
Received: 27 March 2014 Revised: 30 March 2016 Accepted: 12 October 2016
DO
I 10.1002/nem.1959
RE S EARCH ART I C L E
Header signature maintenance for Internet traffic identification

Sung‐Ho Yoon1 | Jun‐Sang Park1 | Baraka D. Sija1 | Mi‐Jung Choi2 | Myung‐Sup Kim1
1Department of Computer and Information
Science, Korea University, Sejong, Korea
2Department of Computer Science, Kangwon
National University, Chuncheon, Korea

Correspondence
Myung‐Sup Kim, Department of Computer and
Information Science, Korea University, Sejong
339‐700, Korea.
Email: tmskim@korea.ac.kr
Int J Network Mgmt 2016; 1–15
Summary
Various traffic identification methods have been proposed with the focus on
application‐level traffic analysis. Header signature–based identification using the
3‐tuple (Internet Protocol address, port number, and L4 protocol) within a packet
header has garnered a lot of attention because it overcomes the limitations faced by
the payload‐based method, such as encryption, privacy concerns, and computational
overhead. However, header signature–based identification does have a significant
flaw in that the volume of header signatures increases rapidly over time as a number
of applications emerge, evolve, and vanish. In this article, we propose an efficient
method for header signature maintenance. Our approach automatically constructs
header signatures for traffic identification and only retains the most significant sig-
natures in the signature repository to save memory space and to improve matching
speed. For the signature maintenance, we define a new metric, the so‐called signa-
ture weight, that reflects its potential ability to identify traffic. Signature weight is
periodically calculated and updated to adapt to the changes of network environment.
We prove the feasibility of the proposed method by developing a prototype system
and deploying it in a real operational network. Finally, we prove the superiority of
our signature maintenance method through comparison analysis against other
existing methods on the basis of various evaluation metrics.
1 | INTRODUCTION

As high‐speed Internet has become more widespread and
Internet‐based applications more diverse, network manage-
ment has become increasingly important. The availability of
high‐speed Internet has led users to demand more stable
services with a guarantee for quality of service. From the
perspective of Internet service providers and Internet contents
providers, the need to provide a diverse and high‐quality
service has increased, whereas there remains pressure to
minimize their capital expenditures and operating expenses.
However, network burden is serious because of limited
network resources and fast‐growing traffic. To achieve effi-
cient network operation and management, it is necessary to
detect killer applications consuming high bandwidth and ana-
lyze their behavioral patterns. Because the performance of
network policies that block or adjust target traffic is highly
dependent on the identification results, application‐level traf-
fic identification should be preemptively accomplished.1–4

Such identification results are also used in numerous
areas of network management including traffic engineering,
wileyonlinelibrary.com/journal/
network planning, quality of service planning, and service‐
level agreement management.

The goal of application‐level traffic identification is to
accurately determine the application names such as Skype,
uTorrent, and DropBox that generate network traffic. In the
case of Web‐based services, each service such as YouTube,
Google, and Facebook is considered an individual applica-
tion. Previously, various methods using a diverse set of traffic
features have been suggested for traffic identification. How-
ever, all such methods encounter limitations when applied
to a real operational network. Examples of such limitations
include difficulty in signature creation, computational com-
plexity, limitations related to privacy concerns, and real‐time
control problems.5–7

In particular, header signature (HS)–based traffic identifi-
cation8–10 has garnered much attention because it overcomes
several limitations such as encryption, privacy concerns,
and computational overhead that are faced by the payload‐
based method, which inspects payload in each packet to
find a predefined string. The HS is the combination of the
3‐tuple (Internet Protocol [IP] address, port number, and L4
Copyright © 2016 John Wiley & Sons, Ltd.nem 1

mailto:tmskim@korea.ac.kr
http://doi.org/10.1002/nem.1959
http://wileyonlinelibrary.com/journal/nem

2 YOON ET AL.
protocol) of a server that a specific application uses to com-
municate with the end hosts involved. If a server provides
a specific application or service for a long time, the server
3‐tuple is extracted as an HS of the application and is stored
in the signature repository. The HS is used to identify traffic
by matching packet headers. Although there are several peer‐
to‐peer (P2P) applications using dynamic or random port
numbers, the server‐client paradigm is still widely prevalent
in Web services. Even in P2P applications, the header infor-
mation of the servers is still important in traffic identification
because updating and login operations are processed in 1 or
several central servers. Moreover, heavy users of P2P appli-
cations could be considered as a kind of servers because of
their continuous behavior.

