
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 33, 541-573 (2017)

541

SigBox: Automatic Signature Generation Method
for Fine-Grained Traffic Identification

KYU-SEOK SHIM, SUNG-HO YOON, SU-KANG LEE AND MYUNG-SUP KIM+

Department of Computer and Information Science
Korea University

Sejong, 30019 Korea
E-mail: {kusuk007; sungho_yoon; sukanglee; tmskim}@korea.ac.kr

The continual appearance of new applications and their frequent updates emphasize

the need for automatic signature generation. Although several automatic methods have
been proposed, there are still limitations to their adoption in a real network environment
in terms of automation, robustness, and elaboration. To address this issue, we propose an
automatic signature generation method, so called SigBox, for fine-grained traffic identi-
fication. Using a modified sequence pattern algorithm, this system extracts three types of
signatures: content, packet, and flow signature. A flow signature, the final result of this
system, consists of a series of packet signatures, and a packet signature consists of a se-
ries of content signatures. A content signature is defined as a distinguishable and unique
substring of the packet payload. By using the modified sequence pattern algorithm, we
can improve the system performance in terms of automation and robustness. In addition,
the proposed method can generate an elaborated signature for fine-grained traffic identi-
fication by using flow-level features beyond those of the packet level. In order to verify
the feasibility of our proposed system, we present the results of experiments based on ten
popular applications according to three defined metrics: redundancy, coverage, and ac-
curacy. In addition, we show the quality of the generated signatures as compared to those
produced by existing methods.

Keywords: traffic identification, traffic classification, automatic signature generation,
sequence pattern algorithm, Apriori algorithm

1. INTRODUCTION

As high-speed Internet services have become more widespread and Internet-based
applications have become more diverse, network management has become an increas-
ingly important and essential process in network operations. The primary objective of
network management is to maximize the use of network resources and to protect network
devices from any external or internal threats. In order to achieve this goal, network oper-
ators establish appropriate network policies and apply them to the target network in a
timely fashion. To establish the appropriate network policies, traffic identification must
be performed before the operator applies the policy to the target network, because the
policies that block/adjust the target traffic are based on the identification results [1-5].

Traffic identification is defined as the act of ascertaining which application or ser-
vice is contributing to the network traffic by using a signature, which is a distinguishable
unique pattern representing a particular application’s traffic. Based on the traffic signa-
tures, network traffic is named according to its corresponding application. The signature

Received December 23, 2015; revised April 5, 2016; accepted June 1, 2016.
Communicated by Ying-Dar Lin.
* This research was supported by a Korea University Grant.
+ Corresponding author: tmskim@korea.ac.kr

KYU-SEOK SHIM, SUNG-HO YOON, SU-KANG LEE AND MYUNG-SUP KIM

542

generation phase is the most important first step in traffic identification, because the ac-
curacy of the entire process depends on that signature. The identification results are also
utilized in numerous areas of network management, including traffic engineering, net-
work planning, QoS planning, and Service Level Agreement (SLA) management.

In general, signature inspectors, such as network administrators or security experts,
manually analyze the traffic of the target application to extract the unique pattern of the
target application in order to generate a traffic signature. However, this primitive method
requires difficulties especially in protocol semantic analysis and deep packet inspection
whereas processes are time-consuming. Therefore, the quality of the signature could vary
depending on the proficiency of the inspectors. In addition, these manual and laborious
processes face challenges, given the continual appearance of new applications and their
frequent updates [6-8].

These circumstances have led to several automatic signature generation methods
being proposed [6-17]. However, we question whether these methods are actually auto-
matic methods or otherwise because they require additional pre-/post-processing neces-
sitating the intervention of operators. The pre-processing includes ordering and grouping
input traffic data and the post-processing includes selecting of the final signature from
several candidates. To find the appropriate grouping, ordering, and threshold values,
existing methods must perform a repetitive generation process in which the input order
and various types of threshold values are changed. This limitation raises challenges for
generating signatures automatically in a real network environment.

To overcome the limitations of the previous methods, we propose a new method for
generating signatures automatically. This method does not need any pre-processing for
calibrating the order of the input data, predefining of configurable threshold values, or
understanding of the protocol sematic analysis. In our method, we use a modified se-
quence pattern algorithm [18, 19], which is widely used in genetic engineering [20], to
find sequences that represent the target application. By virtue of the nature of this algo-
rithm, we can extract all the possible sequences observed in the input hosts’ traffic. The
modified sequence pattern algorithm extracts candidate sequences and measures a can-
didate’s support value, that is, the ratio of hosts having the sequence to the total hosts, by
increasing the length of the sequence from length 1. Increasing the length of the se-
quence, it eliminates insufficient candidate sequences under a predefined support value 1,
which means that only candidate sequences observed in all hosts’ traffic are accepted, in
the early stage. Therefore, this algorithm can find all the possible sequences observed in
all hosts’ traffic.

This system, SigBox, generates three types of signatures automatically: content,
packet, and flow signatures. The goal of this system is to “extract the signatures auto-
matically” that were used in traffic identification by methods such as DPI. The term
“Automatically” as defined here, refers to automatic extraction of three types of signa-
tures (content, packet, and flow signatures) from traffic data without human intervention
when a user manually enters particular traffic data in the system. As the previous meth-
ods manually extracted signatures, some problems were discovered, so in this paper we
are trying to solve such problems and improve the quality of extracted signatures. Also,
differently from previous methods, instead of simply comparing two strings in finding a
common string, all of the existing strings are compared at once without pre- or post-pro-
cessing. Therefore, compared to previous methods the proposed method is both fast and

SIGBOX: AUTOMATIC SIGNATURE GENERATION METHOD FOR FINE-GRAINED TRAFFIC IDENTIFICATION

543

accurate in signature extraction.
The content and packet signatures are intermediate results, and the flow signature is

the final result. The flow signature consists of a series of packet signatures, and the
packet signature consists of a series of content signatures. The content signature is de-
fined as a distinguishable and unique substring of the payload consisting of continuous
characters or hexadecimal values. In the generation process of all types of signatures, we
apply the same sequence pattern algorithm. The only difference between the three types
of signatures is the definition of the item that comprises the sequence. When this method
generates a content signature, the item is a character or hexadecimal value of the packet
payload. The content signature is considered an item when generating a packet signature.
Finally, we consider the packet signature to be an item when generating a flow signature.
By using the modified sequence pattern algorithm, we can improve system performance
in terms of automation and robustness. In addition, this system can generate elaborated
signatures for fine-grained traffic identification by using flow-level features beyond the
packet level.

The remainder of this paper is organized as follows. In Section 2, we explain the
existing automatic signature generation methods and describe the sequence pattern algo-
rithm. We propose SigBox, an automatic signature generation method using the se-
quence pattern algorithm, in Section 3. In Section 4, we describe the evaluation of the
effectiveness of the proposed method by testing it on ten popular applications. Finally,
Section 5 concludes this paper.

2. RELATED WORK

In this section, we introduce the existing automatic signature generation methods.
We also provide the definition, history, and utilization of the original sequence pattern
algorithm.

2.1 Existing Automatic Signature Generation Methods

A number of methods have been proposed to address the need for automatic signa-
ture generation. In this section, we categorize existing methods in terms of purpose and
type of signature and evaluate some methods that have a similar approach to our pro-
posed method under three metrics.

2.1.1 Categories of automatic signature generation

Existing automatic signature generation methods are categorized in terms of their
purpose and signature type. From a purpose perspective, the methods are divided into
two categories: worm and application signatures. Methods for generating worm signa-
tures involve binary classification to distinguish between normal and abnormal traffic
[9-13]. Autograph [10] is a method that generates a worm signature by selecting TCP
suspicious flows. First, it reassembles the packet payload, making it a single contiguous
block according to a content-based payload partitioning technique. After the payload-
partitioning phase, Autograph measures the frequency of the substrings and proposes the

KYU-SEOK SHIM, SUNG-HO YOON, SU-KANG LEE AND MYUNG-SUP KIM

544

most frequent ones as candidate signatures. Finally, Autograph discards unsatisfactory
candidates using a predefined blacklist. In contrast, methods for generating application
signatures are multi-classification methods to identify traffic according to each applica-
tion [4, 6, 7, 14-16]. Choi et al. [16] proposed an automatic signature generation method
that can identify the mobile application. They divided the traffic into HTTP and non-
HTTP. In the case of HTTP traffic, their method generates signatures using the Host and
User-agent fields of the traffic, while in the case of non-HTTP traffic, it applies the
longest common subsequence (LCS) algorithm to extract a common substring as a sig-
nature.

Another means of categorizing existing automatic signature generation methods is
to divide them by signature type. There are model-based and string-based signatures. The
model-based signature is usually utilized in machine learning methods [15, 17]. ACAS
[17] applies three machine learning algorithms to automatically generate a signature, in
the form of a model, for a range of applications. This method uses the first N bytes of the
payload for training based on several machine-learning algorithms. The model-based
signature generated by the method is used for classifying application traffic. In contrast,
the string-based signature is used to describe the pattern of the packet payload [6, 7,
9-14]. Shingh et al. [9] proposed a method for generating a string-based signatures using
overlapping fixed-length content blocks. By sifting through network traffic for content
strings that are both frequently repeated and widely dispersed, their method could auto-
matically identify new worms and their precise signature. The SigBox method proposed
in this paper is categorized as a method for generating an application signature in a
string-based form.

2.1.2 Evaluation of automatic signature generation method

In order to evaluate existing methods, we define three metrics: automation, robust-
ness, and elaboration. Table 1 shows an explanation of the three metrics.

Table 1. Metric for evaluating automatic signature generation method.
Metric Explanation

Automation Is pre-processing required to calibrate configurable threshold value?
 Is post-processing required to determine the final result?

Robustness Does consistent quality of signature remain regardless of the configuration?
 Are the same results from the same input traffic ensured?

Elaboration Are various features used to represent the unique pattern of the target application?
 Is the complicated behavior of the target application reflected?

In order to evaluate the automation degree, we examined whether it requires pre-
processing to calibrate a configurable threshold value or post-processing to determine the
final result. We changed the configuration threshold values and checked whether the
quality of the results of the method is consistent, regardless of the configuration, to
evaluate the robustness of the method. Finally, we checked whether the features used to
reflect the complicated behavior of the target application in terms of elaboration. We
chose two methods, LASER [6] and Autosig [7], which are approaches similar to our
method, SigBox. According to the metrics listed above, we evaluated these two methods.

