, 
respectively, in a distributed database. In order to 
distribute data access load among controllers, the 
NSDB is logically partitioned into three partitions 
(i.e., P1, P2, P3), while replicas of partitions are 
fairly distributed across the cluster. Also, to cope 
with a controller failure, each partition is replicat-
ed into two replicas, and synchronization among 
the replicas is supported to maintain consistency.

Meanwhile, a master/slave model is lever-
aged for controller-to-device connections. That 
is, a device in the data plane establishes multiple 
connections toward controllers (i.e., master/slave 
connections) where a controller who has a mas-
ter connection of the device is only permitted to 
control the device. Upon a controller failure, one 
of the slave connections becomes a new master 
connection. Also, for load balancing, each con-

troller is assigned a subset of master connections 
of devices.

In such environments, four technical issues on 
high availability and scalability can be identified: 
1. How to partition the NSDB and distribute 

replicas of NSDB partitions
2. How to replicate NSDB partitions in a con-

sistent manner
3. How to recover master connections from a 

controller failure
4. How to assign master/slave connections for 

devices
Note that 1 and 4 are related to HS, while 2 and 
3 are related to HA. In the following, we elabo-
rate on each issue and summarize existing works 
related to the corresponding issue.

network stAte dAtAbAse PArtItIon

By a partitioning strategy, the NSDB is divided 
into multiple partitions. Each NSDB partition can 
have multiple replicas for high availability, and 
replicas are distributed across multiple controllers 
for high scalability. As partitioning and distribution 
strategies can affect scalability, it should be care-
fully designed.

Özsu et al. [5] presented three basic partition-
ing strategies in the relational database: round-rob-
in, hash, and range partitioning. In round-robin 
partitioning, with n partitions, the ith tuple in inser-
tion order is assigned to partition k = (i mod n). 
Hash partitioning applies a hash function to some 
attributes that yield the partition number. Range 
partitioning distributes tuples based on the value 
intervals of some attributes. Also, Özsu et al. [5] 
introduced a general fragment distribution model, 
which minimizes the total cost of query process-
ing and storage on each site under the constraints 
of query response time and storage/query pro-
cessing capacities of sites.

Krishnamurthy et al. [6] investigated the 
dependency between the application state par-
tition and the devices. They derived the optimal 
assignment of switches and state partitions to dis-
tributed controllers that minimizes inter-controller 
communications.

By a partitioning strate-

gy, NSDB is divided into 

multiple partitions. Each 

NSDB partition can 

have multiple replicas 

for high availability, and 

replicas are distributed 

across multiple control-

lers for high scalability. 

As partitioning and 

distribution strategies 

can affect scalability, 

it should be carefully 

designed.

Figure 1. A general clustering architecture with three synchronized SDN controllers.
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network stAte dAtAbAse syncHronIzAtIon

In a database field, synchronization strategies are 
used to provide consistency between replicas and 
can be classified into two types:
1. Synchronization strategy with strong consis-

tency, which guarantees all replicas to return 
the same value when queried with an object

2. Synchronization strategy with eventual con-
sistency, which guarantees that if no new 
updates are made to the object, eventually 
all accesses return the last updated value [5]

Meanwhile, strong consistency can only be 
achieved at the cost of additional latency, and dif-
ferent degrees of consistency can be considered. 
Thus, the synchronization strategy among replicas 
should be carefully designed.

Ongaro et al. [7] proposed a synchroniza-
tion strategy with strong consistency, called the 
Raft consensus algorithm, in which all read/write 
requests can only be handled by a unique leader 
replica elected from among candidate replicas, 
and the read/write requests on any replicas are 
forwarded to the leader to be processed. For pro-
cessing of write requests, the agreement among 
the replicas is mandatory to guarantee strong con-
sistency. Also, in order to ensure that the lead-
er replica is alive, the leader replica periodically 
sends Raft heart-beat messages to the follower 
replicas. If one of the follower replicas does not 
receive any response from the leader replica for 
a pre-defined election timeout, it requests a new 
leader election, and the replica with the most 
votes is elected as a new leader replica.

Botelho et al. [8] proposed a novel SDN 
architecture that focuses on highly available and 
strongly consistent data storage by using state-
of-the-art consistent replication techniques. 
Botelho et al. [9] also developed a fault-tolerant 
controller architecture with a data store based on 
a replicated state machine and a lease manage-
ment algorithm selecting a master controller for 
fault-tolerant SDNs.

controller fAIlover

In OpenFlow 1.2 or higher, multiple controllers 
for a single device are allowed for reliability, and 
a device maintains one of the following roles for 
each controller: equal, slave, and master. A device 
sends all OpenFlow asynchronous messages to its 
master controller and accepts OpenFlow control-
ler-to-switch messages from its master controller. 
On the other hand, a device does not send any 
asynchronous messages to its slave controller and 
allows read-only access for it. Similar to the mas-
ter controller, the equal controller has full access 
to the device.