Although HS‐based identification can overcome the
limitations of the payload‐based methods efficiently, it has a
significant flaw that the volume of HSs increases rapidly over
time as a number of applications emerge, evolve, and
vanish.9,10 The number of possible HS combinations is theo-
retically 249 (IPv4: 232; port: 216; and protocol TCP/UDP: 2),
even when we consider only Transmission Control Protocol
(TCP)/User Datagram Protocol (UDP) on IPv4 networks. It
is impossible to store all the created signatures because of
limited memory capacity. For example, the minimum size
of an HS is 8 bytes. If all conceivable combinations are
extracted as HS, the size of the signature repository exceeds
4.5 petabytes. Moreover, a high volume of stored signatures
increases the processing overhead of the identification sys-
tem. Although hashing mechanism is efficient, an increase
in the number of records falling in the same hashing key
requires more processing time in the signature matching
phase. In addition to the problem of signature storage and
computational overhead, accumulating outdated signatures
might lower the accuracy of identification results. With appli-
cations emerging and vanishing over time, server information
should be continuously verified and updated with up‐to‐date
content.7 Thus, an efficient signature maintenance method
that retains only the highly significant signatures in the signa-
ture repository is required.

Several works have already used the header information
to identify traffic, but their maintenance method was
extremely simple and coarse to handle high‐speed and large
volume Internet traffic.9–12 We present details of mainte-
nance methods from previous works in Section 2. In this
article, we propose an efficient method for HS‐based traffic
identification and signature maintenance. The proposed iden-
tification method consists of 3 parts: signature creation, traf-
fic identification, and signature management. Our approach
automatically constructs HSs from the traffic in the training
and testing networks where our system is deployed.

The maintenance module in the signature management
part only retains the most potentially significant signatures
in the signature repository to save memory space and reduce
system overhead. For signature maintenance, we define a
new metric called the signature weight that reflects its
potential ability to identify traffic. The signature weight is
periodically calculated and updated to adapt to the changes
of the network environment. Our maintenance function cal-
culates a weight for each signature on the basis of a series
of maintenance elements: number of counter peer, flow count
(FC), and byte count (BC). The maintenance elements used
in our maintenance function are defined using statistical
information from the identified traffic. Then we delete the
signatures deemed less significant on the basis of the calcu-
lated weight of a signature at each maintenance interval. We
prove the feasibility of the proposed method by developing
a prototype system and deploying it in a real operational net-
work. We also define several metrics to evaluate the perfor-
mance of the maintenance method: number of signatures,
completeness, life duration (LD), and execution time. We
demonstrate the superiority of our maintenance method by
performing a comparison analysis against other existing
methods using the above‐mentioned evaluation metrics.

The remainder of this article is organized as follows. In
Section 2, we review previous methods that have used header
information for traffic analysis and analyze their signature
maintenance methods. We propose our HS and identification
system in Section 3. In Section 4, we propose our HS main-
tenance method in detail, and we evaluate the proposed
method using several evaluation metrics in Section 5. Finally,
we conclude our work and propose a future research direction
in Section 6.
2 | RELATED WORK

Traffic identification or classification methods have been
evolving continuously to adapt to dynamic network environ-
ments. Well‐known port applications such as Hypertext
Transfer Protocol, telnet, File Transfer Protocol, and Simple
Mail Transfer Protocol composed most network traffic in
the past. As a result, the port‐based identification method that
uses well‐known ports assigned by the Internet Assigned
Numbers Authority13 could identify traffic with a high level
of reliability and accuracy. However, the emergence of
applications using random or dynamic port numbers to evade
firewalls has reduced the accuracy of the port‐based identifi-
cation method to less than 70%.11,14

The payload signature–based traffic identification15–20

offers sufficient completeness and accuracy by checking
the existence of a payload signature in a packet payload.
However, this method tends to encounter difficulties related
to traffic encryption, computational complexity, and
invasion of privacy. To overcome some of the issues of pay-
load signature–based identification, a statistical signature
method,21–25 which uses the statistical characteristics of
traffic such as distribution of packet size or interval, is pro-
posed. This method can mitigate some of the issues faced by
earlier methods because it investigates only the packet
header, not the packet payload, to extract statistical values.

YOON ET AL. 3
However, the method is limited because it is difficult to
distinguish between applications using the same communi-
cation engine or application‐level protocol, as they have
similar statistical features. Another approach is the behav-
ior‐based method14,26–28 that examines the network traffic
on the basis of the correlation among flows or patterns of
traffic generation. However, it is weak to adopt in a real
network. Until now, various methods have been proposed
to overcome the limitations faced by previous identification
methods.

The header‐based method is one such example that uses
server information only. Several traffic identification methods
using header information have been proposed to supplement
the accuracy of the port‐based analysis method or to verify
identification results.11–13,29 We also propose several identifi-
cation methods using HS information in our previous
works.8–10 The common assumption among these works is
that an Internet application server provides the same applica-
tion (or service) continuously for a period. Compared to other
methods using payload data or statistical features, traffic
identification based on header information has several advan-
tages. Some of the advantages are as follows: First, there is no
performance degradation caused by packet loss, fragmenta-
tion, or sampling that might occur when gathering traffic.
Second, there is no performance degradation caused by
payload encryption because the method only investigates
the header information in a packet. Finally, the method is
extremely fast to identify traffic because it compares the
header value located in the fixed offset of a packet. Table 1
lists a comparison of existing header‐based methods under
the perspective of header attributes, analysis purpose, and
header maintenance.