SIGBOX: AUTOMATIC SIGNATURE GENERATION METHOD FOR FINE-GRAINED TRAFFIC IDENTIFICATION

545

Table 2. Evaluation of LASER and Autosig.
Method Metric Evaluation

LASER

Automation Requires pre-processing for input traffic grouping
 Requires post-processing for determining final signature

Robustness The quality of the signature varies according to grouping
 The results vary according to the order of the input traffic

Elaboration Focuses only on packet-level features, such as packet payload

Autosig
Automation Requires several prior experiments for calibrating threshold

values
Robustness The quality of the signature varies according to the threshold
Elaboration Focuses only on packet-level features, such as packet payload

LASER [6] automatically generates an application signature, in the form of a se-
quence of substrings, in the payload of a packet by using a modified version of the long-
est common subsequence (LCS) algorithm. The inputs of this algorithm are two distinct
byte streams of packet payloads that belong to two flows. In order to improve the sys-
tem’s performance in terms of execution time and accuracy, this method considers only
the first N packets of a flow and groups these packets by their size, since large packets
are not likely to carry the same kind of information as small ones. Finally, the method
compares two inputs to obtain the longest common subsequence between them, and then
compares it with other subsequences iteratively to refine it.

Table 2 shows an evaluation of LASER in terms of the three metrics. In terms of the
automation metric, this method requires pre-processing for grouping input traffic and
determining the N value. In addition, it requires post-processing for determining the final
result because of the nature of the LCS algorithm. The final result of the LCS algorithm
is the length of the longest common subsequence, and therefore, this method requires an
additional phase to determine the final result from several candidates. For example, the
LCS of “ABC” and “ACB” is both “AB” and “AC.” Therefore, it is necessary to select a
final result from these candidates. In terms of the robustness metric, LASER extracts the
longest common subsequence from only two designated sequences selected from all in-
put sequences. Hence, the order of the input sequence affects the quality of the signature.
Finally, LASER focuses only on packet-level features, such as the packet payload.
Therefore, this method cannot reflect the complicated behaviors of certain applications.

Autosig [7] also generates an application signature automatically, which extracts
multiple common substring sequences from input flows as the application signature. First,
it divides the payload of a set of flows into short substrings called shingles. After ex-
tracting all the relevant, common shingles, Autosig merges them whether they are neigh-
bors or overlapping. Next, a substring tree is constructed to create all the possible com-
binations of substrings. These combinations are considered as signatures.

Table 2 shows an evaluation of Autosig in terms of the three metrics. Although this
method can generate a signature automatically without determining the order of the input
traffic, several thresholds must be determined by performing a repetitive prior experi-
ment. From this viewpoint, the automation level is low. In terms of robustness, the con-
figurable threshold values affect the quality of the signature. The final result of the
method could vary according to the configuration. Finally, Autosig, like LASER, focuses
only on packet-level features, such as packet payload. Therefore, this method cannot

KYU-SEOK SHIM, SUNG-HO YOON, SU-KANG LEE AND MYUNG-SUP KIM

546

reflect the complicated behaviors of certain applications.
In contrast to LASER and Autosig, the performance of the SigBox method pro-

posed in this paper is good in terms of the three metrics. SigBox does not need any prior
experiment for calibrating threshold values. The original sequence pattern algorithm, the
primary element of SigBox, needs the minimum support value as a threshold; however,
we modify this phase. We consider the minimum support to be the number of hosts.
Thus, we extract a common subsequence observed in all input hosts’ traffic without any
threshold values. In terms of robustness, this method always generates the same signa-
ture set from the same input traffic, regardless of the order of input. Finally, SigBox uses
not only packet-level features in the content and packet signature, but also flow-level
features in the flow signature. Therefore, we can generate a elaborated signature reflect-
ing the complicated behaviors of certain applications.

2.2 Sequence Pattern Algorithm

A sequence pattern algorithm was first introduced in [18]. This algorithm, a type of

data mining technique, detects time-series patterns in a database containing sequences of
values or events. This technique very closely resembles association rule mining [21], in
that both are similar processes for discovering frequent patterns in large datasets; how-
ever, the objective of association rule mining is to extract concurrent patterns from the
same transaction, while that of a sequence pattern algorithm is to extract patterns with a
certain order from different transactions [22].

The support threshold is very important for this algorithm. The measure is the ratio
of sequences having the target subsequence to the total sequences. A minimum support
predefined by the operator is used, because the number of possible subsequences is very
large, and operators have different interests and purposes. Thus, we have to prune out
uninterested patterns using the minimum support during the early stage.

Several sequence pattern algorithms have been proposed over the last few years.
AprioriAll [18] is based on the Apriori property that any subsequence of a frequently
occurring sequence is frequent. This method generates candidate sequences and checks
the support value of each candidate to determine frequently occurring sequences. Pre-
fixSpan [23] examines the prefix subsequences and projects their corresponding postfix
subsequences into databases. This method does not need a candidate generation phase,
but only that the postfix subsequences are recursively projected into the database ac-
cording to the prefix. SPADE [24] is a method for determining frequent sequences using
efficient lattice search techniques and simple joins. This method uses combinatorial pro-
perties to decompose the original problem into smaller sub-problems, which can be in-
dependently solved in the main memory. MEMISP [25] requires only one pass over the
database, or at most two passes for a very large database, and avoids the need to generate
candidates and project an intermediate database as well. SPIRIT [26] is a method that
uses mining user-specified sequential patterns with regular expression constraints. In
order to reduce the system overhead, this method eliminates uninterested and potentially
useless patterns in early stage.

Currently, the sequence pattern algorithm is utilized in various domains. This algo-
rithm can be used to analyze DNA sequences of two different organisms [20, 27]. In
addition, it is applied in various application fields, such as geographic patterns [28],

SIGBOX: AUTOMATIC SIGNATURE GENERATION METHOD FOR FINE-GRAINED TRAFFIC IDENTIFICATION

547

marketing [29-31], and telecommunications [32, 33]. The basic idea of this algorithm is
similar to signature generation, which finds commonly observed substrings in input traf-
fic. Thus, we modify the sequence pattern algorithm such that it is suitable for signature
generation.

3. SIGBOX: AUTOMATIC SIGNATURE GENERATION METHOD

SigBox is an automatic signature generation method for fine-grained traffic identi-
fication. This method does not require protocol semantic analysis or configurable thresh-
old values to achieve complete automatic generation. In addition, it uses both packet-
level and flow-level features to generate elaborated signatures capable of fine-grained
identification.

Fig. 1. Abstraction of SigBox process.

Fig. 1 shows the position of SigBox in the traffic identification process. In order to
identify traffic, the traffic identifier located between the Internet and the target network
inspects all traffic in real time. Typical identifiers are Snort [34] and Bro [35]. For this
purpose, signatures should be loaded in the identifier in advance. The signature genera-
tion is operated in the offline mode. SigBox is deployed in this process. After determin-
ing the target application, the traffic of the application is collected from several different
hosts, and then, the collected traffic set is input to SigBox without any configurable
threshold values. SigBox outputs signatures as the result. The resulting signature set is
loaded in the traffic identifier.

In the following sections, further details are provided. First, we define the three
types of signatures: content, packet, and flow signature. Second, we explain the modified
sequence pattern algorithm that is a core element of our method. Finally, we present an

KYU-SEOK SHIM, SUNG-HO YOON, SU-KANG LEE AND MYUNG-SUP KIM

548

explanation of the overall process, and then, we give details of each module of SigBox.

3.1 Signature Definition

In SigBox, we compartmentalize the signature as three types: content, packet, and
flow signature. The content signature is defined as a unique substring, continuous char-
acters of hexadecimal values, in a packet payload representing particular application
traffic. The packet signature is defined as a sequence of content signatures in a packet.
The flow signature, the final result of SigBox, is defined as a sequence of packet signa-
tures in a flow. These three types of signatures have the relation of inclusion. Thus, a
flow signature consists of packet signatures, and a packet signature consists of content
signatures.

Fig. 2. Example traffic toward application server.

Fig. 2 shows example traffic toward a certain server farm from two different hosts
when they start using the Internet application. Usually, Internet application provides their
service via a server farm to reduce the system overhead. Two different hosts, BOB and
ALICE, communicate with certain application servers located in the server farm. The
rectangle located between the server and host represents a packet payload, and we sup-
pose that all packets of a host are engaged in a single flow. As shown in Fig. 2, there is a
unique sequence of substrings, marked in bold, in a flow when different hosts communi-
cate with an application server. We extract this pattern as a signature.

Table 3 shows sample signatures based on the traffic example shown in Fig. 2. In
order to support intuitive understanding, we borrow the description of Snort [34], which
is widely used in network intrusion systems. The content and packet signatures are the
intermediate results of SigBox, and the flow signature is its final result. The content sig
nature consists of a single content. The packet signature consists of sequence of the con-

SIGBOX: AUTOMATIC SIGNATURE GENERATION METHOD FOR FINE-GRAINED TRAFFIC IDENTIFICATION

549

Table 3. Signature example.
Signature

type
Num. of
signature

Example

Content
signature

(intermediate)

6

tcp any any → d.d.d.0/24 80 (label: “TEST”; content: “USER”; offset: 0; depth: 4;);
tcp any any → d.d.d.0/24 80 (label: “TEST”; content: “ACCESS”; offset: 9; depth: 8;);
tcp d.d.d.0/24 80 → any any (label: “TEST”; content: “AUTH”; offset: 0; depth: 4;);
tcp d.d.d.0/24 80 → any any (label: “TEST”; content: “OK”; offset: 9; depth: 5;
tcp any any → d.d.d.0/24 80 (label: “TEST”; content: “PASS”; offset: 3; depth: 6;);
tcp d.d.d.0/24 80 → any any (label: “TEST”; content: “LOGIN”; offset: 0; depth: 5;);

Packet
signature

(intermediate)

4

tcp any any → d.d.d.0/24 80 (label: “TEST”; content: “USER”; offset: 0; depth: 4;
content: “ACCESS”; offset: 9; depth: 8;);
tcp d.d.d.0/24 80 → any any (label: “TEST”; content: “AUTH”; offset: 0; depth: 4;
content: “OK”; offset: 9; depth: 4);
tcp any any → d.d.d.0/24 80 (label: “TEST”; content: “PASS”; offset: 3; depth: 6;);
tcp d.d.d.0/24 80 → any any (label: “TEST”; content: “LOGIN”; offset: 0; depth: 5;
content: “OK”; offset: 10; depth: 4;);

Flow
signature

(final)

1

tcp any any → d.d.d.0/24 80 (label: “TEST”; content: “USER”; offset: 0; depth: 4;
content: “ACCESS”; offset: 9; depth: 8; flowbits: set, mark-1;);
tcp d.d.d.0/24 80 → any any (label: “TEST”; content: “AUTH”; offset: 0; depth: 4;
content: “OK”; offset: 9; depth: 4; flowbits: isset, mark-1; flow bits: set, mark-2;);
tcp any any → d.d.d.0/24 80 (label: “TEST”; content: “PASS”; offset: 3; depth: 6;
flowbits: isset, mark-2; flowbits: set, mark-3;);
tcp d.d.d.0/24 80 → any any (label: “TEST”; content: “LOGIN”; offset: 0; depth: 5;
content: “OK”; offset: 10; depth: 4; flowbits: isset, mark-3;);

tent signatures. Finally, the flow signature consists of individual packet signatures. There-
fore, the number of signatures decreases from the content to the flow signature. Using a
flowbits keyword, the flow signature allows a conjunction with each packet signature.
For example, the second signature of the flow signature is activated only if the flowbits
mark-1 is set in advance. Therefore, the last signature of the flow signature is activated
when all prior packet signatures are activated in consecutive order. Each packet signature
in the flow signature represents a pattern of a single packet consisting of content signa-
tures. For example, the first signature of the packet signature example identifies a certain
packet as “TEST” application if the packet has a sequence of content signatures such as
“USER” and “ACCESS” with designated positional information and toward one of
d.d.d.0/24 server farm using tcp/80 port.