The master/slave connection management is 
responsible for assigning new master controllers 
for orphan devices (i.e., devices that have lost 
their connections with their master controllers) 
while satisfying the constraint of at most one mas-
ter controller. By providing such a mechanism, 
the number of dropped asynchronous messages 
from the orphan devices can be minimized.

Obadia et al. [10] proposed two controller 
failover strategies in which active neighbor con-
trollers take over the control of orphan OpenFlow 
switches:
1. A Greedy strategy where neighbor control-

lers take over orphan switches from which 
they can receive messages

2. A pre-partitioning approach where neighbor 
controllers proactively exchange information 
with each other on which switches to take 
over upon a controller failure

controller AssIgnment

Master/slave connection management is respon-
sible for coordination of master connections of 
devices. In a large-scale network consisting of a 
number of devices, if only a few controllers act 
as masters, the controllers might be overloaded, 
resulting in performance degradation. Therefore, 
the master controller should be carefully assigned 
for each device so that the load from the devices 
can be fairly distributed.

Dixit et al. [11] revealed that a static mapping 
between a network device and a controller can 
result in lack of dynamic load adaptation capabili-
ty and proposed a switch migration protocol that 
can dynamically expand or shrink the controller 
pool depending on the traffic condition.

oPen source APProAcH for 
HIgH AvAIlAbIlIty And scAlAbIlIty: 

onos vs. odl
The development of SDN controllers is led by 
open source communities such as ONOS and 
ODL, and high availability and scalability are two 
important issues in ONOS and ODL. In this sec-
tion, we briefly introduce ONOS and ODL, and 
explain how to address the aforementioned issues 
in ONOS and ODL. Key comparison results are 
summarized in Table 1.

HIgH AvAIlAbIlIty And scAlAbIlIty In onos
Figure 2 shows an ONOS clustering architec-
ture that consists of an identical set of network 
services running in each ONOS instance (only 
shown for ONOS1 for simplicity) and a middle-
ware component, called Distributed Core, that 

Table 1. High availability and scalability approaches in ONOS and ODL.

NSDB partition 
(granularity/distribution)

NSDB synchronization 
(protocol/consistency)

Controller 
failover 

Controller assignment

ONOS 
EventuallyConsistentMap

Store/NA
Anti-entropy protocol/ 
weaker consistency

Master/slave
Same number of master 
connections per controller

ONOS ConsistentMap Map entry/hash-based
Raft protocol/strong 
consistency

ODL DistributedDataStore
YANG module/ 
administrator-defined

Raft protocol/strong 
consistency

Master/slave
Same number of master 
connections per controller

In a large-scale network 
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and result in perfor-

mance degradation. 
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manages distributed operations across the cluster 
and provides two types of NSDBs with different 
partitioning and synchronization strategies:
1) EventuallyConsistentMap
2) ConsistentMap
Each network service implements its own data 
storage called Store by means of the two types 
of NSDBs and accordingly can be classified by 
which type of NSDB it uses. As shown in Fig. 2, 
topology and flow rule services are based on 
EventuallyConsistentMap, while mastership and 
intent services are based on ConsistentMap. Also, 
ONOS allows each  device to have multiple con-
nections to multiple ONOS controllers, and the 
master/slave connection management is provided 
for load balancing and controller failover.

In order to detect a controller failure, ONOS 
leverages a -accrual failure detector [12] where 
controllers exchange heartbeat messages period-
ically to keep track of the suspicion level of fail-
ure  for each controller. Each ONOS controller 
calculates the values of  for other controllers 
as  = –log10(1 – F(t)) where F(t) is the cumula-
tive distribution function of a normal distribution 
with mean and standard deviation estimated from 
historical heartbeat inter-arrival times t. If a value 
of  for an ONOS controller is greater than a 
pre-defined threshold F, the controller is consid-
ered as failed.

Network State Database Partition: Eventual-
lyConsistentMap is partitioned into S partitions 
where S denotes the number of network ser-
vices, and each partition contains data of each 
network service (i.e., Store). As shown in Fig. 2, 
PTopology and PFlowRule contain data of topology 
and flow rule services, respectively. Meanwhile, 
all partitions of EventuallyConsistentMap are fully 
replicated into all controller instances joining the 
cluster.