Gringoli et al29 used packet header information to gener-
ate ground‐truth traffic data. They assumed that all traffic
flows with the same “subtuple” pairs (eg, {destination IP,
destination port} or {source IP, destination IP}) are generated
by the same application. First, they determined the applica-
tion name of the traffic data using preexisting identification
TABLE 1 Related work using header‐based methods

Paper Format

Gt: picking up the truth from the ground for Internet
traffic29

{dst IP, dst port} {src IP,

Toward the accurate identification of network
applications11

{host, port}

Transport layer identification of P2P traffic13 {TCP/UDP IP Pairs} {IP
pairs

Service‐based traffic classification: principles and
validation12

{IP address, TCP/UDP po

Internet application traffic classification using fixed
IP‐port8

{IP, protocol, port}

Signature maintenance for Internet application
traffic identification using header signatures9

{IP address, port number
layer protocol (TCP/UDP

An efficient method to maintain the header
signatures for Internet traffic identification10

{IP address, port number
protocol (TCP/UDP)}

Abbreviations: IP, Internet Protocol; P2P, peer‐to‐peer; TCP, Transmission Control Pr
methods such as the payload‐based method. Then they
extracted subtuples from identified and unidentified traffic
using the subtuple information. They repeated this process
until no additional network traffic flow was identified.
However, this method did not consider any maintenance of
the subtuples.

Moore et al11 proved the inaccuracy of the port‐based
identification through various experiments. They used the
{host, port} pair instead of the port to identify and validate
specific application traffic, such as port scanning and audio
streaming. However, they used a simple and inferior manage-
ment scheme that only keeps header information in memory
at the point where the host generates corresponding traffic.
In other words, the header information of inactive hosts is
immediately removed from memory.

Karagiannis et al13 used behavior patterns and statistical
characteristics to analyze P2P application traffic. To do this,
they constructed a P2PIP list that consists of {TCP/UDP
IP} or {IP, port} pairs and used them to identify traffic. How-
ever, this method fails to consider any maintenance processes
for the P2PIP list, which leads to an accumulation of entries
on the list.

Baldi et al6 configured a service table by extracting the
network coordination (IP address, TCP/UDP, and port) from
the result of existing methods (eg, payload‐based method).
The network coordination was then used for traffic identifica-
tion. To maintain the service table, they used a simple
timeout‐based maintenance method. Each element of the
service table was deleted if it was not used for a specified
period. For example, if the timeout threshold is set at
60 minutes, elements not used for traffic identification for
more than 60 minutes are deleted. The timeout‐based method
is extremely simple and efficient, but it fails to consider
servers that provide service occasionally during long period,
such as Web mail and antivirus applications.

We define a 3‐tuple (IP address, port, and L4 protocol)
within a server to construct our HS and also propose a
maintenance process that is based on the characteristics of
Purpose Maintenance Method

dst IP} Additional
identification

Not mentioned

Verification of
identification
result

Only remaining active host

, port} Identification Accumulated

rt} Additional
identification

Inactivity timeout

Identification Inactivity timeout

, transport
)}

Identification Verify properties (abnormal, timeout,
dominant, and popular)

, L4 Identification Accumulated weight (number of counter
peer, flow count, and byte count)

otocol; UDP, User Datagram Protocol.

4 YOON ET AL.
identified network traffic and the history of signature use in
our previous works.8–10 The first article8 primarily proposes
the HS, called fixed IP‐port. This method uses a state transi-
tion diagram for the extraction phase with several predefined
conditions and a timeout threshold. Therefore, it does
not need an additional maintenance process. Although the
timeout threshold can be adjusted by the system operator
according to the network environment, using an inactivity
timeout method has limitations caused by overlooking long‐
term applications, as mentioned in the previous paragraph.
A more sophisticated method9 uses the properties of the iden-
tified traffic and the use history of signatures such as abnor-
mal, timeout, dominant, and popular. This method deletes
or retains signatures on the basis of a specified set of condi-
tions. However, there are problems in that the process
required to obtain signature characteristics is complex and
the accumulated value of signature features does not adapt
flexibly enough to reflect changes in the network environ-
ment. The latest method10 uses the weight of the signature,
which is measured by a function consisting of maintenance
elements such as the number of counter peer, FC, and BC.
However, the method has limitations in adapting to a real net-
work because it uses accumulated values starting at the
extraction. If a signature representing dominant service
evolves or vanishes, the wrong signature remains in the
repository for a long time. As a result, the outdated signatures
cause low accuracy. Thus, the inactivity time is required to
calculate the signature weight.