Table 4 shows a detailed explanation of the signature components. A signature is
composed of a header and a body to distinguish one target application from another. The
header is a packet header engaged in the inspection. If it is impossible to specify the
header component, we write “any.” The body consists of a label and a sequence of con-
tents. Each content has a range of inspection, such as offset and depth. In the case of the
flow signature, we use a flowbits keyword to indicate the conjunction with a prior or
later packet signature.

3.2 Sequence Pattern Algorithm for SigBox

In this section, we describe the modified sequence pattern algorithm. The original
algorithm targeted purchase history data of a market to find sequential purchase patterns

KYU-SEOK SHIM, SUNG-HO YOON, SU-KANG LEE AND MYUNG-SUP KIM

550

[18]. In order to suit our purpose, which is to find common subsequences in traffic, we
modified this algorithm in the sequence and support aspects.

Table 4. Signature components.

Component Explanation

Header

L4Prot OSI layer-4 protocol such as TCP, UDP, or ICMP
srcIP Source IP address using CIDR

srcPort Source port number
dstIP Destination IP address using CIDR

dstPort Destination port number

Body

Label Target application name
Content Continuous bytes, include printable and non-printable character
Offset Start offset from which to search the content within a packet
Depth Range to search the content from a given offset

Flowbits Conjunction with prior or later signature

The ultimate aim of the sequence pattern algorithm is to find frequent subsequences
in a set of input sequences. When extracting the three types of signature mentioned
above, the algorithm applied is exactly same, and only the input sequences and com-
posed item are different.

SequenceSet = {S1, S2, …, Ss} (1)

Si = {hostid, I1I2I3 … In} (2)

Eqs. (1) and (2) show a set of sequences, which is one of the inputs for the sequence
pattern algorithm. S, an element of SequenceSet, consists of host id, a series of items.
The item is varied depending on the type of signature. In the case of extracting the con-
tent signature, the content sequence is the payload of the packet. Therefore, the item of
the sequence is a one byte character or hexadecimal value of the packet payload. In the
case of extracting a packet signature, the packet sequence is a series of content signatures
located in the same packet payload. Therefore, the item of the packet sequence is an in-
dividual content signature. In the case of extracting a flow signature, the flow sequence
is a series of packet signatures located in the same flow. Therefore, the item of the flow
sequence is an individual packet signature.

Number of support hosts
support

Total number of hosts
 (3)

The usage of support, one of this algorithm’s inputs, is to maximize its performance.
Thus, when increasing the length of a subsequence candidate, this algorithm eliminates
certain candidates having an unsatisfied minimum support value in the early stage.
Therefore, we can improve execution time and memory usage. However, SigBox does
not use the original definition of support, which is the ratio of the number of sequences,
including the target candidate subsequence, to the total number of sequences. Because
the purpose of our method is to extract a subsequence contained in traffic generated by

SIGBOX: AUTOMATIC SIGNATURE GENERATION METHOD FOR FINE-GRAINED TRAFFIC IDENTIFICATION

551

all hosts when they use a target application, we modify the definition of support and the
calculation method, as shown in Eq. (3). We redefine the support as the ratio of the
number of hosts having sequences that contain the subsequence to the total number of
hosts, to find the subsequences contained in the traffic generated by all the hosts. A se-
quence contains the host id as an element in order to calculate its support. Therefore,
when the support is set as 1, SigBox can extract a subsequence observed in all input
hosts.

Algorithm 1 shows the subsequence extraction process. First, we extract length-1
subsequences from all the sequences and store them in the length-1 subsequence set, L1
(Alg. 1, Lines 1-5). From the length-1 subsequences, we extract all length-k candidate
subsequences by increasing the length until no newer subsequences or candidates to be
extracted (Alg. 1, Lines: 6-16). This iteration process consists of two parts. First, we
eliminate candidates that do not satisfy the minimum support (1.0) after obtaining the
support value from the calculation function described in Algorithm 2 (Alg. 1, Lines
8-13). Second, we extract length-k candidates by using length-(k1) candidates, as de-
scribed in Algorithm 3 (Alg. 1, Lines 14). As a final step, the relation of inclusion be-
tween subsequences is checked; if the relation is found, the included subsequences are
deleted (Alg. 1, Line 18).

Algorithm 1: Pseudo algorithm for subsequence extraction
Procedure: subsequence Extractor
Input: SequenceSet, MinSupp
Output: SubSequenceSet
01: for each sequence S in SequenceSet do
02: for each item i in sequence S do
03: L1L1 i;
04: end
05: end
06: k2
07: while Lk-1 do
08: for each candidate c in Lk-1 do
09: suppcalSupport(c,SequenceSet);
10: if (supp < Minsupp) then
11: Lk-1Lk-1c;
12: end
13: end
14: LkextractCandidate(Lk-1);
15: k++;
16: end
17: SubSequenceSetkLk;
18: deleteSubset(SubSequenceSet);
19: return SubSequenceSet;

Algorithm 2 shows the calculation method of the support of subsequences. This al-
gorithm receives a subsequence and a set of sequences and outputs the support of the
subsequence. First, the host ids of all the sequences are stored (Alg. 2, Line 2). Next, the

KYU-SEOK SHIM, SUNG-HO YOON, SU-KANG LEE AND MYUNG-SUP KIM

552

algorithm checks whether the subsequence is included in a sequence, for all sequences in
the input set. If a sequence includes the subsequence, it stores the corresponding host id
(Alg. 2, Lines 3-12). Finally, this algorithm returns the support value, calculated by di-
viding the number of support hosts by the number of total hosts (Alg. 2, Line 14). In this
algorithm, we use the naïve pattern-matching algorithm to help provide an intuitional
explanation of our algorithm. In the implementation of our system, we used advanced
matching algorithms, such as Rabin-Karp [36] and Boyer-Moore [37]. Thus, there is
room to improve the performance of our system.

Algorithm 2: Pseudo algorithm for support calculation
Procedure: calSupport
Input: candidate, SequenceSet
Output: support

01: for each sequence S in SequenceSet do
02: totalhost totalhost S.hostid;
03: for k = 1 to size of (S, I1I2I3…In) do
04: pk, q1;
05: while (S, Ip = = candidate.Iq) do
06: p++, q++;
07: end
08: if (q = = size of (candidate.I1, I2, I3, …, In)) then
09: supphostsupphostS.hostid;
10: break
11: end
12: end
13: end
14: return supphost/totalhost;

Algorithm 3 shows the extraction of the candidate subsequence. The length-(k1)
subsequence set, provided as input data, is utilized in order to extract the length-k sub-
sequence set, Lk. All possible pairs of Lk-1 are compared (Alg. 3, Lines 1-10). If k1, the
length of the input subsequence, is 1, we simply combine two subsequences as a length-2
subsequence (Alg. 3, Lines 3-5); otherwise, we compare two subsequences to discover
whether these two subsequences have a joinable common element. If one subsequence,
excludes its first item, then it the same as another subsequence, whereas excluding its
last item, means the two length-(k1) subsequences are combined to form a single
length-k subsequence (Alg. 3, Line 6-8). For example, length-3 subsequences “USE” and
“SER” are combined into length-4 subsequence “USER,” because “USE,” excluding the
first item “U,” and “SER,” excluding the last item “R,” have a common subsequence
“SE.”

Algorithm 3: Pseudo Algorithm for Candidate Extraction
Procedure: extractCandidate
Input: Lk-1

Output: Lk

SIGBOX: AUTOMATIC SIGNATURE GENERATION METHOD FOR FINE-GRAINED TRAFFIC IDENTIFICATION

553

01: for each candidate x in Lk-1 do
02: for each candidate y in Lk-1 do
03: if ((k 1) = = 1) then
04: LkLkx.i1y.i1;
05: end
06: else if ((x.i2 = = y.i1)&&(x.i3 = = y.i2)&&…
08: (x.ik-1 = = y.i k-2)) then
07: LkLkx.i1, i2, i3, …, ik-1y.ik-1;
08: end
09: end
10: end
11: return Lk;

Fig. 3. Example of sequence pattern algorithm.

Fig. 3 shows an example of the sequence pattern algorithm when extracting a con-

tent signature. The box located at the top of the figure shows the input set of sequences.
Because this example shows the generation of a content signature, the item composing
the sequence is a one-byte character in a packet payload. The total number of sequences
is two and the total number of hosts is two. We suppose that Sequences 1 and 2 have
different host ids. Because a minimum support value of 1.0 is used, we extract the sub-
sequences that are included in all hosts. First, we extract the length-1 candidate subse-
quences from all sequences, and calculate their support. Only subsequences satisfying
the minimum support value of 1.0 are stored in the length-1 subsequence set, L1. After
extracting the length-1 subsequences, we extract all possible length-2 candidate subse-
quences using the length-1 subsequences. For example, we extract length-2 subsequence

KYU-SEOK SHIM, SUNG-HO YOON, SU-KANG LEE AND MYUNG-SUP KIM

554

“US,” using the length-1 subsequences “U” and “S.” For the length-3 candidate subse-
quence extraction, we combine two subsequences if they both have a common element.
For example, the length-3 subsequence “USE” is extracted because “US” and “SE” con-
tain “S” as a common element. Thus, we repeat the process of extending the subsequence
length until there are no more subsequences. Finally, we check the relation of inclusion
between the generated subsequences, and then, included subsequences are eliminated
from the subsequence set. For example, “USER” includes the “USE” subsequence.
Therefore, we delete the “USE” subsequence from the set of subsequences. Finally,
“USER” and “ACCESS,” which are highlighted, are extracted as results.

3.3 System Architecture

SigBox automatically generates signatures for fine-grained traffic identification
from target Internet application traffic by using the modified sequence pattern algorithm
after inputting the traffic of the target applications from two or more hosts. This system
generates content signatures, then generates packet signatures, and finally generates flow
signatures. After generating the flow signature, it refines the signature in the header and
positional information aspect. The system architecture of SigBox consists of three phases
according to signature type, as shown in Fig. 4.

SigBox
Sequence Maker

Content Signature
Generator

Packet Signature
Generator

Flow Signature
Generator

Signature Refiner

Content Signature Packet Signature Flow Signature

Traffic

Fig. 4. System architecture of SigBox.

In the sequence maker module, traffic is loaded in the form of flows and sequences
are constructed for each generator. For the content signature generator, this module
makes ContentSequences consisting of one byte of packet payload. For the packet signa-
ture generator, this module makes PacketSequences consisting of content signatures lo-
cated in the same packet. For the flow signature generator, this module makes FlowSe-
quences consisting of packet signatures located in the same flow.

