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Summary
Recently, network traffic has become more complex and diverse because of the

emergence of new applications and services. Therefore, the importance of applica-

tion‐level traffic classification is increasing rapidly, and it has become a very popu-

lar research area. Although a lot of methods for traffic classification have been

introduced in literature, they have some limitations to achieve an acceptable level

of performance in real‐time application‐level traffic classification. In this paper,

we propose a novel application‐level traffic classification method using payload size

sequence signature. The proposed method generates unique payload size sequence

signatures for each application using packet order, direction, and payload size of

the first N packets in a flow and uses them to identify application traffic. The

evaluation shows that this method can classify application traffic easily and quickly

with high accuracy and completeness rates, over 99.93% and 93.45%, respectively.

Furthermore, the method can classify each application traffic into its respective

individual application. The evaluation shows that the method can classify all

applications traffic, known and unknown (new) applications into their respective

applications, and it can classify applications traffic that use the same application

protocol or are encrypted into each other.
1 | INTRODUCTION

Enterprises and campus networks typically impose a set of policies such as quality of service and service‐level agreements for
an efficient management and operation of network resources. For the policies to be imposed, fast and accurate traffic classifi-
cation in the application layer is essential. Application‐level traffic classification is a process that collects network packets and
determines the identity of the application.1 Accurate real‐time application‐level traffic classification is an important part of
determining the reliability of monitoring and controlling the application traffic of individual applications.1-3 Because of the
importance of application‐level traffic classification, a lot of methods have been introduced. Traditional methods commonly
involve port‐based or payload‐based classification.4 These methods were effective and precise in the early days of the Internet.

Recently, several methods have been introduced that use statistical flow information to address the limitations of port‐based
and payload‐based classification.5,6 The statistic‐based classification that uses statistical information has some advantages. For
example, it works for encrypted traffic, the usage of which has been increasing recently. In addition, it does not need to analyze
the payload information of the packets, so it can classify the traffic quickly. However, this approach has some issues to be
addressed. First, it has to wait until the end of the flow completes the statistical information, so it cannot classify the traffic
in real time. To overcome this problem, methods that use the first N packets of a flow have been studied, but they are also dif-
ficult to apply to real‐time traffic classification in high‐speed real operation networks. Second, it does not consider the incorrect
packet sequence at the traffic collection point due to out‐of‐order, retransmission, and cross‐order packets. The incorrect packet
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sequence will change statistical information of the flow, which can impact the quality of the statistic‐based classification. Third,
it classifies application traffic into application classes relatively using to statistical information.

In this paper, we propose a novel application‐level traffic classification method using payload size sequence (PSS) signature.
Payload size sequence signature represents the unique flow pattern of each application that can be used to identify applications as
the signatures of payload‐based classification. Our method generates PSS signatures for each application with statistical informa-
tion of flows from application traffic traces. And it identifies application traffic easily and quickly in real operation networks
through simple signature matching and signature conflict resolution for new flows with the PSS signatures of each application.

The proposed method has 3 advantages. First, it can classify the application traffic in real time and is well applicable to high‐
speed real operation networks that deal with a large amount of traffic. It uses only the packet order, direction, and payload size of
the first N packets of a flow during traffic classification, so it does not need to analyze packet payload data and can make PSS
vectors without computational cost for the feature extraction from the flow. As a result, our method can operate effectively in real
operation networks. Second, it can obtain highly accurate classification results with high completeness, because it uses PSS sig-
natures that reflect unique flow patterns of each application and rectifies the incorrect packet sequence due to out‐of‐order,
retransmission, and cross‐order packets. Third, it can classify application traffic into each application, not application protocol
or type, because it uses specific PSS signatures to each application and identifies application traffic. Our evaluation shows that
it can classify application traffic that includes new application not present in signature generation into each concerned application
and unknown, and it can classify application traffic that uses the same application protocol into each application.

The remainder of this paper is organized as follows. Section 2 briefly reviews traffic classification approaches and
describes the issues of statistic‐based classification methods that are recently proposed. Section 3 introduces our proposed appli-
cation traffic classification method in detail. Section 4 describes our experimental method and analyzes classification results. The
conclusion and future work are given in Section 5.
2 | RELATED WORK

In this section, we describe approaches for application traffic classification that have been proposed so far. And we describe the
issues of statistic‐based classification that has been recently proposed in literature.
2.1 | Traffic classification approaches

To classify Internet application traffic, various methods have already been proposed. These methods fall in 1 of 3 approaches:
port‐based, payload‐based, and statistic‐based classification. In this section, we provide a brief overview of the 3 approaches
and show their pros and cons.