To summarize, previous works have asserted that packet
header information can be effectively used in traffic identifi-
cation. However, these studies mostly focus on the use of
the header information, and insufficient attention is given to
the maintenance of this header information. In particular,
timeout‐based maintenance, which deletes unused entries
after a period of inactivity, can be ineffective because it tends
to delete the header information of applications that generate
traffic periodically. This is because this method does not
consider the use properties of applications. Although we pro-
pose a maintenance method to analyze the characteristics of
signatures in our previous work, the maintenance method is
too complicated and has difficulties in adapting to network
environment changes. As a result, we developed a new main-
tenance method that only retains the signatures that are most
likely to be used in the near future and removes any other
signatures to save memory and reduce maintenance time.
3 | HEADER SIGNATURE–BASED TRAFFIC
IDENTIFICATION

In this section, we define the HS and explain the structure of
our traffic identification system. The HS consists of a 3‐tuple
(IP address, port number, and L4 protocol) of a server that
provides a specific application (service). Further, a weighted
value for each HS is calculated at each maintenance interval.
Packet‐based analysis is not able to accurately reflect
the overall behavior of traffic as the application behavior
becomes more complex. To supplement this, a flow unit
is proposed. A flow (f) is a set of packets having the same
5‐tuple (source IP address, source port number, destination
IP address, destination port number, and L4 protocol).4 Thus,
we define F as a set of flows as shown in Equation 1 and
F(X = x) as a set of flows having the same property x. For
example, F(dst = dip, dstPort = dport) is a set of flows
having dip and dport, its destination IP address and port
number, respectively, as shown in Equation 2:

F ¼ f 1; f 2; f 3;…; f nf g; (1)

F X ¼ xð Þ ¼ f j f ∈ F; f Xð Þ ¼ x; X : 5−tuplef g: (2)

Although the flow unit is an effective way to analyze
massive traffic compared to packet‐based techniques, it does
not provide sufficient information regarding the behavior of
traffic, such as end point connectivity. This is because it con-
sists of a set of packets generated between the end points of 2
specific hosts. In particular, the flow unit requires additional
analysis on the relationship between flows in a server‐client
model by aggregating associated flows. Therefore, we pro-
pose new unit for our method:

B ¼ bjb ¼ f j f ∈ F xð Þ; x ¼ IP; Port; Protf gf gf g: (3)

We define a bunch (b) as the relationship between flows
for effective signature creation. A bunch is a set of flows with
the same 3‐tuple (IP address, port number, and L4 protocol)
shown in Equation 3. In other words, all flows within a bunch
connect to a specific server port. The bunch consists of 1
server node and a set of flows between counter peers. To
determine server‐side host, we apply different methods
according to L4 protocol (TCP and UDP). In case of TCP,
we inspect flag bits of packet. Typically, TCP session initial-
izes on the basis of 3‐way handshake that is a process of
negotiation between client and server. Synchronize message,
synchronize‐acknowledgment message, and acknowledgment
message are transferred to one another sequentially. Because
we can recognize type of the message using flag bits of the
packet, we can identify the direction of initial packet. Thus,
we can realize which side is server host. In case of UDP, there
is no flag bit mechanism unfortunately. Therefore, we assume
that both sides of packet are server‐side host and make 2
bunches. Although both side of bunches are created, the cli-
ent‐side bunch is finally eliminated in maintenance process
because of their relatively weak statistical characteristic.

Figure 1 shows a sample structure of a bunch with flows
between 1 server and 2 client hosts. The double arrow line
indicates that the flow is generated between a specific server
port and several client ports. The line thickness reflects the
statistical characteristics of a flow (packet and BC). For
example, bold lines correspond to heavy flows and thin lines
correspond to light flows. In addition, the end points of the

FIGURE 1 Structure of a bunch

YOON ET AL. 5
arrow lines indicate the start and end times of a flow. All
flows in the red dotted box are parts of 1 bunch.

The HS proposed in this article refers to the server node
of a bunch, as shown in Equations 4 and 5. The set of HS
consists of m HSs. Each HS consists of header information
(x), the associated application name (a), and the weight (w)
of the HS. The header information is composed of a 3‐tuple
(IP address, port number, and L4 protocol) of a server‐
provided application or service. The application name is used
to label the traffic identified by the header information (x).
The HS weight, the importance level of the signature, is a
value measured using the identified traffic for signature
maintenance. Thus, the HS is measured by the maintenance
function (M(x)), which is described in detail in Section 4:

HS ¼ hs1; hs2; hs3;…; hsmf g; (4)

hs ¼ x; a;wð Þjx ¼ IP; port; protf g;w ¼ M xð Þf g: (5)

Table 2 lists the various HS metrics, used as maintenance
elements to measure the weight (w) of an HS. An FT denotes
the first time a signature is used to identify traffic, and LT
denotes the last time. Life duration is the duration between
TABLE 2 Header signature metrics

Feature Description

First time (FT) First time used to identify traffic, s

Last time (LT) Last time used to identify traffic, s

Life duration (LD) Duration of identification (LT‐FT)

Flow count (FC) Flow count of identified (extracted) traffic

Packet count (PC) Packet count of identified (extracted) traffic

Byte count (BC) Byte (k) count of identified (extracted) traffic

Counter peers count
(CPC)

Number of client hosts in identified (extracted)
traffic
FT and LT. Thus, it refers to the use time of the signature
for traffic identification. The FC, PC, and BC mean statistical
flow, packet, and BC of identified or extracted traffic flows,
respectively, and counter peers count (CPC) corresponds to
the number of client hosts in the identified or extracted
traffic.