The content signature generator module extracts content signatures from the set of
ContentSequences. The sequence consists of one byte of characters or hexadecimal val-

SIGBOX: AUTOMATIC SIGNATURE GENERATION METHOD FOR FINE-GRAINED TRAFFIC IDENTIFICATION

555

ues as an item in the packet payload. Therefore, this module extracts a series of charac-
ters or hexadecimal values observed in all hosts’ traffic as a content signature. The pack-
et signature generator module extracts packet signatures from the set of PacketSequences.
The sequence consists of a series of content signatures located in the same packet. There-
fore, this module extracts a series of content signatures observed in all hosts’ traffic as a
packet signature. The flow signature generator module extracts the flow signature from a
set of FlowSequences. The sequence consists of a series of packet signatures located in
the same flow. Therefore, this module extracts a series of packet signatures as a flow
signature if it is observed in all the hosts’ traffic.

The signature refiner module sets the header and positional information of the con-
tent. This module yields the position, such as offset and depth, of content by matching
input traffic. In addition, the header information, such as the IP address, port number,
and L4 protocol, is set.

3.3.1 Content signature generation

In order to a generate content signature, this module constructs a set of ContentSe-
quences from input traffic and extracts content signatures from the sequences using the
sequence pattern algorithm. Finally, it completes a content signature by operating the
signature refiner.

, , ,

| { 4Pr , , , ,
id idpacket host header payload

Packet
header L ot srcIP srcPort dstIP dstPort

 (4)

As shown in Eq. (4), a packet consists of a packet id, a host id, header, and payload.
The header consists of the layer-4 protocol, source IP/port, and destination IP/port. The
host id denotes the identifier of the host that generates the packet. The payload consists
of a series of characters or hexadecimal values.

1 2 3, , ...

| is one byte character or hexadecimal value
id id nsequence host I I I I

ContentSequence
I

 (5)

After composing a set of packets, the sequence maker reconstitutes a packet as a
ContentSequence. The ContentSequence consists of a sequence id, a host id, and a series
of one byte characters or hexadecimal values as shown in Eq. (5). All the components of
the ContentSequence are inherited from the corresponding packet. Table 5 shows an
example of ContentSequence set based on Fig. 2.

After constructing the set of ContentSequences, SigBox extracts the content signa-
tures using the sequence pattern algorithm described in Section 3.2. When extracting the
content signature, we consider a ContentSequence as a sequence and a one byte character
as an item.

1 2 3, ...

| is one byte character or hexadecimal value
id nsignature I I I I

Content Signature
I

 (6)

KYU-SEOK SHIM, SUNG-HO YOON, SU-KANG LEE AND MYUNG-SUP KIM

556

Table 5. Example of ContentSequence.
sequenceid hostid ContentSequence

1 BOB <USER BOB ACCESS>
2 BOB <AUTH BOB OK>
3 BOB <1342 PASS BOB>
4 BOB <FAIL ACCESS>
5 BOB <1234 PASS BOB>
6 BOB <LOGIN BOB OK>
7 ALICE <USER ALICE ACCESS>
8 ALICE <AUTH ALICE OK>
9 ALICE <56 PASS ALICE>

10 ALICE <LOGIN ALICE OK>

Table 6. Example of content signature.

signatureid Content Signature
1 <USER>
2 <ACCESS >
3 <AUTH>
4 <OK>
5 <PASS>
6 <LOGIN >

The content signature consists of a signature id and a series of one byte characters
or hexadecimal values as shown in Eq. (6). Table 6 shows an example of content signa-
ture using the example in Fig. 2.

3.3.2 Packet signature generation

The packet signature generator constructs a set of PacketSequences using the above
content signatures, and extracts packet signatures from the sequences using the sequence
pattern algorithm.

1 2 3, , ...

| is content signature
id id nsignature host I I I I

PacketSequence
I

 (6)

The sequence maker reconstitutes a set of PacketSequences by referring to the
packet set and content signature set. The PacketSequence consists of a sequence id, a
host id, and a series of content signatures as shown in Eq. (7).

Table 7 shows an example of PacketSequences. By referring to the packet and con-
tent signature set, this module makes a set of PacketSequences. For example, the first
sequence “<<USER><ACCESS>>” is composed of two content signatures “<USER>”
and “<ACCESS>”.

1 2 3, ...

| is content signature
id nsignature I I I I

Packet Signature
I

 (8)

SIGBOX: AUTOMATIC SIGNATURE GENERATION METHOD FOR FINE-GRAINED TRAFFIC IDENTIFICATION

557

Table 7. Example of PacketSequence.
sequenceid hostid Packet Sequence

1 BOB <<USER><ACCESS>>
2 BOB <<AUTH><OK>>
3 BOB <<PASS>>
4 BOB << ACCESS>>
5 BOB <<PASS>>
6 BOB <<LOGIN><OK>>
7 ALICE <<USER><ACCESS>>
8 ALICE <<AUTH><OK>>
9 ALICE <<PASS>>

10 ALICE <<LOGIN><OK>>

After constructing the set of PacketSequences, SigBox extracts the packet signa-
tures using the sequence pattern algorithm. A packet signature consists of a signature id
and a series of content signatures, as shown in Eq. (8). Table 8 shows an example of
packet signatures using Fig. 2.

Table 8. Example of packet signature.

signatureid Packet Signature
1 <<USER><ACCESS>>
2 <<AUTH><OK>>
3 <<PASS>>
4 <<LOGIN><OK>>

3.3.3 Flow signature generation

The flow signature generator constructs a set of FlowSequences using the above
packet signatures and extracts flow signatures from the sequences using the sequence
pattern algorithm.

1 2 3, , ...

| is packet signature
id id nsequence host I I I I

Flow Sequence
I

 (9)

The sequence maker reconstitutes the set of FlowSequences by referring to the
packet set and packet signature set. A FlowSequence consists of a sequence id, a host id,
and a series of packet signatures as shown in Eq. (9).

Table 9. Example of FlowSequence.

sequenceid hostid FlowSequence

1 BOB <<<USER><ACCESS>><<AUTH><OK>><<PASS>><<ACCESS>><<PASS>><<LOGIN><OK>>>

2 ALICE <<<USER><ACCESS>><<AUTH><OK>><<PASS>><<LOGIN><OK>>>

Table 9 shows an example of FlowSequences using the example in Fig. 2. By refer-

ring to the packet set and packet signature set, this module makes a set of FlowSequenc-
es.

KYU-SEOK SHIM, SUNG-HO YOON, SU-KANG LEE AND MYUNG-SUP KIM

558

1 2 3, ...

| is packet signature
id nsignature I I I I

Flow Signature
I

 (10)

After constructing the set of FlowSequences, SigBox extracts the flow signatures
using the sequence pattern algorithm. The flow signature consists of a signature id and a
series of packet signatures as shown in Eq. (10). Table 10 shows an example of a flow
signature using the example in Fig. 3.

Table 10. Example of flow signature.
signatureid Flow Signature

2 <<<USER><ACCESS>><<AUTH><OK>><<PASS>><<LOGIN><OK>>>

3.3.4 Signature refiner

The signature refiner module completes the signature by adding the positional in-
formation of the content and header of each signature. This module sets the content posi-
tional information, such as offset and depth. The offset information indicates the starting
position for searching certain content within a packet payload and the depth information
indicates how far the searching must continue from the offset location. Thus, we simply
search for the content from the offset to the offset + depth in the packet payload. First, we
initialize the offset value to the maximum size (1,500) of the packet payload and the
depth value to 0. Next, we inspect all payloads of the input packet and obtain the offset
and depth. If the payload includes the content, we obtain the starting position as offset
and the ending as depth. If the position is already assigned, we choose the minimum
value between the offset and the new offset. In the case of depth, we choose the maxi-
mum value. Finally, the offset is outputted as it is, and the depth is outputted after sub-
tracting the offset from it.

In addition, this module sets the header of the signature by grouping packets in-
cluding the signature. If a component of the header is unique, then we use it; else, we set
the component to “any.” For example, a set of packets containing a certain content has a
unique destination port, 80. We use the destination port, 80, for the dstPort component of
the signature. For the IP address, we attempt to extract a unique value by decreasing the
Classless Inter-Domain Routing (CIDR), for example, from 32 to 24 or from 24 to 16.
Thus, we first attempt to extract a unique IP address using CIDR 32. If the resulting val-
ue is not unique, we try C class using CIDR 24. For example, if a certain content origi-
nated from two different IP addresses, “z.z.z.1” and “z.z.z.2,” we fail to extract a unique
value using CIDR 32, and therefore we attempt to use CIDR 24 instead. When we have
done this, we extract the IP address used in the header as “z.z.z.0/24.”

Fig. 5 shows an example of the signature refiner. In order to set the position of the
content “PASS,” this module inspects three packets containing the content in their pay-
load. The first and second packets contain the content from the fifth to ninth position in
their payload, and the third packet contains the content from third to seventh position in
their payload. Therefore, the offset of the content is 3, which is the minimum value be-
tween 5 and 3. The depth of the content is 6, which is the difference between 3 and 9.
Next, this module sets the header of the signature. It Inspects the three packets and de-

SIGBOX: AUTOMATIC SIGNATURE GENERATION METHOD FOR FINE-GRAINED TRAFFIC IDENTIFICATION

559

termines dstPort as 80, because the three packets have the same dstPort. However, the
srcIP and srcPort are described as “any” because they are different in these packets. Fi-
nally, the dstIP is calibrated by using CIDR 24.

Fig. 5. Example of signature refiner.

4. EVALUATION

In this section, we present the details of the experimental results that validate the
feasibility and demonstrate the performance of our proposed method. We define three
metrics to evaluate signatures generated by the SigBox method. Under these metrics, we
compared our method with other methods, LASER [6] and Autosig [7].

4.1 Traffic Trace

In order to collect the pure traffic (ground truth) of the target application, we de-
ployed a traffic measurement agent (TMA) [6] on five selected hosts that were generat-
ing the target application traffic, as shown in Fig. 6. This agent continuously monitors
the network interface card (NIC) and records the host’s socket data and process infor-
mation in a log file. Finally, the agent periodically transfers the log to a designated server
called a traffic measurement server (TMS). Thus, we can obtain the absolute ground
truth traffic of the target applications.

Fig. 6. Ground-truth traffic collection using TMA.

KYU-SEOK SHIM, SUNG-HO YOON, SU-KANG LEE AND MYUNG-SUP KIM

560

To achieve an objective experimental analysis, we selected ten popular Internet ap-
plications. The application types included video streaming, post office protocol, file tran-
sfer protocol, file sharing, messenger, game, and music streaming. The operation meth-
ods included peer-to-peer (P2P), server-client (SC), and encryption. When we selected
the target applications, we referred to experiments in related studies, because our evalua-
tion included a comparison analysis with the related studies, as described in Section 4.5.
In addition, we collected two sets of traffic using each application, one for signature
generation (SG) and the other for traffic identification (TI), on five different hosts. Thus,
we automatically generated signatures from the SG trace set, and identified the TI trace
set using the generated signature set. Table 11 shows the list of selected applications
with their type, operation method, and statistical volume. The top six applications in Ta-
ble 11 (Afreeca, BitTorrent, POP3, FTP, Fileguri, and Skype) were used in related stud-
ies. The other four applications were selected because they are currently popular in real
networks.