The port‐based classification is the most traditional traffic classification method. It checks the port number of each packet
and identifies the application according to the IANA list of well‐known and registered ports.7,8 Most often, the classification is
based on associating a well‐known port number to an application. This method needs access only to the header of the packets to
find out their port numbers. The payload‐based classification method emerged, after the port‐based classification become unre-
liable. It uses specific strings that represent specific application. This method defines these specific strings as the payload sig-
natures and checks whether the traffic contains the signatures or not.9-13 The statistic‐based classification method is proposed to
address the limitations of port‐based and payload‐based classification. This method uses statistical properties of network traffic.
Its basic idea is that the statistical properties of traffic are unique for different applications and can be used to distinguish appli-
cations from each other. The commonly used statistical features contain flow duration, packet inter‐arrival time, packet size,
bytes transferred, number of packets, etc.
2.2 | Issues of statistic‐based classification

Recently proposed statistic‐based classification methods commonly use machine learning (ML) algorithms with features such
as port number, flow duration, inter‐arrival time, packet size, etc that can be characteristics of the application traffic.5,6 They
have several advantages discussed in the last section. A problem with them is that they cannot classify the traffic in real time
because they require flow completion to extract the flow features that can only be conducted at the end of the flow. Despite
of few researches on real‐time classification using ML methods, it is still hard to avoid complicated computations, which are
not very suitable to deploy ML methods in the high‐speed real operation networks.
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Generally, statistic‐based classification uses the packet sequence captured on traffic collection point. However, packets may
appear more than once or may be out of order at traffic collection point as consequence of retransmitted or out‐of‐order packets,
which generates the incorrect packet sequence different from the original packet sequence of application. And the packets trans-
ferred by the 2 end hosts can cross in the middle of the transmission path due to cross‐order packets, which generates different
packet sequences depending on the location of traffic collection point. This incorrect and different packet sequence will change
the original statistical information of the flow, which can impact the quality of statistic‐based classification.14-17

Packet retransmission occurs when a packet from sender is lost or damaged mainly because of network congestion. If a
packet is lost or damaged at its transmission path in network, the sender retransmits the packet by time out or duplicate acknowl-
edgment (ACK). In the situation, the TCP at the receiver stores and uses only the retransmitted packet for application, but the
traffic collection system can capture both the lost or damaged packet and the retransmitted packet according to traffic collection
point. So, this packet retransmission makes the packet sequence captured at the traffic collection point different from the packet
sequence used by the application.

Out‐of‐order packets are produced because of the various transmission paths travelled by the packets. When a connection is
established between 2 end hosts, packets can be transferred through different paths depending on the network status. If a packet
that is sent earlier is transferred through more routers than a packet that is sent later, the later packet may arrive at the receiver
before the one sent earlier. In this situation, the packets are said to be out‐of‐order. The TCP at the receiver reorders the packets
in the correct order, but the traffic collection system captures them in an incorrect order. As the result, the packet sequence cap-
tured at traffic collection point becomes different from the original packet sequence of application.

Cross‐order occurs during full‐duplex TCP sessions. In a full‐duplex TCP session, one end host does not wait for the
other host to finish transferring the data. It begins to transfer its own data while the other host is still transferring. Therefore,
the packets transferred by the 2 end hosts cross in the middle of the transmission path, which makes traffic collection system
capture packets in a different packet order depending on traffic collection point. These cross‐order packets can affect packet
sequence and statistical information for statistic‐based classification at different collection points.

Consequently, it is necessary to correct the packet sequence at traffic collection point according to the original packet sequence
intended by a particular application. The proposed method rectifies the incorrect packet sequence because of the retransmitted or
out‐of‐order packets before PSS signature generation or traffic identification, which prevents abnormal packets from affecting
the statistical information for traffic classification. The proposed method also deduces the packet sequence in which the appli-
cation originally sends and receives packets, not the packet sequence at the traffic collection point, for traffic classification.

Most statistic‐based classification methods classify the application traffic of the application protocol or type, instead of the
application, because they determine the identity of application out of the concerned applications relatively. Figure 1 shows the
meaning of the ML‐based traffic classification on a 2‐dimensional space. Points and their colors indicate flows and traffic clas-
ses, respectively. The lines present classification model built from training dataset.

To classify traffic into their respective applications, not by application protocol or group, the proposed method generates PSS
signatures that are specific for each application. Payload size sequence signatures are similar to the signatures of payload‐based
classification, but they use unique flow patterns of each application to classify traffic into their respective applications.
3 | TRAFFIC CLASSIFICATION METHODOLOGY USING PSS SIGNATURE

In this section, we describe the proposed traffic classification method after defining PSS and describing PSS characteristics to
distinguish application traffic. To classify applications traffic, PSS signatures that are unique to each application are necessary.
We define PSS signature mathematically and propose PSS signature generation method. After that, we describe the traffic
FIGURE 1 Traffic classification on 2‐dimensional space3,5. Support vector machine (SVM)
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classification method on the basis of the PSS signatures. In this paper, PSS signatures are generated per individual application
instead of application protocol or type, therefore can be used in a broad range of fields in comparison with previous methods
that classify traffic into application protocol or application type.
3.1 | Payload size sequence

In general, PSS refers to the first few packets of a flow that communicate on the basis of predefined rules by an application. The
first N packets of a flow can be used as a distinguishable feature to identify the application since they communicate according to
predefined rules and are very different in each application.18 In this study, we define the flow as a sequence set of packets trans-
mitted in both directions on the basis of a 5‐tuple (src IP, dst IP, src port, dst port, and L4 protocol). Packet order is formed
according to the packet sequence in which the application originally sends and receives packets at the client host.