Figure 2 shows the architecture of our HS‐based identifi-
cation system. The system consists of 3 parts: signature
creation (flow generation, bunch composition, and signature
extraction), traffic identification (flow generation, flow iden-
tification, and signature feedback), and signature manage-
ment (signature maintenance and signature naming). In the
signature creation part, signatures are extracted from several
training networks. If the signature creation part is conducted
in certain training network, the created signatures could have
network bias in hosts, applications, and network policies of
the training network. To avoid this distortion, we conduct
the signature creation part in several training networks. The
traffic identification part analyzes traffic using the HSs on
the target test networks. The reason why we separate training
and testing network in Figure 2 is to show the generalization
property of HSs generated from a training network, which
could be applied to not only the training network but also
to any other testing networks without performance degrada-
tion. To conduct proposed method in real‐world network
environment, we should collect multifarious traffic from
many different networks for highly generalized HS. However,
the traffic collection has some limitations in these days
because of privacy issue. Thus, we designed our system
architecture having both training and testing networks sepa-
rately. The signatures generated from training network can
be successfully applied to various testing networks even if
they are not the training networks. In other words, the pro-
posed method is conducted to maintain HSs in training
network, and the signatures as a result of our maintenance

FIGURE 2 Architecture of the proposed header signature–based traffic identification system

6 YOON ET AL.
method are applied to various testing (target) networks.
Finally, the signature management part manages signatures
and names the application of signatures.

In the signature creation part, raw packets captured from a
training network are reconstructed into flows and bunches, and
HSs are extracted. The initial metric values for each extracted
signature are set by the statistical values derived from the
captured traffic. Subsequently, the signature is added to the
signature repository (HS). This creation process can be per-
formed in multiple training networks, either offline or online.

Algorithm 1: Header signature creation
Input: Ttrain={t1, t2, t3, … , ttr}, HSold={hs1, hs2, hs3, … ,
hsod}
Output: F={f1, f2, f3, … , ffl} , B={b1, b2, b3, … , bbu},

HSnew={hs1, hs2, hs3, … ,hsnw}
Signature‐extraction(T)
1: for i = 1 to tr //Flow generation from packets
2: F = F ∪ makeFlow(ti)
3: for j = 1 to fl //Bunch composition from flows
4: B = B ∪ makeBunch(fj)
5: for k = 1 to bu //Signature extraction from bunches
6: hstemp = getServerNode(bk)
7: hstemp.updateElement(bk)
8: hstemp.setApplication(a) if possible
9: If hstemp is new signature
10: HS = HS ∪ hstemp

11: else
12: updateSignature(hstemp)
13: return HS

Algorithm 1 shows the signature creation process. In
signature creation, raw packets (T) consisting of tr packets
captured from several training networks are converted into
fl flows (flow generation: lines 1 and 2), and these are used
to construct bu bunches (bunch composition: lines 3 and 4).
For more multifarious signatures, it is acceptable to gather
traffic from several networks. Signatures are extracted from
the server node (3‐tuple) of each bunch (signature extraction:
lines 5‐12), and the created signatures are stored in a central
signature repository. Using the statistical characteristics of
the bunch, the metric values of the signatures are updated.
The application names (a) of signatures can be named by var-
ious identification methods, such as payload or machine
learning–based identification, when possible. Signature nam-
ing can be performed during the signature creation part as
well as during the signature maintenance part. Thus, the
application of a signature is named only when it is possible
in this part. Created signatures are newly added if they do
not exist in the signature repository (HS), whereas existing
signatures are updated on the basis of new metric values.

In the signature identification part, it identifies traffic by
comparing signatures after reconstructing raw packets cap-
tured from a testing network into a specified form (flow unit),
and this process is performed in real‐time mode. In addition,
to manage signatures effectively, the signature maintenance
elements are updated on the basis of the statistical values of
the identified traffic. These updated values are used when
calculating the weight of a signature (w) in the signature
maintenance part. The details are provided in Section 4.