Table 11. Selected applications.

Application Type
Operation

Usage Flows Packets Bytes(K)
P2P SC Encryp.

Afreeca
Video
streaming

○ ○ SG 1,470 110,667 95,894
 TI 1,447 117,069 100,741

BitTorrent File sharing
○ SG 2,503 116,664 98,906
 TI 2,208 113,604 98,838

POP3
Post office
protocol

 ○ SG 600 45,700 34,200
 TI 600 7,200 600

FTP
File transfer
protocol

 ○ SG 2,005 41,605 4,798
 TI 1,851 40,899 4,545

Fileguri File sharing
○ ○ SG 831 34,713 26,679
 TI 1,230 26,633 14,744

Skype Messenger
○ ○ ○ SG 956 23,033 7,254
 TI 829 19,793 6,370

KakaoTalk Messenger
 ○ ○ SG 282 54,900 76,177
 TI 451 78,076 107,506

DiabloIII Game
 ○ ○ SG 273 6,924 2,362
 TI 282 7,030 2,420

Melon
Music
streaming

 ○ SG 770 76,072 64,482
 TI 944 115,054 99,926

Nateon Messenger
○ ○ ○ SG 578 25,094 16,781
 TI 635 27,181 18,634

SG: Signature Generation, TI: Traffic Identification

4.2 Experimental Results

We generated signatures automatically from the SG trace set using SigBox. As pre-

viously mentioned, in our system we do not configure any threshold values. Although
the core algorithm of SigBox is derived from the sequence pattern algorithm, which re-
quires minimum support values as a threshold, our system sets the value as 1.0. This

SIGBOX: AUTOMATIC SIGNATURE GENERATION METHOD FOR FINE-GRAINED TRAFFIC IDENTIFICATION

561

means that the system extracts common patterns as signatures if the patterns are observed
in all hosts’ input traffic. Table 12 shows the experiment results in terms of execution
time and number of signatures.

In all applications, SigBox generated signatures automatically in about 20 seconds.
Because SigBox eliminates unsatisfied candidates in the early stage and considers only
satisfied candidates when increasing the length of candidates, the generation execution
time was reduced. Usually, a signature generation process is operated in offline mode,
and therefore 20 seconds is completely acceptable execution time. However, this method
is a method based on automatic signature generation. Rather than fast creation of the
signatures, the system’s origin goal is creation of accurate signatures, regardless of time.
The time for creating signatures differs from one another due to difference in size of the
input traffic data. As the future work we plan to reduce the signatures creation time of
the system as much as possible, through the application of an optimal sequence pattern
algorithm.

The number of signatures decreases as the type of signature changes from content
signature to flow signature. As mentioned in Section 3, SigBox generates three types of
signature. First, SigBox extracts continuous characters from the packet payload. Then, it
converts the pattern to a content signature. A sequence of content signatures becomes a
packet signature. Finally, a sequence of packet signatures becomes a flow signature,
which is the final result of SigBox. Therefore, the flow signature type has the lowest
signature count. In the real network environment, the number of signatures affect the
overhead of the identification system. The system’s overhead increases with the number
of signatures. Therefore, using a flow signature can improve the performance of the
identification system.

Table 12. Experimental results: execution time and number of signatures.

Application
Execution time (sec.) Number of Signatures

Content Sig.
generator

Packet Sig.
generator

Flow Sig.
generator

Total
Content

Sig.
Packet

Sig.
Flow
Sig.

Afreeca 4.76 3.06 1.22 9.04 172 138 15
BitTorrent 2.89 0.07 0.03 2.99 56 37 16
POP3 0.03 0.01 0.01 0.05 7 7 1
FTP 0.12 0.01 0.03 0.16 7 7 1
Fileguri 0.05 0.01 0.01 0.07 90 45 18
Skype 1.32 0.03 0.01 1.36 40 17 16
KakaoTalk 0.19 0.01 0.01 0.21 16 10 8
DiabloIII 0.30 0.05 0.03 0.38 35 28 20
Melon 1.06 0.24 0.13 1.43 48 31 28
Nateon 19.82 0.09 0.04 19.95 17 8 18

Table 13 shows sample signatures of target applications generated using SigBox.
Afreeca, a video streaming application, generates Internet traffic under HTTP and a pro-
prietary protocol. The first signature generated by SigBox is extracted from the HTTP
traffic. The destination IP described in the signature header is 58.229.158.0/24. The
CIDR of the destination IP is calibrated by the signature refiner, as described in Section

KYU-SEOK SHIM, SUNG-HO YOON, SU-KANG LEE AND MYUNG-SUP KIM

562

Table 13. Experimental results: signatures.
App. Signature

Afreeca

tcp any any → 58.229.158.0/24 80 (label: “AF”; content: “GET /CONFIG/?type=xml”; offset: 0; depth: 21; content: “User-Agent:
afreecaplayer”; offset: 32; depth: 25; content: “Host: collector1.afree ca.com”; offset: 59; depth: 28; flowbits: set, AF-1-1;);
tcp 58.229.158.0/24 80 → any any (label: “AF”; content: “HTTP/1.1 200 OK”; offset: 0; depth: 15; flowbits: isset, AF-1-1;);
tcp any any → any any (label: “AF”; content: “|02 02 10 27 4E 02 00 00 5C 27 00 00|”; offset: 0; depth: 12; flowbits: set,
AF-2-1;);
tcp any any → any any (label: “AF”; content: “|02 02 BE 1B 00 00 00 00 BC 19 00 00|”; offset: 0; depth: 12; flowbits: isset,
AF-2-1; flow bits: set, AF-2-2;);
tcp any any → any any (label: “AF”; content: “|02 02 24 CB 00 00 00 00 26 C9 00 00|”; offset: 0; depth: 12; flowbits: isset,
AF-2-2; flow bits: set, AF-2-3;);
tcp any any → any any (label: “AF”; content: “|02 02 C1 1B 28 00 00 00 EB 19 00 00|”; offset: 0; depth: 12; flowbits: isset,
AF-2-3; flow bits: set, AF-2-4;);
tcp any any → any any (label: “AF”; content: “|CB 04 00 00 00|”; offset: 3; depth: 5; flowbits: isset, AF-2-4; flow bits: set,
AF-2-5;);
tcp any any → any any (label: “AF”; content: “|00 00 00 00|”; offset: 1; depth: 34; flowbits: isset, AF-2-5);

Bit-

Torrent

tcp any any → 67.215.246.204 80 (label: “BT”; content: “GET /onboarding/bittorrent”; offset: 0; depth: 26; content: “Host: bun-
dles.bittorrent.com”; offset: 80; depth: 28; content: “User-Agent: BTWebClient”; offset: 110; depth: 23; flowbits: set, BT-1-1;);
tcp 67.215.246.204 80 → any any (label: “BT”; content: “HTTP/1.1 301 Moved Permanently”; offset: 0; depth: 30; flowbits: isset,
BT-1-1;);
tcp any any → any any (label: “BT”; content: “|13| BitTorrent protocol”; offset: 0; depth: 20;);
udp any any → any any (label: “BT”; content: “d1:ad2:id20”; offset: 0; depth: 12;);

POP3

tcp any 110 → any any (label: “P3”; content: “+OK”; offset: 0; depth: 4; flowbits: set, P3-1-1;);
tcp any any → any 110 (label: “P3”; content: “CAPA|0D 0A|”; offset: 0; depth: 6; flowbits: isset, P3-1-1; flow bits: set, P3-1-2;);
tcp any 110 → any any (label: “P3”; content: “-ERR Invalid command|0D 0A|”; offset: 0; depth: 22; flowbits: isset, P3-1-2; flow
bits: set, P3-1-3;);
tcp any any → any 110 (label: “P3”; content: “AUTH |0D 0A|”; offset: 0; depth: 7; flowbits: isset, P3-1-3; flow bits: set, P3-1-4;);
tcp any 110 → any any (label: “P3”; content: “-ERR Invalid command|0D 0A|”; offset: 0; depth: 22; flowbits: isset, P3-1-4; flow
bits: set, P3-1-5;);
tcp any any → any 110 (label: “P3”; content: “USER”; offset: 0; depth: 5; flowbits: isset, P3-1-5; flow bits: set, P3-1-6;);
tcp any 110 → any any (label: “P3”; content: “+OK”; offset: 0; depth: 4; flowbits: isset, P3-1-6; flow bits: set, P3-1-7;);
tcp any any → any 110 (label: “P3”; content: “PASS”; offset: 0; depth: 5; flowbits: isset, P3-1-7; flow bits: set, P3-1-8;);
tcp any 110 → any any (label: “P3”; content: “+OK”; offset: 0; depth: 4; flowbits: isset, P3-1-8;);

FTP

tcp any 21 → any any (label: “FT”; content: “220”; offset: 0; depth: 3; flowbits: set, FT-1-1;);
tcp any any → any 21 (label: “FT”; content: “USER anonymous|0D 0A|”; offset: 0; depth: 16; flowbits: isset, FT-1-1; flowbits:
set, FT-1-2;);
tcp any 21 → any any (label: “FT”; content: “331”; offset: 0; depth: 3; content: “password.|0D 0A|”; offset: 22; depth: 50; flow-
bits: isset, FT-1-2; flowbits: set, FT-1-3;);
tcp any any → any 21 (label: “FT”; content: “PASS”; offset: 0; depth: 16; flowbits: isset, FT-1-3; flowbits: set, FT-1-4;);
tcp any 21 → any any (label: “FT”; content: “230-|0D 0A|”; offset: 0; depth: 6; flowbits: isset, FT-1-4;);

Fileguri

tcp any any → any any (label: “FG”; content: “GET /?p2pmethod=search&keyword=”; offset: 0; depth: 31; content:
“&extension=”; offset: 34; depth: 58; content: “Freechal P2P/1.0”; offset: 140; depth: 62; flowbits: set, FG-1-1;);
tcp any any → any any (label: “FG”; content: “HTTP/1.1 200 OK”; offset: 0; depth: 15; flowbits: isset, FG-1-1;);
tcp any any → any any (label: “FG”; content: “POST /FgDownLog.php”; offset: 0; depth: 19; content: “User-Agent: Fileguri”;
offset: 117; depth: 20; content: “Host: kpi.fileguri.com”; offset: 145; depth: 22; flowbits: set, FG-2-1;);
tcp any any → any any (label: “FG”; content: “HTTP/1.1 200 OK”; offset: 0; depth: 15; flowbits: isset, FG-2-1;);
tcp any any → any any (label: “FG”; content: “sfiltersite.candlemedia.co.kr”; offset: 143; depth: 180;);