The PSS of a flow is presented as a sequence set that is composed of the payload size and direction of the first internal N
packets based on packet order. The payload size and transmission direction of each packet are expressed as an integer and “+/−,”
respectively. In the case of TCP, the transmission direction from client to server is defined as “+,” and the opposite direction is
defined as “−.” In the case of user datagram protocol (UDP), since the distinction between client and server is not clear, the direc-
tion of the first packet is expressed as “+” and the opposite direction is determined as “−.” For example, if a flow communicates
in both directions as shown in Figure 2 the PSS of the flow has the values +20, −30, +20, +25, and −15, excluding the control
packets such as SYN, SYN/ACK, and ACK, and correcting abnormal packets such as the retransmission and out‐of‐order.

From the observations of popular applications in the Korea University campus network, we found that applications can be dis-
tinguished with their PSSs.19 Figures 3 and 4 show each PSS of 2 different applications, PuTTY, and Xshell. The PSSs that have
the same packet order and direction are expressed as a flow group that is plotted with a polygonal line. The vertical axis shows the
multiplication of the payload size and the direction of the packets. The horizontal axis shows packet order. The multiplication of
the payload size and direction of the packet can have values from−1460 to 1460. Most of applications do not have flows that com-
municate with 1 identical pattern of PSS such as PuTTY. The flows can be either divided with 2 or 3 specific patterns such as
Xshell. However, PSSs of each application show their own unique characteristics when they are compared with other applications.
3.2 | PSS signature

A PSS signature represents each application's unique flow pattern that can be used to classify application traffic. The proposed
method vectorizes flows from application traffic traces into PSS vectors per application and groups PSS vectors on the basis of
the similarity between PSS vectors to identify flow patterns of the application. In sequence, a PSS signature is generated with
the combination of a representative PSS vector that represents PSS vectors of each group, a distance threshold vector which
includes PSS vectors of each group, and a probability distribution set that resolves signature conflict. If all of the individual
FIGURE 2 Payload size sequence (PSS) of a flow
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FIGURE 3 Payload size sequences of PuTTY
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PSS vectors are used as signatures, the number of signatures increases. As a result, managing the signatures becomes difficult;
the system as well becomes overloaded for the identification of application traffic. Therefore, an optimal PSS signature com-
bines the representative PSS vector, the distance threshold vector, and the probability distribution set that represent each group
by grouping the application PSS vectors.

The PSS vector vk of a flow fk can be expressed as Equation 1, and each element vk , i of vk can be written as Equation 2. dk , i
is the transmission direction of the ith packet of fk, and its value is either +1 or −1. sk , i is the payload size of the ith packet of fk.
The similarity between 2 PSS vectors is expressed as the distance vector that has elements as distance between 2 PSS vectors by
each dimension. Similarity is used in flow grouping and signature‐matching algorithms. The distance vector dvx , y= dv(vx, vy)
between vx and vy can be written as Equation 3.

vk ¼ vk;1; vk;2;…; vk;n
� �

; (1)

vk;i ¼ dk;i×sk;i; (2)

dv vx; vy
� � ¼ vx;1−vy;1

�� ��; vx;2−vy;2
�� ��;…; vx;n−vy;n

�� ��� �
; (3)

s ¼ c; t;Pð Þ; (4)

dv v; cð Þ≤t for∀v∈V sð Þ; (5)

P ¼ P1;P2;…;Pnf g; (6)

P vkð Þ ¼ ∏
n

i¼1
Pi vk;i
� �

; (7)
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S ¼ s1; s;2;…; sn
� �

; (8)

bS such that

minimize Sj j
minimize∑t sð Þ
maximize∑∣V sð Þ∣

:

8><
>: (9)

Payload size sequence signature s is represented with the representative PSS vector, the distance threshold vector, and prob-
ability distribution set, as in Equation 4. c is the centroid PSS vector of the PSS vector group and t is the distance threshold
vector, which can include every PSS vector of the PSS vector group. P is the probability distribution set of the PSS vector
group, which can resolve signature conflict. s is the combination of c, t, and P of the PSS vector group.

Each PSS vector v of the PSS vector group V(s), which is represented by the PSS signature s = (c, t, P), should satisfy Equa-
tion 5. The similarity between all v that belong to V(s) and the representative PSS vector c should be less than or equal to dis-
tance threshold vector t. The probability distribution set P is a set of the probability distribution Pi that is built on all ith value of
every PSS vector belonging to the PSS vector group as Equation 6. If a PSS vector vk of new flow is matched to several PSS
signatures of different applications, which is termed as signature conflict in this paper, the flow is classified according to the
probability value calculated from the probability distribution set as Equation 7. Multiple PSS signatures of each application
can exist, and Equation 8 presents PSS signature set S. Payload size sequence vectors of each application are extracted from
flows of ground‐truth traffic traces that are collected in advance. After that, the PSS signature set is generated on the basis
of the PSS vectors. Applications traffic can be classified according to the PSS signature set.