Algorithm 2: Header signature‐based traffic identification
Input: Ttest={t1, t2, t3, … , tte} ,HS={hs1,hs2,hs3, … , hsnw}
Output: Fidentified={f1, f2, f3, … , ffl}
Signature‐identification(T, HS)
1: for k = 1 to te //Flow generation from packets
2: F = F ∪ makeFlow(tk)
3: for i = 1 to fl //Flow identification
4: extract {IP,port,prot} = getServer(fi)
5: for j = 1 to nw
6: if both{IP,port,prot} and hsi({IP,port,prot}) are
matched
7: F = F ∪ fi.setApplication(hsi(a))
8: hsj.updateElement(fi) //Signature feedback
9: return F

Algorithm 2 outlines the HS‐based traffic identification
process. In this process, raw packet (T) consisting of te packets

YOON ET AL. 7
is converted into fl flows (flow generation: lines 1 and 2). The
header information of each flow is then compared with signa-
tures (flow identification: lines 3‐7) stored in the signature
repository (HS). Referring to Algorithm 2, the application
(a) is named to traffic if the traffic and signature have
the same header information (x). Maintenance elements of
existing signatures are also updated (weight feedback: line 8)
on the basis of the statistical values of the identified traffic.
For readability purposes, Algorithm 2 represents the flow
identification process as a brute‐force search, which com-
pares the header information against all signatures. In the real
implementation, we perform flow identification using a hash
data structure to achieve a higher system performance.

In the signature management part of the proposed system,
insignificant signatures based on the weight calculated from
the maintenance function are deleted, and only the most sig-
nificant signatures are retained in the signature repository
(HS). The applications (a) of signatures are also named every
maintenance interval if possible. The application (a) of a
signature is the identity of the traffic when the signature iden-
tifies the traffic. For signature maintenance, the signature
weight is defined to highlight signatures with high applicabil-
ity, which is a numerical value representing its applicability.
A higher weight value corresponds to a higher applicability
for identifying traffic. If the weight of a signature is below
the threshold value (0), the signature is removed from the sig-
nature repository (HS), as it is considered less likely to be
used in the identification.

Algorithm 3: Header signature management
Input: HSold={hs1, hs2,hs3, … ,hsod}
Output: HSnew={hs1, hs2, hs3, … ,hsnw}
Signature‐maintenance(HS)
1: for i = 1 to od //Signature maintenance
2: hsi.updateWeight(M())
3: if hsi(w) is under the threshold value 0
4: delete hsi from signature repository
5: for j = 1 to nw //Signature naming
6: hsj.setApplication(a) if possible
7: return HS

Algorithm 3 outlines the management process. The HS
maintenance updates the weight value of od signatures on
the basis of the maintenance function (M()), which uses
maintenance elements (signature maintenance: lines 1‐4),
and removes any signatures with the weight below the thresh-
old value (0). The application (a) of each signature is also
TABLE 3 Traffic trace

Name Date Duration, days No. of Local IP

KU‐Cam‐01 03.01.2012 31 10 494

KU‐Cam‐02 06.01.2012 30 11 437

KU‐Cam‐03 10.01.2012 92 195

Abbreviation: IP, Internet Protocol.
named using various methods such as payload, statistical sig-
nature, and agent‐based methods (signature naming: lines 5
and 6). The maintenance function (M()) used to calculate
the weight of a signature consists of various maintenance ele-
ments. The composition of this function, which is detailed in
Section 4, is essential because it determines the identification
performance of the entire system. We separated the applica-
tion naming (a) from the signature creation part to create a
suitable number of signatures. If we name the application
using ground‐truth traffic during the signature creation part,
the amount of signatures created decreases. Thus, all the
header information (x) is created from the training network,
and then applications are named during maintenance using
various methods if possible.
4 | HEADER SIGNATURE MAINTENANCE

The final goal of signature maintenance is to maintain signif-
icant signatures in the signature repository that analyzes
traffic for a long period. Signature maintenance aims to
achieve maximum identification performance (completeness,
accuracy, and execution time) with the smallest number of
signatures.

Table 3 lists 3 traffic traces captured from our campus
network to verify the characteristics of HSs and the feasibil-
ity of our maintenance method. First 2 traffic traces were
captured during 1 month at the beginning of the semester
(KU‐Cam‐01) and at the end of the semester (KU‐Cam‐02)
from the entire campus network. The last trace was captured
during the entire semester (KU‐Cam‐03) in the selected
network.

Figure 3 represents the change in signature counts
observed without a maintenance module (accumulation
method). That is, it represents the change in signature counts
when all generated signatures are stored in a signature repos-
itory without deletion. All traffic traces show that the number
of signature has steadily grown even in the 3‐month trace.
This Figure asserts that the number of signatures increases
consistently in the absence of a maintenance module.

Because of the limited size of the signature repository,
not all of the created signatures can be stored. Thus, we need
an efficient maintenance method that maintains signatures
identifying large amount of traffic for a significant time and
deletes any other signatures from the repository. However,
because signature maintenance should be applied in real time,
it is difficult to predict whether a signature will be used in the
No. of Remote IP Flow, K Packet, M Byte, G

47 040 918 659 694 53 906 47 848

43 440 289 774 448 59 238 50 704

35 924 910 295 071 20 673 16 182

FIGURE 3 Change of signature counts over time

8 YOON ET AL.
future or not. Thus, in this section, we examine the character-
istics correlated with signature LD and define them as main-
tenance elements. We also propose a maintenance function
on the basis of these defined maintenance elements.