Skype

tcp any any → 111.221.123.231 80 (label: “SK”; content: “GET /ui/”; offset: 0; depth: 8; content: “User-Agent: Skype|A2 E2|
7.2”; offset: 107; depth: 23; content: “Host: ui.skype.com”; offset: 132; depth: 18; flowbits: set, SK-1-1;);
tcp any any → any any (label: “SK”; content: “HTTP/1.1 200 OK”; offset: 0; depth: 15; flowbits: isset, SK-1-1;);
tcp any any → any 443 (label: “SK”; content: “api.skype.com”; offset: 111; depth: 234;);
tcp any any → any 443 (label: “SK”; content: “fig.skype.com”; offset: 317; depth: 13;);

Kakao
Talk

tcp any any → any 5223 (label: “KT”; content: “|00 01 00 00 05 00 00 00 02 00 00 00|”; offset: 0; depth: 12;);
tcp any 443 → any any (label: “KT”; content: “Thawte SSL CA”; offset: 181; depth: 13; content: “*.kakao.com”; offset: 318;
depth: 11;);

DiabloIII

tcp any any → 121.254.166.21 80 (label: “DB”; content: “GET /service/d3/alert/ko-kr”; offset: 0; depth: 27; content: “Us-
er-Agent: BNET_COMPANY_BNET_PROJECT_BNET_CURRENT_VERSION_FUL L_TOKEN”; offset: 38; depth: 69; con-
tent: “Host: kr.launcher.battle.net”; offset: 109; depth: 28; flowbits: set, DB-1-1;);
tcp 121.254.166.21 80 → any any (label: “DB”; content: “HTTP/1.1 200 OK”; offset: 0; depth: 15; flowbits: isset, DB-1-1;);
tcp any any → 121.254.166.38 443 (label: “DB”; content: “kr.battle.net”; offset: 131; depth: 844; flowbits: set, DB-2-1;);
tcp 121.254.166.38 443 → any any (label: “DB”; content: “kr.battle.net”; offset: 962; depth: 13; content: “tw.battle.net”; offset:
977; depth: 13; content: “see.battle.net”; offset: 992; depth: 14; content: “forums.battle.net”; offset: 1008; depth: 17; flowbits:
isset, DB-2-1;);

Melon

tcp any any → any 9568 (label: “ML”; content: “GET /_music128?”; offset: 0; depth: 15; content: “User-Agent: HttpAsync-
Temp1”; offset: 378; depth: 26; content: “Host: ”; offset: 406; depth: 6; content: “:9568”; offset: 422; depth: 10; flowbits: set,
ML-1-1;);
tcp any 9568 → any any (label: “ML”; content: “HTTP/1.1 200 OK”; offset: 0; depth: 15; flowbits: isset, ML-1-1;);
tcp any any → 211.234.237.25 80 (label: “ML”; content: “GET /static/web/resource/script/w1/0e/7/unsg936jxt.js”; offset: 0;
depth: 53; flowbits: set, ML-2-1;);
tcp 211.234.237.25 80 → any any (label: “ML”; content: “HTTP/1.1 304 Not Modified”; offset: 0; depth: 25; flowbits: isset,
ML-2-1;);

Nateon

tcp any any → any 5004 (label: “NO”; content: “NCPT 1 ”; offset: 0; depth: 7; flowbits: set, NO-1-1;);
tcp any 5004 → any any (label: “NO”; content: “NCPT 1 ”; offset: 0; depth: 7; flowbits: isset, NO-1-1; flow bits: set, NO-1-2;);
tcp any any → any 5004 (label: “NO”; content: “PRVK 2”; offset: 0; depth: 6; flowbits: isset, NO-1-2; flow bits: set, NO-1-3;);
tcp any 5004 → any any (label: “NO”; content: “PRVK 2”; offset: 0; depth: 6; flowbits: isset, NO-1-3; flow bits: set, NO-1-4;);
tcp any any → any 5004 (label: “NO”; content: “CRPT ”; offset: 0; depth: 5; flowbits: isset, NO-1-4; flow bits: set, NO-1-5;);
tcp any 5004 → any any (label: “NO”; content: “CRPT ”; offset: 0; depth: 5; flowbits: isset, NO-1-5;);

SIGBOX: AUTOMATIC SIGNATURE GENERATION METHOD FOR FINE-GRAINED TRAFFIC IDENTIFICATION

563

3.3.4. Thus, two more servers located in the 58.229.158.0/24 server farm generate traffic
matched with the signature. In the content of the signature, some HTTP keywords are
included, such as the URI, User-Agent, Host, and Response fields. All contents include
not only the pattern but also its positional information. The second signature is extracted
from the proprietary protocol traffic. The last packet signature of the flow signature is
“|00 00 00 00|.” One of the related systems, LASER, has the same signature. However,
using only the signature consisting solely of several “|00|”s causes the accuracy of the
result to be degraded, because the hexadecimal value “|00|” is usually used for traffic
padding in a real network. Thus, our flow signature overcomes the uncertainty because
we combine it with other packet signatures, and even their position.

BitTorrent, a file sharing application, generates Internet traffic under HTTP and a
proprietary protocol. The first signature is extracted from the HTTP traffic. Because of
the content “BTWebClient,” we realized that the signature corresponds to a BitTorrent
client. For sharing files with other peers, this application uses a proprietary protocol.
SigBox generates various signatures, which include the well-known signature of Bit-
Torrent “|13| BitTorrent protocol,” presented in related studies. By specifying the posi-
tion of each signature, we can improve the accuracy of the result as compared to other
methods.

POP3 and FTP are used for sending e-mails and files to remote hosts. Because these
two protocols use common words, such as “USER” and “PASS,” as protocol keywords,
the signatures of other methods, extracted from only one packet payload, may incorrectly
identify other traffic. In other words, the POP3 signature “USER |20|” generated by Au-
tosig incorrectly identifies FTP traffic. However, there is a low possibility that our sig-
nature will yield an incorrect identification, because the flow signature is a combination
of packet signatures.

LASER presents only one signature “Freechal P2P” for Fileguri. This string could
be located anywhere, even in another application. Therefore, this signature could incor-
rectly identify the traffic of another application. However, the first signature of SigBox
includes not only the content but also other contents, such as “GET /?p2pmethod=
search&keyword=” and “&extension=.” Thus, the signature generated by SigBox can
identify traffic more accurately.

Skype is a typical encrypted application for communicating with remote hosts. Its
traffic is encrypted using SSL/TLS, and therefore, it is known that it is impossible to
extract a payload signature. However, when a Skype client negotiates with issuers for a
certification process, it generates plain text traffic under the SSL/TLS protocol in the
early stage. Our signatures are extracted from the negotiations process traffic.

4.3 Evaluation Metrics

To evaluate our signatures generated using SigBox, we applied three metrics, re-

dundancy, coverage, and accuracy, as defined below. Recall that we focus only on the
performance of signature, and not on the quality of identified traffic.

Redundancy is defined as the traffic overlapped by the signature set of the target
application, as shown in Eq. (11). Redundancy has a value between 0 and 1, where 0 is
the best value, which indicates that all the signatures of a set identify traffic exclusively.
If the redundancy of a certain signature set is close to 1, this indicates that the signature

KYU-SEOK SHIM, SUNG-HO YOON, SU-KANG LEE AND MYUNG-SUP KIM

564

set includes unnecessary signatures, which identify overlapped traffic. As the number of
signatures increases, so does the system’s overhead. Therefore, the redundancy value
should remain low.

volume of traffic identified by more than two signatures
Redundancy =

volume of traffic identified by signature set
 (11)

The second metric is coverage. Coverage is defined as the ratio of the traffic identi-
fied by the signature set of the target application, as shown in Eq. (12). Coverage has a
value between 0 and 1, where 1 is the best value, which indicates that the signature set
identifies the total traffic of the target application. As a low coverage value causes false
negative detection, we have to increase the coverage of the signature.

correctly identified traffic of target App

Coverage=
total traffic of target App

 (12)

Accuracy is defined as the ratio of traffic correctly identified by the signature set of
the target application, as shown in Eq. (13). It has a value between 0 and 1, where 1 is
the best value, which indicates that the traffic identified using the signature set is correct.
As low accuracy causes a false positive detection, we have to increase the accuracy of
the signature.

correctly identified traffic of target App
Accuracy =

identified traffic
 (13)

4.3.1 Redundancy evaluation

We measured the redundancy of the signature set using Eq. (11). Table 14 shows

the number of signatures and the redundancy of each signature set. For all applications,
the redundancy was under 0.2. This results indicates that the possibility of the generated
signature set to overlap identification is low. Therefore, the number of signatures gener-
ated by SigBox is reasonable. For example, the number of signatures of Diablo III is 20,
but the redundancy value is 0, which means that all signatures of Diablo III exclusively
identified target traffic.

Table 14. Evaluation results: redundancy.
App. Num. of signature Redundancy

Afreeca 15 0.03
BitTorrent 16 0.05

POP3 1 0.00
FTP 1 0.00

Fileguri 18 0.13
Skype 16 0.19

KakaoTalk 8 0.04
DiabloIII 20 0.00

Melon 28 0.06
Nateon 18 0.02

SIGBOX: AUTOMATIC SIGNATURE GENERATION METHOD FOR FINE-GRAINED TRAFFIC IDENTIFICATION

565

4.3.2 Coverage evaluation

Table 15 shows the evaluation results in terms of coverage. As mentioned above,

coverage is defined as the ratio of traffic identified by the signature set of the target ap-
plication, as shown in Eq. (12). We measured coverage in two different trace sets, SG
and TI. Our objective was to verify that the coverage of the signature is maintained at a
certain level in different trace sets. First, we generated signatures from the SG trace set,
and identified SG and TI trace sets using the signature set. The results show that all the
signature sets had a similar level of coverage in both trace sets. Therefore, we can guar-
antee that SigBox can generate general and robust signatures of target application re-
gardless of the particulars of the input data.

Some signature sets show a low coverage value. For example, the coverage of
Skype signature is 25.84% for flow, 41.30% for packet, and 58.83% for byte. As men-
tioned, Skype is operated under the TLS/SSL protocol. Although we generated its signa-
tures from negotiation phase traffic, these signatures could not identify data traffic that
was encrypted by the TLS/SSL protocol. Thus, the Skype signature set covers only the
negotiation traffic of Skype.

Also, the coverage of most applications does not reach 100% ratio. The reason is
that not all the traffic flows contains signatures. These traffic flows could be encrypted
flow, multimedia data flow, and so forth. The proposed automatic signature generation
method can extract only the common string that appears in the input traffic flows. So, the
proposed method cannot extract signatures which covers all the traffic flows for an ap-
plications including encrypted flow or data flow. The generation of signatures for en-
crypted traffic is beyond the scope of this paper. But, we set the identification of en-
crypted traffic on top of our future research topics.

Table 15. Evaluation result: coverage.