On the other hand, ConsistentMap is parti-

tioned into n partitions where n is configurable by 
the administrator and set to the number of con-
trollers in the cluster by default. Data to be con-
tained in each partition is determined by a hash 
value of each ConsistentMap entry’s key where 
the hash range is [1, N]. For example, in Fig. 2, P1 
contains ConsistentMap entries whose hash val-
ues are 1. For ConsistentMap, each partition has 
R replicas where R is a configurable parameter, 
and each replica is assigned to the controller that 
has the least number of replicas. Figure 2 shows a 
case when R = 3.

Network State Database Synchronization: For 
EventuallyConsistentMap, replicas of each par-
tition are synchronized based on the anti-entro-
py protocol [14]; it provides weaker consistency 
guarantee in return for superior read/write per-
formance. All replicas of a partition of Eventual-
lyConsistentMap can handle read/write requests. 
Specifically, read requests are handled only by 
the local replica, whereas write requests are han-
dled by the local replica first and the updates are 
subsequently propagated to other replicas. In 
order to resolve write conflict and ensure replica 
convergence, upon receiving an update event 
for an EventuallyConsistentMap entry, a repli-
ca assigns the logical timestamp to the update. 
Then the update is committed into the Eventual-
lyConsistentMap entry and, in parallel, broadcast-
ed along with the timestamp to other replicas. 
Upon receiving the broadcasted update event, 
each replica checks if it has a more recent update 
for the entry. If the received timestamp is older, 
it discards the update. Otherwise, the update is 
committed into its EventuallyConsistentMap entry. 
By doing so, the system state across all replicas 
eventually converges to the correct state.

Also, in order to promptly synchronize a repli-
ca of a newly joining or restarted controller, at 
fixed intervals, each replica randomly selects 

Figure 2. An example of NSDB partitioning/synchronization in ONOS.
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another replica, and they both synchronize their 
states. If one replica is aware of more recent 
EventuallyConsistentMap entries that the another 
replica does not have, they exchange the entries. 
For example, in Fig. 2, consider that a topology 
service running in ONOS3 received a topology 
update event from S6 and issued a write request 
to the topology state. The write request is commit-
ted into the local replica (i.e., PTopology in ONOS3) 
immediately and, in parallel, propagated to other 
replicas. Meanwhile, before the write request is 
committed into PTopology in ONOS1 and ONOS2, 
read requests to PTopology in ONOS1 and ONOS2 
may observe stale topology state.

For ConsistentMap, replicas of each partition 
are synchronized based on the Raft protocol [7], 
which provides strong consistency at the cost of 
inferior read/write performance. For example, in 
Fig. 2, consider that an intent service running in 
ONOS1 has issued a write request to the Con-
sistentMap entry contained in P3. Since the local 
replica is a follower (i.e., P3(F) in ONOS1), the 
request cannot be handled locally and should 
be forwarded to the leader replica (i.e., P3(L) 
in ONOS3). Then, after obtaining agreements 
among the replicas, the leader replica commits 
the write request.

Controller Failover: Upon an ONOS control-
ler failure, other ONOS controllers in the clus-
ter detect the failure by the failure detector, and 
re-assign a new master controller for orphan 
devices. The newly elected master controller for 
each device sends a role request message to the 
device to set its role to the device as master, and 
if successful, it receives a role reply message from 
the device. As a result, all the orphan devices can 
recover their master connections.

Controller Assignment: When a new device is 
connected to multiple ONOS controllers, its mas-
ter controller is set to the controller that has the 
smallest number of master connections. By doing 
so, the number of devices that each controller 
serves as the master becomes balanced.

HIgH AvAIlAbIlIty And scAlAbIlIty In odl
Figure 3 shows an ODL clustering architecture 
that consists of an identical set of network ser-
vices running in each ODL instance (only shown 
for ODL1 for simplicity) and a middleware 
component, called the model driven-service 
abstraction layer (i.e., MD-SAL), that manag-
es distributed operations across the cluster and 
provides an NSDB called DistributedDataStore. 
Different from ONOS, each network service in 
ODL models its data as a form of the YANG 
module [13] where YANG is a data modeling lan-
guage. Based on the YANG modules, Distributed-
DataStore is constructed to store data of network 
services. Also, similar to ONOS, ODL provides 
the master/slave connection management and 
uses a -accrual failure detector.