To obtain an optimal PSS signature set bS from the given ground‐truth flows of each application, the condition of Equation 9
should be satisfied. |S| indicates the number of PSS signatures s of S, t(s) is the distance threshold vector of PSS signature s, and
|V(s)| is the number of PSS vectors of set V(s) represented by PSS signature s. Thus, Equation 9 indicates the minimization of
the number of PSS signatures, the minimization of the sum of distance threshold vectors, and the maximization of the number of
PSS vectors that belong to each PSS signature for obtaining an optimal PSS signature set.

Figure 5 presents the flowchart of the proposed application traffic classification method using PSS signature. The method is
divided into 2 stages: signature generation and traffic identification. In the signature generation stage, application flows of
ground‐truth traffic traces are preprocessed to remove control packets, correct abnormal packets, and deduce the original packet
sequence. Next, flows of preprocessed ground‐truth traffic are vectorized to PSS vectors, and the flows are grouped on the basis
of similarity between 2 PSS vectors, which is defined by Equation 3. Finally, PSS signatures are extracted after optimizing the
groups. In the traffic identification stage, a new flow is generated from a series of packets in a real operation network.
FIGURE 5 Flow chart of application
traffic classification using payload size
sequence signature
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3.3 | PSS signature generation

In this section, we present some requirements of the ground truth traffic to generate optimal payload size sequence signatures.
Next, we describe PSS signature generation in detail. Payload size sequence signature generation is composed of preprocessing,
flow grouping, group optimization, and signature generation algorithms. The preprocessing algorithm is used to remove control
packets, correct abnormal packets, and deduce the original packet sequence. The flow grouping algorithm is used to identify
unique flow patterns for each application. The group optimization algorithm adjusts each flow group from the flow grouping
to make an optimal PSS signature set, and the signature generation algorithm extracts PSS signatures from final groups.
3.3.1 | Ground truth traffic

Ground truth traffic has some requirements to generate optimal PSS signatures. First, all types of traffic of the concerned appli-
cations must be included. Applications can perform several different functions and generate slightly different traffic patterns.
Therefore, all types of traffic generated from an application should be collected to extract accurate signatures. Second, the traffic
of each application should have more than a certain number of flows. The signature that is generated with too few flows can
cause a decrease of reliability and a decline of distinguishable traffic in the application classification. Third, the traffic of each
application needs to be collected from multiple hosts. If any application traffic is collected by 1 host, the characteristics of traffic
can be dependent on that host.
3.3.2 | Preprocessing

Packet retransmission influences the statistical information obtained from a flow because original packets and retransmitted
packets can be collected at the traffic collection point, which can change the information, such as the order, size, and number
of packets. There are 2 types of packet retransmission, and each has its own elimination process. In the first type, the original
packet and the retransmitted packet have the same payload size and Seq number. To eliminate this, we store the original packet
and ignore the retransmitted packet to determine the original application behavior. In the second type of packet retransmission,
the payload size of the retransmitted packet is larger than that of the original packet because when a packet retransmission is
required, TCP repacketizes the packet by adding more data to the original packet to improve the performance.

Algorithm 1. Resolution for Packet Retransmission
input P(n) in TCP flow
output TCP flow without retransmission packets
1: P(n): n‐th payload packet in a TCP flow
2: P(n).seq: n‐th payload packet's sequence number
3: P(n).ack: n‐th payload packet's acknowledge number
4: P(n).dir: n‐th payload packet's transmission direction
5 P(n).len: n‐th payload packet's payload length
6: Find P(k) where P(k).dir == P(n).dir && largest k in 0<k<n
7 if (P(k).seq == P(n).seq )
8 then Delete P(n)
9 else if (P(k).seq + P(k).len < P(n).seq )
10 then Delete P(n)
11 return P(n)

Algorithm 1 shows to resolve the packet retransmission. When P(n) is inputted, it is compared with the pre‐stored packets
that are transmitted in the same direction. If a packet retransmission is detected, P(n) is deleted. The output of algorithm 1 is
TCP flow with deleted the retransmission packets. Following the establishment of a TCP connection between 2 end hosts,
packets can be transferred through different paths depending on the network status. If a packet that is sent earlier is transferred
through more routers than a packet sent that is later, the later packet may arrive at the receiver before the one sent earlier. In this
situation, the packets are said to be out of order.

Algorithm 2 shows the algorithm that is used to resolve out‐of‐order packets. When P(n) is inputted, it is compared
with the pre‐stored packets transmitted in the same direction. If there is a pre‐stored packet with a larger Seq number than
P(n), the out‐of‐order packet is detected and the situation can be resolved. The latest transferred packet that has the same
direction and a smaller Seq number than P(n) is P(i). The earliest transferred packet that has the same direction and a larger
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Seq number than P(n) is P(j). P(n) is located between P(i) and P(j) when there are no packets in the opposite direction. If
packets between P(i) and P(j) are in the opposite direction, the location of P(n) is determined based on these packets. If a
packet in the opposite direction is found to have the same ACK number as the sum of the Seq number and the payload size
of P(n), then P(n) is placed in front of the packet. If a packet in the opposite direction is found to have a smaller ACK num-
ber than the sum of the Seq number and the payload size of P(n), then P(n) is placed behind this packet. The output of algo-
rithm 2 is TCP flow with solved the out‐of‐order problem.