App.
Coverage (SG) Coverage (TI)

Flow Packet Byte Flow Packet Byte
Afreeca 77.96% 63.53% 61.19% 80.03% 77.48% 74.06%

BitTorrent 75.95% 67.54% 67.13% 71.92% 76.45% 78.58%
POP3 100% 100% 100% 66.67% 86.11% 83.33%
FTP 91.97% 98.47% 98.94% 95.41% 99.12% 99.35%

Fileguri 40.55% 51.13% 39.67% 36.26% 62.73% 49.91%
Skype 25.84% 41.30% 58.83% 25.09% 33.57% 48.09%

KakaoTalk 94.68% 82.18% 85.81% 93.13% 95.51% 96.76%
DiabloIII 93.41% 97.60% 97.89% 92.91% 96.74% 96.31%

Melon 91.43% 64.12% 60.41% 82.84% 46.29% 43.27%
Nateon 54.50% 78.86% 80.02% 50.39% 68.35% 69.51%

4.3.3 Accuracy evaluation

Table 16 shows the evaluation results in terms of accuracy. As mentioned above,

accuracy is defined as the ratio of traffic correctly identified by the signature set of the
target application, as shown in Eq. (13). We generated a signature set from the SG trace

KYU-SEOK SHIM, SUNG-HO YOON, SU-KANG LEE AND MYUNG-SUP KIM

566

set and identified the TI trace set using the signature set. As a result, the accuracy of all
the signatures, except for Afreeca and Skype, is 100%. This indicates that the quality of
the signatures generated by SigBox is very reasonable.

Table 16. Evaluation results: accuracy.

App.
Accuracy

Flow Packet Byte
Afreeca 86.17% 79.38% 78.96%
BitTorrent 100.00% 100.00% 100.00%
POP3 100.00% 100.00% 100.00%
FTP 100.00% 100.00% 100.00%
Fileguri 100.00% 100.00% 100.00%
Skype 95.18% 99.60% 99.87%
KakaoTalk 100.00% 100.00% 100.00%
DiabloIII 100.00% 100.00% 100.00%
Melon 100.00% 100.00% 100.00%
Nateon 100.00% 100.00% 100.00%

The accuracy of some signature sets is slightly low. The accuracy of the Afreeca
signature is 86.17% for flow, 79.38% for packet, and 78.96% for byte. In order to ana-
lyze the reason for the accuracy degradation, we checked the accuracy of each signature
for Afreeca.

tcp any any → any 80 (label: “AF”; content: “GET /”; offset:0; depth:5;
content:“image”; offset:5; depth:13;)

The signature above causes the accuracy degradation of the Afreeca signature set.

The signature consists of one packet signature. The packet signature consists of two
content signatures. This signature was generated from the following payloads shown in
Table 17.

Table 17. Afreeca traffic payload.

Afreeca traffic
GET/images/player/txt_vodtop_s.gif HTTP/1.1|0d||0a|Accept: */*|0d||0a|Accept-Language:
ko-KR|0d||0a|Accept-Encoding: gzip, deflate|0d||0a| User-Agent: Mozilla/4.0 (compatible |3b| MSIE
7.0|3b| Windows NT 6.1|3b| WO W64|3b| Trident/7.0|3b| SLCC2|3b| .NET CLR 2.0.50727|3b| .NET
CLR 3.5.3072 9|3b| .NET CLR 3.0.30729|3b| Media Center PC 6.0|3b | .NET4.0C |3b| .NET4.0E|3b|
InfoPath.3)|0d||0a|Host: www.afreeca.com|0d||0a|Connection: Keep-Alive|0d||0a|Cookie:
PCID=14301031179927722146235|3b| NO WCOM_RESOLUT ION=undefined*undefined|3b|
NOWCOM_COLOR=24|0d| |0a||0d||0a|
GET/svc/image/U03/clix_adcontent/spacer HTTP/1.1|0d||0a|Accept: */*|0d||0a| Referer:ht
tp://www.afreeca.com/ad/broad_default_AD.htm|0d||0a|Accept-Langu age:ko-KR|0d||0a|A
ccept-Encoding: gzip, deflate|0d||0a|User-Agent: Mozilla/4.0 (compatible|3b| MSIE 7.0|3b| Windows
NT 6.1|3b| WOW64|3b| Trident/7.0|3b| SLCC2|3b| .NET CLR2.0.50727|3b| .NET CLR 3.5.30729|3b|
.NET CLR 3.0.30 729|3b| Media Center PC6.0|3b|. ET.0C|3b|.NET4.0E|3b| InfoPath.3)|0d| |0a|Host:
i1.daumcdn.net|0d||0a|Connection:Kee-A v|0d||0a||0d||0a|

SIGBOX: AUTOMATIC SIGNATURE GENERATION METHOD FOR FINE-GRAINED TRAFFIC IDENTIFICATION

567

The highlighted strings in Table 17 are the sources of the signature. Within these
payloads, the generated signature reflects Afreeca traffic well. However, the signature
incorrectly identified traffic of other applications because the content described in the
signature included common words.

Table 18 shows the traffic payload of Nateon. The signature of Afreeca incorrectly
identified the highlighted string in Table 18. In order to prevent this conflict situation,
we plan to apply black list filtering technology.

Table 18. Nateon traffic payload.

Nateon traffic

GET/plugin/images/ipml/quickLaunch/CID36_RQL3.png HTTP/1.1|0d||0a|User -Agent:

NateOn/5.1.14.0 (3688)|0d||0a|Host: ipmlimg.nateon.nate.com|0d||0a| Cache-Control:

no-cache|0d||0a|Cookie: UD3=u0d16bc6842ac97e50f6235b11ef 07fb|3b|UA3=MTAwMT

U3NTYxMDY=|7c||7c||3b| pcid=141870852352994792 |3b|NateMain=isub=Y|7c|2015031

6|7c|3&HPClose=Y%7C20150317%7C2|3b| L OGIN=saveid=off&iplevel=2|0d||0a||0d||0a|

4.4 Comparison Evaluation of Signature Types

SigBox outputs three types of signature: content, packet, and flow signature. In this

section, we compare the performance of each type of signature in terms of redundancy,
coverage, and accuracy, and verify the feasibility and superior performance of the flow
signature as compared to other types of signature.

Table 19. Comparison of signature types: redundancy.

Application
Redundancy

Content Sig. Packet Sig. Flow Sig.
Afreeca 0.99 0.80 0.21

BitTorrent 0.16 0.12 0.06
POP3 0.83 0.83 0.00
FTP 0.99 0.99 0.00

Fileguri 0.90 0.38 0.15
Skype 0.45 0.20 0.17

KakaoTalk 0.59 0.12 0.02
DiabloIII 1.00 0.96 0.00

Melon 0.99 0.94 0.04
Nateon 1.00 0.95 0.02

Table 19 shows the change in the redundancy value over the three signature types.
As mentioned, the redundancy metric, the value of which is between 0 and 1, represents
the ratio of overlapped traffic identified by more than two signatures in the same signa-
ture set. If a signature set has a high redundancy value, this means that it includes un-
necessary signatures as its members. Thus, a redundancy value of 0 indicates the best
signature set, which means that all the signatures of the set exclusively identify traffic.

From the content to flow signature type, the redundancy of the signature generated
by SigBox declined in all applications. In particular, the gap between the packet and flow

KYU-SEOK SHIM, SUNG-HO YOON, SU-KANG LEE AND MYUNG-SUP KIM

568

signature type was extremely wide. According to the signature count comparison analy-
sis described in Section 4.2, the content and packet signature types include more signa-
tures that are unnecessary signatures for identification. As a result, the flow signature
type is better than other signature types in terms of redundancy.

Table 20. Comparison of signature types: coverage and accuracy.

Application
Coverage Accuracy

Content Sig. Packet Sig. Flow Sig. Content Sig. Packet Sig. Flow Sig.
Afreeca 99.03% 98.96% 80.03% 20.70% 24.25% 86.17%

BitTorrent 84.10% 83.88% 71.92% 15.97% 18.53% 100%
POP3 100% 100% 66.67% 51.18% 51.18% 100%
FTP 97.84% 97.84% 95.41% 100% 100% 100%

Fileguri 99.27% 99.27% 36.26% 22.18% 25.56% 100%
Skype 30.64% 29.55% 25.09% 9.65% 9.65% 95.18%

KakaoTalk 96.67% 96.67% 93.13% 21.18% 21.18% 100%
DiabloIII 97.16% 97.16% 92.91% 27.21% 27.21% 100%

Melon 100% 100% 82.84% 23.88% 23.88% 100%
Nateon 97.80% 97.64% 50.39% 20.36% 21.61% 100%

Table 20 shows the change in the coverage and accuracy of the three signature types.
In the flow signature type, the coverage slightly decreased. The reason for this degrada-
tion is that the flow signature type has more constraints than other signature types.
However, the accuracy of the flow signature type was far superior to that of the other
signature types. Thus, adding more constraints, the flow signature type could identify
traffic correctly in terms of fine-grained identification. As a result, the flow signature
type, the final result of SigBox, shows the best performance of the three signature types.
Although coverage degradation occurred, the other two metrics were good.

4.5 Comparison Evaluation with Other Methods

We compared the performance of SigBox with other methods, LASER and Autosig.

We selected six applications commonly used in other methods. Table 21 shows the cov-
erage and accuracy comparison. In terms of both coverage and accuracy, the signature
generated by SigBox showed a better performance than the other methods. As mentioned
above, our signature uses flow features beyond one packet level. Therefore, SigBox gen-
erates better signatures than the other methods.

Table 21. Comparison with other methods: coverage and accuracy.

Application
Coverage Accuracy

SigBox LASER Autosig SigBox LASER Autosig
Afreeca 99.03% 14.24% N/A 86.17% 5.57% N/A

BitTorrent 84.10% 40.53% 57.97% 100% 100% 29.82%
POP3 100% N/A 100% 100% N/A 17.69%
FTP 97.84% 0% 97.78% 100% 0% 59.08%

Fileguri 99.27% 60.49% N/A 100% 100% N/A
Skype 30.64% N/A N/A 95.18% N/A N/A

SIGBOX: AUTOMATIC SIGNATURE GENERATION METHOD FOR FINE-GRAINED TRAFFIC IDENTIFICATION

569

Unfortunately, some applications are N/A for coverage and accuracy tests because
we don’t have both the LASER and Autosig system. We referred the experimental result
of LASER and Autosig from their papers, so N/A means that the paper did not provide
the measure of the application. However, we similarly experimented applications that
were extracted from the LASER and Autosig systems. So as to objectively analyze and
compare the experimental results, we used not only the extracted traffic but also the sep-
arately collected new traffic. Therefore, the objective was maintained after the input traf-
fic being tested from all the three methods.

5. SNORGEN: WEB SITE FOR SNORT RULE GENERATION

We opened a Web site (http://snorgen.korea.ac.kr/) to announce our results. This
Web site provides automatic signature generation for users who want to generate their
own signature. After a user uploads traffic data, the Web site provides them with a sig-
nature after a short amount of time. In addition, our experimental results discussed in this
paper can be found on the Web site. The signatures that are generated are represented in
Snort form. Therefore, a user can use the signature in their Snort engine directly.

Fig. 7. SnorGen Web site (http://snorgen.korea.ac.kr/).