Network State Database Partition: In ODL, 
the administrator partitions DistributedDataStore 
into several partitions and selects which YANG 
module is to be contained in the partitions. There 
is one special partition called Default Shard, 
which contains all data except the data defined by 
the selected YANG modules by the administrator. 
As shown in Fig. 3, YANG modules of topology 
and flow rules can be selected by the administra-
tor, and DistributedDataStore can be partitioned 
into three partitions accordingly. Each partition is 
replicated into R replicas where R is configurable 
by the administrator. Figure 3 shows a case when 
R = 3. Similar to ONOS, each replica is assigned 
to the controller with the least number of replicas.

Network State Database Synchronization: As 
in ConsistentMap in ONOS, ODL uses the Raft 
protocol [7] for synchronization between replicas 
of a partition. Different from ONOS, all network 
services in ODL are provided with the Raft proto-
col for synchronization between their replicas. For 
example, in Fig. 3, consider that a topology ser-
vice running in ODL3 received a topology update 
event from S6 and issued a write request to the 
topology state. Since the  local replica is a follower 
(i.e., PTopology(F) in ODL3), the request cannot 

Figure 3. An example of NSDB partitioning/synchronization in ODL.
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be handled locally and thus should be forwarded 
to the leader replica (i.e., PTopology(L) in ODL1); 
upon obtaining agreements among replicas, the 
leader replica commits the write request. There-
fore, although the consistency between topology 
state replicas is guaranteed all the time in ODL, 
read/write performances can be degraded.

Controller Failover and Controller Assign-
ment: The controller failover and controller 
assignment mechanisms in ODL are similar to 
those of ONOS; therefore, we have omitted the 
corresponding descriptions.

exPerImentAl results
For comparative study, we evaluate the per-
formance of ONOS and ODL in terms of flow 
rule installation/read throughput and controller 
failover time. We run each ODL controller in 6 
GB RAM and a 2 CPU core virtual machine (VM) 
with Ubuntu 14.04.2 LTS and each ONOS con-
troller in 6 GB RAM and a 2 CPU core VM with 
CentOS 6.7, respectively. In terms of version of 
ODL and ONOS, we use ODL lithium-SR3 dis-
tribution and ONOS-1.4 (Emu) distribution. Each 
experiment is repeatedly carried out to obtain reli-
able sample values, and the results are obtained 
by averaging the sample values.

To evaluate the flow rule installation through-
put, we run C ONOS/ODL controllers, assign 
one ONOS/ODL controller as a master control-
ler of nine devices, and install 500 flow rules per 
device through the master controller. Also, the 
partition that contains the flow rule state is fully 
replicated into all controllers in ONOS/ODL. For 
ODL, flow rules are generated, contained in HTTP 
POST messages, and then transmitted through the 
northbound REST application programming inter-
face (API) of the master controller to add/delete 
the bulk of the flow rules into the Inventory Shard 
that contains flow rules. After that, the Open-
Flow controller service in ODL is notified of the 
data change in Inventory Shard and installs the 
flow rules to OpenFlow switches. On the other 
hand, a flow rule installation request tool is used 
in ONOS.1 Specifically, the tool requests instal-
lation of flow rules to the flow rule throughput 
test application running in the master controller. 

After that, the test application creates flow rules 
randomly and writes the flow rules into the local 
FlowRule Store, which is based on the Eventu-
allyConsistentMap. As a sequel, the OpenFlow 
controller service in ONOS installs the flow rules 
to OpenFlow switches. Since the flow rule installa-
tion procedures of ONOS and ODL are different 
from each other, flow rule installation throughput 
values of ONOS and ODL are not directly com-
parable. Therefore, we consider the normalized 
flow rule installation throughput for ONOS and 
ODL where the flow rule installation throughput 
values of ONOS and ODL are normalized by the 
flow rule installation throughput values when C is 
1 for ONOS and ODL, respectively.2

Figure 4a shows the normalized flow rule 
installation  throughput depending on the num-
ber of controllers in the cluster, C. For ONOS, it 
can be seen that the throughput is rarely affected 
by C. This is because since all replicas can han-
dle read/write requests,  upon receiving flow rule 
installation requests, the master controller updates 
its local replica first. On the contrary, in ODL, two 
different results are obtained when:
1. The master controller contains a leader repli-

ca.
2. The master controller contains a follower 

replica.
For case 1, agreement among the follower repli-
cas is mandatory before committing the flow rules 
into the leader replica. Consequently, the laten-
cy for committing flow rules increases and the 
throughput decreases with the increase of C. Also, 
in case 2, degraded throughput is observed as C 
increases due to the increased commitment laten-
cy. Moreover, case 2 shows drastically reduced 
throughput compared to case 1. In case 2, when 
the master controller receives flow rule installation 
requests, it forwards the requests to the controller 
that contains the leader replica. Only after the 
flow rules are committed into the leader replica, 
the master controller is notified with the flow rule 
changes remotely. This forwarding of flow rule 
installation requests and remote flow rule change 
notifications cause additional latency; therefore, 
case 2 shows drastically reduced throughput.