Algorithm 2. Resolution for Out‐of‐order Packet
input P(n) in TCP flow
output TCP flow without out-of-order packets
1: Find P(k) where P(k).dir == P(n).dir && largest k in 0<k<n
2: If(P(k).seq>P(n).seq) then
3: Find P(i) where P(i).dir == P(n).dir && P(i).seq P(n).seq && largest i in 0<i<k
5 Find P(j) where P(j).dir == P(i).dir && smallest j in i< j< k
6: for P(m) from P(j-1) to P(i+1)
7 if (P(m).dir != P(n).dir && P(m).ack == P(n).seq + P(n).len) then
8 put P(n) in front of P(m)
9 Return
11 else if (P(m).dir != P(n).dir P(n).seq + P(n).len) then
12 put P(n) behind P(m)
13 return
14 end if
15 end for
16 put P(n) behind P(i)
17 end if
18 return P(n)

Packet retransmission and out‐of‐order packets can be corrected by comparing the Seq and ACK fields of the packets
involved. However, there is no correct packet sequence for cross‐order. The standard packet sequence is required to remove
inconsistency according to traffic collection points and dependency in them. The standard sequence can be the packet sequence
at client host or server host. In this paper, we use the packet sequence at the client host as the standard because most TCP ses-
sions start with a request from the client to the server, and they continue with a response from the server to the client. Thus, the
session changes continuously according to the requests from the client. Therefore, by inducing the packet sequence in which the
client host sends and receives packets, the packets are collected in the original sequence intended by the application.

The Figure 8 occurs when 2 packet crosses are made by 1 backward packet and 2 forward packets. Before the Figure 8
occurs, Figure 6 is always similar to Figure 7. The Figure 8 is detected when 2 or more forward packets and backward packets
are crossed. There is Figures 6 and 7 before Figure 8 occurs. Cross‐order cases can occur at the same time; therefore, a method
that considers all cases is needed to resolve the cross‐orders.

Algorithm 3 shows the cross‐order resolution algorithm. After detecting cross‐order according to its 3 conditions during
traffic collection, the algorithm exchanges the order of P(n‐1) with that of P(n). At this point, cross‐order may also occur
between the exchanged P(n‐1) and P(n). If cross‐orders continue to occur, they are resolved by backtracking until all of the
cross‐orders are resolved.

Algorithm 3. Resolution for Cross‐order
input P(n) in TCP flow
output TCP flow without cross-order packets
1: If ( P(n-1) == Bp && P(n) == Fp) then
2: If (P(n-1)(Ack) <= P(n)(Seq) && P(n-1)(Seq) >= P(n)(Ack)) then
3: Change P(n-1) and P(n)
4 n = n-1
5: goto line 1
6: End if
7: End if
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3.3.3 | Flow grouping and group optimization

First of all, flows from the ground‐truth traffic are preprocessed and divided into each application according to the identity of
applications. Next, flows of each application are grouped according to similarity of PSS vectors to extract PSS signatures for
each application. An application has multiple flow patterns to reflect different application behaviors. To precisely catch these patterns,
flow grouping is used for each application. The application flows are divided into multiple flow groups by similarity of PSS vectors
to extract PSS signatures of each application from the repeated and unique patterns of flows. Each flow group, as shown in Table 1
has 6 properties.
3.3.4 | Signature generation

The ID, Proto, and Dim of the PSS signature are inherited from each of the flow groups. After that, our signature generation
algorithm calculates the C‐vector of the flow group using Equation 12 and assigns it to the C‐vector of the PSS signature.
The C‐vector for PSS signature should be calculated, after the group optimization algorithm removes the PSS vectors that
did not meet the conditions given in Equation 10. The C‐vector is used with the T‐vector to identify the application of a new
flow during the traffic classification.
ci ¼ min vj;1
� �þ ∣max vj;1

� �
−min vj;1

� �
∣

2
; min vj;2

� �þ ∣max vj;2
� �

−min vj;2
� �

∣
2

;…; min vj;n
� �þ ∣max vj;n

� �
−min vj;n

� �
∣

2

� �
for ∀vj∈Vi; ci of Gi

(12)
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In addition, the signature generation algorithm calculates the T‐vector of the flow group and assigns it to the T‐vector of the PSS
signature. Each element of the T‐vector of all flow groups has the same value as an initial value. However, the distance threshold of
each group that can contain all flows is different, because each group has different density and distribution of PSS vectors after the
flow grouping is completed. Therefore, the T‐vector should be minimized to eliminate misclassification errors during traffic classi-
fication. The T‐vector is calculated using Equation 13, which means that the T‐vector has elements as the maximum distance between
each PSS vector and C‐vector by each dimension. Each element of the T‐vector cannot be more than its initial value for each group.
ti ¼ max jvj;1−ci;1j
� �

; max jvj;2−ci;2j
� �

;…; max jvj;n−ci;nj
� �� �

for ∀vj∈Vi; ci of Gi (13)
Finally, the signature generation algorithm builds the probability distribution set of the flow group and assigns it to the PDS of
the PSS signature. The PDS is a set of the probability distribution Pk, which is built on all kth values of every PSS vector in the
flow group. The values are already discrete10 and ranged from −1460 to 1460 bytes, because the kth value of PSS vector is cal-
culated by multiplication of the payload size and direction of kth packet on packet order of each flow. Furthermore, the range of the
value in the flow group is much smaller because the value is limited to kth distance value of T‐vector. Consequently, we can build
Pk as the discrete probability distribution. To build Pk, the signature generation algorithm uses the histogram estimation11 with bin
of 1 byte size. It counts the number of the same value of the kth position of every PSS vector in the flow group, and respectively
divides them by the number of all PSS vectors belonging to the group. Pk provides the probability for a specific value at the kth
position of the PSS vector in the flow group. The Pk of PDSi of the flow group Gi is built as Equation 14.
Pk ¼ Probability distribution of vj;k for ∀vj∈Vi of Gi (14)
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TABLE 1 Attributes of a flow group

Attribute Description Example

ID Application name BitTorrent

Proto L4 protocol: TCP/UDP UDP

V Set of flow vectors {v1,v2,v3,…,vn}

Dim Dimension of vector 5

C‐vector Centroid PSS vector (+20,+30,‐50,+20,‐30)

T‐vector Distance threshold vector (175, 175, 175, 175, 175)
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Figure 9 shows the PDS of the PSS signature. Payload size sequence is made up of N Pk that is the probability distribution
of kth values of PSS vectors in the flow group. Pk is expressed as histogram that is a graphical representation of the distribution
of numerical data.
4 | EVALUATION

In this section, we describe the result of traffic classification test in the campus network to verify the proposed application traffic
classification using PSS signature. We did only focus evaluation about accuracy and completeness rate of this paper. It will pres-
ent future work about the result of comparative of classification time and extraction time with conventional method.
4.1 | Ground truth traffic

For our evaluation, we collected bidirectional packet traces from the Korea University campus network. The campus network
was configured with 1 router at the Internet junction, so we collected the traffic traces from the router using port mirroring. To
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evaluate traffic classification, it is crucial to obtain a firm ground truth. We deployed traffic measurement agents on selected
hosts in the campus network and created the ground‐truth traffic.20 The ground truth traffic through those agents is more reli-
able than using the result of the particular classification method to evaluate the classification method.12
4.2 | Evaluation metrics

We use completeness and accuracy as evaluation metrics, in accordance with most of traditional literatures.4,5,13 Completeness
is a metric of how much traffic was classified. Accuracy is a metric that indicates rate of correctly classified traffic. Overall
accuracy is the ratio of the sum of all true positives (TP) to the sum of all TP and false positives (FP) for all applications as
Equation 18. N is the number of concerned applications. TP is the number of correctly identified objects for a specific appli-
cation. FP is the number of falsely identified objects for a specific application.

Overall Accuracy ¼
∑
N

i¼1
TP

∑
N

i¼1
TPþ ∑

N

i¼1
FP

; (18)

Precision ¼ TP
TPþ FP

; (19)

Recall ¼ TP
TPþ FN

; (20)

Fmeausre ¼ 2×Precision×Recall
Precision þ Recall

: (21)

Precision is the ratio of TP over the sum of TP and FP as Equation 19. This metric indicates the fraction of objects that are
correctly classified from the total amount of objects classified as a specific application. Recall is the ratio of TP over the sum of
TP and false negatives (FN) as Equation 20. This metric indicates the fraction of objects that are correctly classified from the
total amount of objects of a specific application. FN is the number of objects that are falsely classified as belonging to another
application or unknown for a specific application. F‐measure is the combined form that considers both precision and recall in a
single metric by calculating their harmonic mean as Equation 21. These evaluation metrics are expressed by flow, packet, and
byte to provide more detailed information.
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4.3 | Results and analysis

The proposed method has classified a large amount of the ground truth traffic in just few minutes, which shows the applicability
to real‐time traffic classification. In this section, we analyze the performance of the proposed method and describe the perfor-
mance of the preprocessing and signature conflict resolution perspectives.
4.3.1 | Performance of proposed method

In this section, we analyze the performance of the preprocessing that rectifies the incorrect packet sequence due to abnormal
packets and deduces the original packet sequence, through a comparison without using it. Table 2 presents the overall accuracy
and completeness of the traffic classification test in flow, packet, and byte. Unused columns indicate the results of a test without
preprocessing. Used columns indicates the results of a test with preprocessing. The results show that the classification using
preprocessing can achieve higher overall accuracy and completeness than not using preprocessing. The increase rate in overall
accuracy was achieved by correctly identifying the application flows that are falsely identified as different application or
unknown by the classification without preprocessing. The increase rate in completeness is achieved by additionally identifying
the application flows that are classified as unknown.