To define the maintenance elements, we collected traffic
data from our campus network for 1 month (KU‐Cam‐01)
and applied our identification system without a maintenance
process. To understand the characteristics of the generated
signatures, we renewed the signature metric values listed in
Table 1.

Figure 4 shows the distribution of LDs from the gener-
ated signatures in the form of a histogram. In the histogram,
the x‐axis refers to the LD of the signatures, and the y‐axis
refers to the number of signatures at each LD in the x‐axis.
For intuitive explanation, we decide intervals of the histo-
gram with time units of 1 minute, 1 hour, 1 day, 1 week,
and so on. Each bar represents the number of signatures
belonging to each LD. Life duration is specifically defined
as the period during which a signature is used to analyze
traffic. Signatures with a long LD of more than 2 weeks com-
posed only 6.41% of the total signatures. Conversely, 53.41%
of all signatures exhibited an LD of less than 1 minute, which
was the minimum time unit measured in the histogram. It is
evident that most of the signatures were used in traffic
FIGURE 4 Histogram of signature life duration
identification only at the point of creation. Accordingly, we
defined signatures with an LD of less than 1 minute as flash
signatures and further analyzed their characteristics.

Figure 5 shows the correlation between HS LD and FC.
The x‐axis indicates the HS LDs, and the y‐axis indicates
the signature FCs. The numbers in each section represent
the number and ratio of signatures that have the correspond-
ing LD and FC. For example, there are 3 795 162 signatures
with an LD less than 1 minute and 1 FC. This represents
52.76% of all generated signatures. In addition, 98.78%
(c/(a + c)) of flash signatures (a + c), which have an identi-
fication period of less than 1 minute, are associated with an
FC of one. On the other hand, only 23.46% (d/(b + d)) of
nonflash signatures (b + d) are associated with an FC of
one. Thus, it can be concluded that signatures with a shorter
identification period have lower FCs. The correlation
between LD and BC is similar to that of LD and FC.

Figure 6 shows the correlation between HS LD and CPC.
Counter peers count is defined as the number of unique
counter peers in a flow bunch. In Figure 6, the x‐axis refers
to signature LD, and the y‐axis refers to signature CPC. The
numbers in each box represent the total number of signatures
at the given intersection points and the percentage of all
identified signatures. It is evident from Figure 6 that
99.93% (c/(a + c)) of flash signatures (a + c) analyzed the
traffic from only 1 client (c). On the other hand, only
57.61% (d/(b + d)) of nonflash signatures (b + d) identified
the traffic generated by 1 client (d). After reviewing the data,
it is clear that most flash signatures only analyze the traffic
from 1 host during their LD.

Table 4 lists the total amount of traffic identified by flash
and nonflash signatures, respectively. Flash signatures, which
consist of 53.41% of all signatures, identified 1.26% of the
total traffic by flow and 0.96% by byte. To summarize, flash
signatures have composed most of the created signatures, but
in the real analysis, only identified a small percentage of the
traffic. In addition, flash signatures only identified a few

FIGURE 5 Correlation between signature life duration and flow count

FIGURE 6 Correlation between signature life duration and counter peers count

TABLE 4 Comparison of flash signatures and nonflash signatures

Name Flash Signatures Nonflash Signatures Total

No. of signatures 3 841 926 (53.41%) 3 351 058 (46.58%) 7 192 984 (100%)

Identified flows 3 354 672 (1.26%) 261 761 224 (98.73%) 265 115 896 (100%)

Identified packets, K 332 457 (1.00%) 32 786 180 (98.99%) 33 118 637 (100%)

Identified bytes, M 282 336 (0.96%) 29 093 558 (99.03%) 29 375 895 (100%)

YOON ET AL. 9
hosts; therefore, it can be concluded that they do not function
as signatures that represent specific applications.

We conducted a correlation analysis between signature
LDs and several major statistical metrics using Pearson corre-
lation analysis, which is shown in Equation 6:

γ ¼ ∑ xyð Þ
ffiffiffiffiffiffiffiffiffi
∑x2

p ffiffiffiffiffiffiffiffiffi
∑y2

p : (6)

Table 5 indicates that all the statistical metrics that tested
positively are correlated with signature LDs. The statistical
metrics of identified traffic, such as FC, PC, BC, and CPC,
are correlated with signature LD. In particular, CPC is highly
correlated with the signature LD, with a correlation coeffi-
cient of 0.684. In order for the maintenance function to be
effective at managing signatures, it is necessary that the func-
tion reflects the correlation coefficient.