Meanwhile, there is a trade-off between 

1 The northbound REST API 
for the bulk flow rule instal-
lation is under development 
and unavailable in ONOS-1.4 
(Emu) distribution. 
 
2 The flow rule installation 
throughput values of ONOS 
and ODL when C is 1 are 
13,436.7 flows/s and 4672.4 
flow/s, respectively.

Figure 4. Normalized flow rule installation/read throughput: ONOS vs. ODL.
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device. As a result, all 

the orphan devices can 

recover their master 

connections.
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ONOS and ODL in terms of the flow rule consis-
tency and the flow rule installation throughput. As 
ODL provides strong consistency for flow rules, 
the flow installation throughput can be degraded 
compared to ONOS, which provides eventual 
consistency for flow rules. However, the eventual 
consistency for flow rules in ONOS may poten-
tially present a temporal inconsistency and cause 
undesired behavior of network services that sub-
scribe flow rules.

To evaluate the flow rule read throughput, we 
installed 3000 randomly generated flow rules into 
C ONOS/ODL controllers and transmitted a flow 
rule read request through the northbound REST 
API of a target controller. Upon receiving the 
read request, the target controller replies with the 
requested flow rule. Similar to the flow rule instal-
lation experiment, the flow rule read throughput 
values of ONOS and ODL are normalized by the 
flow rule read throughput values when C is 1.3

As shown in Fig. 4b, the throughput of ONOS 
is rarely affected by C for to the same reason as in 
the flow rule installation throughput experiment. 
On the other hand, the two cases described in the 
flow rule installation experiment are considered 
in ODL. For case 1, the flow rule read requests 
do not require any agreement among the repli-
cas. Therefore, a flow read request can be locally 
processed by the leader replica, and the through-
put remains constant even with the increase of C. 
Also, in case 2, it can be seen that the through-
put is rarely affected by C as the flow rule read 
requests do not require any agreement among 
the replicas. Meanwhile, case 2 shows drastically 
reduced read throughput compared to case 1, 
which can be explained by the same reason as in 
the flow rule installation experiment in ODL.

In the controller failover experiment, we run 
three ONOS/ODL controllers and select one 
ONOS/ODL controller as a master controller of 
D devices. For the failover scenario, the master 
controller is intentionally turned down, and the 
elapsed time from the last heartbeat message of 
the failure detector running in the master control-
ler to the time when a role reply message from 
the last orphan device is received by a new mas-
ter controller is measured.

Figure 5a shows the effect of the number of 

devices, D, on the failover time when F = 8. For 
both ONOS and ODL, as D increases, the num-
ber of orphan devices upon a failure increases and 
the number of role request messages to be sent 
increases. As a result, the failover time increases 
with the increase of D as shown in Fig. 5a.

Figure 5b demonstrates the effect of F on 
the failover time when D = 5. It can be seen 
that the failover time increases as F  increases 
both in ONOS and ODL. This can be explained 
as follows. As F  increases, the cluster in ODL 
and ONOS becomes more conservative in 
determining a controller failure. Therefore, the 
elapsed time between the failure event and the 
failure detection event is incremental to F, and 
the failover time for ONOS and ODL increases 
accordingly.

conclusIon
In this article, we discuss high availability and 
scalability issues in SDN, and analyze ONOS and 
ODL approaches. Experimental results demon-
strate that:
1. The flow rule installation throughput of ODL 

is  significantly affected by the cluster size.
2. There is a  trade-off between ONOS and 

ODL in terms of the flow rule consistency  
and the flow rule installation throughput.

3. The controller  failover time is dependent on 
the number of devices and the failure detec-
tion threshold.

As open challenge:
1. There is a trade-off between inconsistency of 

network states and performance of network 
services.

2. The controller assignment problem in 
large-scale WAN environments must be 
addressed, where latencies between control-
lers and switches are significant.

3. Stability analysis in large-scale SDNs with 
a few tens or hundreds of controllers in a 
cluster should be further investigated, and 
ONOS and ODL will evolve to address these
challenges.
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