Table 3 presents the precision and recall per each application, which is responsible for the overall accuracy. The results show
that used can achieve higher precision rates than unused for most applications in all units. Unused falsely classified some of
application flows as unknown or different application, because most applications have either retransmission, out‐of‐order, or
cross‐order packets. Used correctly classified those flows that were unknown or misclassified in unused using preprocessing.
Used achieves an increase of 0.01% to 25.12% in precision rates for applications, in spite of the additionally classified flows
as compared with unused. Also, used achieves an increase of 0.03% to 74.4% in recall rates for most applications as compared
to unused. In particular, for Xshell, a surprisingly huge increase of 72%, 74.13%, and 74.4% is observed in flow, packet, and
byte recall, respectively, as used additionally and rightly classify a large portion of its flows that are unknown in unused. This
means that more application traffic can be rightly classified by preprocessing.
TABLE 2 Overall accuracy and completeness of preprocessing perspective

Overall accuracy (%) Completeness (%)

Unused Used Unused Used

Flow 99.80 99.93 87.42 93.45

Packet 99.89 99.97 94.83 96.19

Byte 99.92 99.99 95.33 96.25

TABLE 3 Precision and recall of each application of pre‐processing Perspective

Traffic
Class

Precision Recall

Flow (%) Packet (%) Byte (%) Flow (%) Packet (%) Byte (%)

Unused Used Unused Used Unused Used Unused Used Unused Used Unused Used

Skype 99.85 99.85 99.57 99.56 99.8 99.86 80.64 80.64 81.33 81.33 89.03 89.03

GomTV 100 100 100 100 100 100 88.03 96.64 95.20 95.59 95.43 95.68

Naverlive 94.12 97.72 99.97 100 99.97 100 92.75 93.37 97.39 98.74 97.50 98.76

Nateon 73.86 98.98 98.69 99.89 99.11 99.87 98.31 98.31 99.91 99.91 99.64 99.64

Outlook 99.29 99.35 99.86 99.91 99.93 99.96 78.87 88.28 57.14 92.26 52.47 93.57

Xshell 100 100 100 100 100 100 27.14 99.14 24.93 99.06 24.68 99.08

PuTTY 100 100 100 100 100 100 100 100 100 100 100 100

Teamviewer 100 100 100 100 100 100 91.68 91.68 81.21 81.21 81.40 81.40

Dropbox 100 100 100 100 100 100 99.49 99.52 99.21 99.29 99.44 99.56

uTorrent 99.96 99.97 99.84 99.96 99.89 99.99 87.20 93.37 94.49 94.94 95.05 95.09
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Table 4 presents the F‐measure for each application that considers both precision and recall in a single metric using their
harmonic mean. The results show that used can achieve higher F‐measure rates than unused for all applications in all units
due to higher precisions and recalls as discussed and experimental results show above. Used achieves an increase of 0.02%
to 59.95% in F‐measure rates for most applications as compared to unused.
4.3.2 | Performance of signature conflict resolution perspective

We analyze the performance of the signature conflict resolutions using PDS through a comparison by using manhattan dis-
tance21 and classifying them as unknown. Table 5 presents the overall accuracy and completeness of the traffic classification
test in flow, packet, and byte. Unk indicates the result of a test that classifies a new flow into unknown in signature conflict.
Dist indicates the result of a test using the Manhattan distance between the C‐vector and the flow vector for signature conflict
resolution. Payload size sequence indicates the result of a test using PDS to resolve signature conflict. The results show that the
signature conflict resolution using PDS can achieve high rates in both, overall accuracy, and completeness.

Table 6 presents the precision per each application, which is responsible for the overall accuracy. The results show that PDS
can achieve higher precisions than Unk and Dist for all applications in all units. The precision of Unk indicates the precision
using only signature matching without signature conflict resolution, because it classifies a new flow that is matched to several
PSS signatures with different IDs into unknown. Payload size sequence achieves higher precision rates than Unk for all appli-
cations in all units while it additionally classifies application flows in signature conflict as compared with Unk. This means that
PDS can correctly classify most of flows in signature conflict contrarily to Dist.