6. CONCLUSIONS AND FUTURE WORK

We proposed SigBox, which automatically generates a signature based on a se-
quence pattern algorithm to overcome previous limitations in terms of automation, ro-
bustness, and elaboration. This system finds unique substrings in the input packet pay-
load and uses them to construct a content signature. The sequence of content signatures

KYU-SEOK SHIM, SUNG-HO YOON, SU-KANG LEE AND MYUNG-SUP KIM

570

is combined into a packet signature, and the sequence of packet signatures is combined
into a flow signature. The flow signature is the final result of SigBox. To achieve this,
we applied a modified sequence pattern algorithm to find a sequence commonly de-
scribed in the input hosts’ traffic.

Through experimentation, we validated the performance of SigBox using ten popu-
lar applications. The results show that SigBox is capable of generating signatures auto-
matically and quickly without any predefined thresholds. In all the applications, we gen-
erated signature sets of target applications within 20 seconds. In addition, our system
shows a good performance in terms of redundancy, coverage, and accuracy. The average
redundancy of all the signature sets was 0.05, which indicates all the signatures of each
signature set exclusively identified the target traffic. The coverage level was similar in
both SG (training) trace and TI (testing) trace, which indicates that the signatures gener-
ated by SigBox are general and robust. Finally, the average accuracy of all signature sets
was 98.14%, which indicates that the quality of the signatures generated by SigBox was
very elaborated. A comparison evaluation of signature types showed that the flow signa-
ture type performs better in terms of redundancy and accuracy, with a slight degradation
in coverage. This method even outperformed other methods, LASER and Autosig.

In future work, we plan to develop automatic post-processing techniques that will
allow us to select the most meaningful signatures from those output by SigBox and to
enlarge the range of generation to allow signatures that are more elaborated.

REFERENCES

1. M.-S. Kim, Y. J. Won, and J. W.-K. Hong, “Application-level traffic monitoring and
an analysis on IP networks,” ETRI Journal, Vol. 27, 2005, pp. 22-42.

2. M.-J. Choi, J.-S. Park, and M.-S. Kim, “An integrated method for application-level
internet traffic classification,” KSII Transactions on Internet and Information Sys-
tems, Vol. 8, 2014, pp. 838-856.

3. T. T. Nguyen, G. Armitage, P. Branch, and S. Zander, “Timely and continuous
machinelearning-based classification for interactive IP traffic,” IEEE/ACM Tran-
sactions on Networking, Vol. 20, 2012, pp. 1880-1894.

4. Y. Wang, Y. Xiang, W. L. Zhou, and S. Z. Yu, “Generating regular expression sig-
natures for network traffic classification in trusted network management,” Journal of
Network and Computer Applications, Vol. 35 , 2012, pp. 992-1000.

5. B. Park, Y. Won, J. Chung, M. S. Kim, and J. W. K. Hong, “Fine-grained traffic
classification based on functional separation,” International Journal of Network
Management, Vol. 23, 2013, pp. 350-381.

6. B.-C. Park, Y. J. Won, M.-S. Kim, and J. W. Hong, “Towards automated application
signature generation for traffic identification,” in Proceedings of IEEE International
Conference on Network Operations and Management Symposium, 2008, pp. 160-
167.

7. M. Ye, K. Xu, J. Wu, and H. Po, “Autosig-automatically generating signatures for
applications,” in Proceedings of the 9th IEEE International Conference on Com-
puter and Information Technology, 2009, pp. 104-109.

SIGBOX: AUTOMATIC SIGNATURE GENERATION METHOD FOR FINE-GRAINED TRAFFIC IDENTIFICATION

571

8. X. Feng, X. Huang, X. Tian, and Y. Ma, “Automatic traffic signature extraction
based on Smith-waterman algorithm for traffic classification,” in Proceedings of the
3rd IEEE International Conference on Broadband Network and Multimedia Tech-
nology, 2010, pp. 154-158.

9. S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated worm fingerprinting,”
in Proceedings of the 6th ACM/USENIX Symposium on Operating System Design
and Implementaion, 2004, p. 4.

10. H.-A. Kim, B. Karp, “Autograph: Toward automated, distributed worm signature
detection,” in Proceedings of USENIX Security Symposium, 2004.

11. J. Newsome, B. Karp, and D. Song, “Polygraph: Automatically generating signatures
for polymorphic worms,” in Proceedings of IEEE Symposium on Security and Pri-
vacy, 2004, pp. 226-241.

12. Z. Li, M. Sanghi, Y. Chen, M.-Y. Kao, and B. Chavez, “Hamsa: Fast signature
generation for zero-day polymorphic worms with provable attack resilience,” in
Proceedings of IEEE Symposium on Security and Privacy, 2006, pp. 15 pp.-47.

13. Y. Tang, B. Xiao, and X. Lu, “Using a bioinformatics approach to generate accurate
exploit-based signatures for polymorphic worms,” Computers and Security, Vol. 28,
2009, pp. 827-842.

14. G. Szabó, Z. Turányi, L. Toka, S. Molnár, and A. Santos, “Automatic protocol
signature generation framework for deep packet inspection,” in Proceedings of the
5th International ICST Conference on Performance Evaluation Methodologies and
Tools, 2011, pp. 291-299.

15. Y. Wang, Y. Xiang, and S. Z. Yu, “An automatic application signature construction
system for unknown traffic,” Concurrency and Computation-Practice and Experience,
Vol. 22, 2010, pp. 1927-1944.

16. Y. Choi, “An automated classifier generation system for application-level mobile
traffic identification,” in Proceedings of IEEE Network Operations and Management
Symposium, 2012, pp. 1075-1081.

17. P. Haffner, S. Sen, O. Spatscheck, and D. Wang, “ACAS: automated construction of
application signatures,” in Proceedings of ACM SIGCOMM Workshop on Mining
Network Data, 2005, pp. 197-202.

18. R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proceedings of the 11th
IEEE International Conference on Data Engineering, 1995, pp. 3-14.

19. R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” in Pro-
ceedings of the 20th International Conference on Very Large Data Bases, 1994, pp.
487-499.

20. C.-M. Hsu, C.-Y. Chen, B.-J. Liu, C.-C. Huang, M.-H. Laio, C.-C. Lin, and T.-L.
Wu, “Identification of hot regions in protein-protein interactions by sequential pa-
ttern mining,” BMC Bioinformatics, Vol. 8, 2007, S8.

21. R. Agrawal, T. Imieli, and A. Swami, “Mining association rules between sets of
items in large databases,” in Proceedings of ACM SIGMOD International Con-
ference on Management of Data, 1993, pp. 207-216.

22. Q. Zhao and S. S. Bhowmick, “Sequential pattern mining: A survey,” ITechnical
Report, CAIS, Nayang Technological University, Singapore, 2003, pp. 1-26.

23. J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu, “Pre-
fixspan: Mining sequential patterns efficiently by prefix-projected pattern growth,”

KYU-SEOK SHIM, SUNG-HO YOON, SU-KANG LEE AND MYUNG-SUP KIM

572

in Proceedings of IEEE International Conference on Data Engineering, 2001, pp.
0215-0215.

24. M. J. Zaki, “SPADE: An efficient algorithm for mining frequent sequences,” Machine
Learning, Vol. 42, 2001, pp. 31-60.

25. M.-Y. Lin and S.-Y. Lee, “Fast discovery of sequential patterns by memory index-
ing,” in Data Warehousing and Knowledge Discovery, Springer, 2002, pp. 150-160.

26. M. N. Garofalakis, R. Rastogi, and K. Shim, “SPIRIT: Sequential pattern mining
with regular expression constraints,” in Proceedings of the 25th International Con-
ference on Very Large Data Bases, 1999, pp. 223-234

27. K. Wang, Y. Xu, and J. X. Yu, “Scalable sequential pattern mining for biological
sequences,” in Proceedings of the 13th ACM International Conference on Informa-
tion and Knowledge Management, 2004, pp. 178-187.

28. J. Han, K. Koperski, and N. Stefanovic, “GeoMiner: a system prototype for spatial
data mining,” in ACM SIGMOD Record, 1997, pp. 553-556.

29. J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan, “Web usage mining: Disco-
very and applications of usage patterns from web data,” ACM SIGKDD Explorations
Newsletter, Vol. 1, 2000, pp. 12-23.

30. M. El-Sayed, C. Ruiz, and E. A. Rundensteiner, “FS-Miner: efficient and incremen-
tal mining of frequent sequence patterns in web logs,” in Proceedings of the 6th
Annual ACM International Workshop on Web Information and Data Management,
2004, pp. 128-135.

31. U. Yun, “Analyzing sequential patterns in retail databases,” Journal of Computer
Science and Technology, Vol. 22, 2007, pp. 287-296.

32. J.-Z. Ouh, P.-H. Wu, and M.-S. Chen, “Experimental results on a constraint based
sequential pattern mining for telecommunication alarm data,” in Proceedings of the
2nd IEEE International Conference on Web Information Systems Engineering, 2001,
pp. 186-193.

33. P.-H. Wu, W.-C. Peng, and M.-S. Chen, “Mining sequential alarm patterns in a
telecommunication database,” in Databases in Telecommunications II, Springer,
2001, pp. 37-51.

34. M. Roesch, “Snort: Lightweight intrusion detection for networks,” in Proceedings of
the 13th USENIX Conference on System Administration, 1999, pp. 229-238.

35. V. Paxson, “Bro: a system for detecting network intruders in real-time,” Computer
Networks, Vol. 31, 1999, pp. 2435-2463.

36. R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching algorithms,”
IBM Journal of Research and Development, Vol. 31, 1987, pp. 249-260.

37. R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Communications
of the ACM, Vol. 20, 1977, pp. 762-772.

SIGBOX: AUTOMATIC SIGNATURE GENERATION METHOD FOR FINE-GRAINED TRAFFIC IDENTIFICATION

573

Kyu-Seok Shim received his B.S degree in Computer Sci-
ence from Korea University, Korea, in 2014. He is currently a
master’s student of Korea University, Korea. His research inter-
ests include Internet traffic classification and network manage-
ment.

Sung-Ho Yoon received his B.S. degree in Computer Sci-

ence from Korea University, Korea, in 2009, his M.S. degree in
Computer Science from Korea University, Korea, in 2011, and
his Ph.D. degree in Computer Science from Korea University,
Korea, in 2015. He is currently a researcher of Vehicle Compo-
nents Company, LG Electronics, Korea. His research interests
include Internet traffic classification and network management.

Su-Kang Lee received his B.S degree in Computer Science
from Korea University, Korea, in 2014. He is currently a master’s
student of Korea University, Korea. His research interests include
Internet traffic classification and network management.

Myung-Sup Kim received his B.S., M.S., and Ph.D. degree
in Computer Science and Engineering from POSTECH, Korea, in
1998, 2000, and 2004, respectively. From September 2004 to
August 2006, he was a postdoctoral fellow in the Department of
Electrical and Computer Engineering, University of Toronto,
Canada. He joined Korea University, Korea, in 2006, where he is
working currently as an Associate Professor in the Department of
Computer and Information Science. His research interests include
Internet traffic monitoring and analysis, service and network
management, and Internet security.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