Also, Table 6 presents the recall per each application, which is responsible for completeness. Unk has lower recall rates than
Dist and PDS for all applications in all units, since it classifies application flows into unknown in signature conflict. Even
though the completeness of Dist and PDS is similar to each other, they have different performance of recall per each application.
Dist has 20.39% and 23.97% lower flow recall rates than PDS in Naverlive and uTorrent, respectively. A large portion of
Naverlive flows were falsely classified into uTorrent in signature conflict. Some flows of uTorrent were misclassified into
Skype, GomTV, Naverlive, or Teamviwer in signature conflict. So Dist do not increase the recall rates of Naverlive and
uTorrent in spite of additionally classified flows in signature conflict as compared with Unk. However, PDS increases recall
rates for all applications as the amount of flows are additionally classified in signature conflict, as compared to Dist, since
TABLE 4 F‐measure of each application of preprocessing perspective

Traffic
Class

Flow (%) Packet (%) Byte (%)

Unused Used Unused Used Unused Used

Skype 89.22 89.22 89.53 89.53 94.11 94.13

GomTV 93.63 98.29 97.54 97.75 97.66 97.79

Naverlive 93.43 95.50 98.66 99.37 98.72 99.38

Nateon 84.35 98.64 99.30 99.90 99.37 99.75

Outlook 87.91 93.49 72.69 95.93 68.81 96.66

Xshell 42.69 99.57 39.91 99.53 39.59 99.54

PuTTY 100 100 100 100 100 100

Teamviewer 95.66 95.66 89.63 89.63 89.75 89.75

Dropbox 99.74 99.76 99.60 99.64 99.72 99.78

uTorrent 93.15 96.56 97.09 97.39 97.41 97.48

TABLE 5 Overall accuracy and completeness of signature conflict resolution perspective

Overall accuracy (%) Completeness (%)

UnK Dist PDS UnK Dist PDS

Flow 99.90 77.07 99.93 70.96 93.55 93.45

Packet 99.97 91.48 99.97 86.56 96.33 96.19

Byte 99.99 92.45 99.99 87.76 96.39 96.25



TABLE 6 Precision, recall, and F‐measure of each application of signature conflict resolution perspective

Traffic
Class

Precision (%) Recall (%) F‐measure (%)

UnK Dist PDS UnK Dist PDS UnK Dist PDS

Skype 99.83 2.42 99.85 69.89 82.88 80.64 82.22 4.70 89.22

GomTV 100 71.92 100 88.26 96.79 96.64 93.76 82.52 98.29

Naverlive 97.05 91.92 97.72 71.64 72.98 93.37 82.43 81.36 95.50

Nateon 98.97 88.18 98.98 96.96 98.31 98.31 97.95 92.97 98.64

Outlook 99.18 99.29 99.35 69.94 88.38 88.28 82.03 93.52 93.49

Xshell 100 100 100 99.14 99.14 99.14 99.57 99.57 99.57

PuTTY 100 100 100 100 100 100 100 100 100

Teamviewer 100 94.58 100 38.95 92.09 91.68 56.06 93.32 95.66

Dropbox 100 100 100 99.52 99.52 99.52 99.76 99.76 99.76

uTorrent 99.96 99.75 99.97 69.35 69.40 93.37 81.89 81.85 96.56
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PDS correctly classifies most of them into their applications. Payload size sequence achieves an increase of 0.02% to 68.06% in
recall rates for all applications in all units as compared to Unk by correctly classifying most flows in conflict signature. This
means that PDS can be more reasonable for signature conflict resolution than Dist.

Finally, Table 6 presents the F‐measure for each application that considers both precision and recall in a single metric
using their harmonic mean. The results show that PDS can perfectly resolve the signature conflict to increase completeness
without reduction of accuracy. Payload size sequence achieves an increase of 0.01% to 66.21% in F‐measure for all applica-
tions in all units as compared with UnK. It also achieves an increase of 0.02% to 92.37% in F‐measure for all applications in
all units as compared to Dist, except for Outlook in flow units and Teamviwer in byte units with a slight decrease of 0.03%
and 0.16%, respectively.
5 | CONCLUSION AND FUTURE WORK

In this paper, we propose an application‐level traffic classification method that uses PSS signature. Payload size sequence
signature represents the unique flow pattern of each application and can distinguish applications. Payload size sequence
signatures for each application are generated by our preprocessing, flow grouping, group optimization, and signature generation
algorithms. After that, our method classifies new flows into individual applications through PSS signature matching and signa-
ture conflict resolution in real operation networks.

Our method can be applied effectively to real‐time traffic classification in high‐speed real operation networks, because it
does not require any computational cost for the feature extraction and uses simple comparison in PSS signature matching
and signature conflict resolution. The evaluation shows that our method can classify application traffic easily and quickly with
high accuracy and completeness rates of more than 99.93% and 93.45% for every application in all units (flow, packet, and
byte). The evaluation also shows that our method can classify application traffic that includes new application not in signature
generation into their respective known or unknown applications. The method can classify application traffic that uses the same
application protocol or encrypts its payload into another application. Therefore, our method can be applied to various network
management environments and operation that have to control individual applications with high accuracy in high‐speed real‐time
operation networks. It also can be easily extended by adding PSS signatures for new applications.

Our future studies will focus on 3 areas. First, we intend to extend our method to the application function level classification
to provide more in‐depth analysis for traffic monitoring and network management. Second, we will take a deep study on the
combination of our method and different methods such as port‐based or payload‐based classification22,23 to improve precision
and recall values, for applications with similar application traffic characteristics. Third, we will study the traffic classification
method that uses application message size sequence to better reflect application behaviors.
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