We defined the maintenance elements to be incorporated
in our maintenance function on the basis of the HS character-
istics, as shown in the experiments described in the previous
paragraphs. Specifically, we defined the terms CPC, FC, and
BC as maintenance elements to be included in our mainte-
nance function. In our function, hst(CPC) is defined as the
number of clients from a given traffic identified by an HS

TABLE 5 Correlation coefficients of signature metrics and life duration

Feature Correlation Coefficient

Flow count (FC) 0.027

Packet count (PC) 0.005

Byte count (BC) 0.007

Counter peers count (CPC) 0.684

10 YOON ET AL.
(hs) at time t. Accordingly, hst(FC) and hst(BC) refer to
the number of traffic flows and bytes identified by an
HS (hs) at time t, respectively. The maintenance function,
which calculates the weight of each signature, is shown in
Equations 7 and 8:

Mproposed tð Þ hsð Þ ¼ Mt hsð Þ
þMproposed t−1ð Þ hsð Þ− current‐time−hs LTð Þð Þ;

(7)

Mt hsð Þ ¼ α ⋅ hst CPCð Þ þ β ⋅ hst FCð Þ þ γ ⋅ hst BCð Þ: (8)

The proposed maintenance function recalculates the
weight of each signature (hs) at specified time intervals (ϵ).
Rather than using cumulative values, each of the maintenance
elements (CPC, FC, and BC) is measured at each mainte-
nance interval to appropriately adapt to changes in the net-
work environments. The calculation of the maintenance
elements is done in the signature feedback module in
Figure 2. Moreover, the calculation of the signature weight
based on the maintenance elements and the decision for
removing it from the signature repository is conducted in
the signature maintenance module in Figure 2.

If a signature does not identify any traffic between main-
tenance intervals, its weighted value will be decreased. The
function subtracts a certain amount (current time − hs(LT))
to avoid overloading the signature repository. Because the
hs(LT) indicates the last time used to identify traffic, the
value, current time − hs(LT) in Equation 7, will be increased
when the signature does not identify any more traffic. Signa-
tures with a positive weighted value are retained in the repos-
itory. If a signature does not identify traffic for a span of
multiple intervals, its weighted value will be decreased by a
larger amount at each subsequent maintenance interval. Sig-
natures with a weighted value under the threshold value (0)
are removed from the signature repository by the signature
maintenance module. Each maintenance element with the
function can control its reflection rate by adjustable constant
values (α, β, and γ). This gives network managers the option
of altering these values to optimize the function to fit to their
network environments.
5 | EXPERIMENT AND RESULTS

We conducted a number of experiments using 1 month of
campus network traffic (KU‐Cam‐01 as listed in Table 2) to
evaluate the feasibility of our proposed maintenance function.
Because of limitation of physical environment, we could not
deploy all methods together in our real operational network.
Thus, we collected traffic trace from campus network
for 1 month and saved it. The stored traffic trace is divided
by a 1‐minute file. Consequently, our system processes
60 × 24 × 31 files as input. To analyze the performance of
the function, the test was conducted under the assumption
that all the extracted signatures could be named at the signa-
ture naming module of the proposed identification system
illustrated in Figure 2. In addition, the identification part pre-
ceded the signature creation part because we targeted the
same training and testing networks. The maintenance part
was conducted after the creation process. Overall, the identi-
fication part, the creation part, and the maintenance part
were repeatedly performed at 1‐minute intervals. We also
included 2 other methods for maintaining signatures that used
the HS‐based identification to highlight the effectiveness of
our proposed maintenance function. The first method
included for comparison is the simple accumulation method,
which retains all extracted signatures without deletion. As
a result, the number of signatures continuously increases,
and through this, the accumulation method offers maximum
expectation performance of completeness. The secondmethod
used for comparison is the timeout‐based method.12 This
approach deletes signatures that have not identified traffic for
a given period and that exceed a threshold time. Equation 9
shows theweightedmeasurement formula for signatures under
the timeout‐based method. The constant value (δ) means the
maximum time to remain in the signature repository:

Mtimeout hsð Þ ¼ δ− current time−hs LTð Þð Þ: (9)

To perform an objective evaluation of our proposed
method, we used the average number of signatures, complete-
ness, the average LD of signatures, and the average execution
time as evaluation metrics. In aspect of accuracy evaluation,
we checked that there was no decreasing under all methods
in our previous works.8,9 Thus, we only focused on the previ-
ously mentioned evaluation metrics:

Average number of signatures ¼ ∑n HSð Þ
t

; (10)

Completeness ¼ ∑Identified traffic
∑Total traffic

; (11)

Average LD ¼ ∑hs LDð Þ
n HSð Þ ; (12)

Average execution time ¼ ∑Execution time
t

: (13)

Table 6 lists all evaluation results from the tested mainte-
nance methods: the accumulation, the proposed, and the

TABLE 6 Experimental results

Maintenance Method Avg No. of Signatures, K

Completeness

Avg LD, min

Avg Execution Time, ms

Flow, % Byte, % 1‐core 4‐core

Accumulation method 13 190 70.35 89.33 508 1432 1433

Proposed method 911 67.14 89.11 471 46 24

Timeout method 980 66.76 88.21 130 19 18

Abbreviation: LD, life duration.

YOON ET AL. 11
timeout‐based method. We conduct this test several times to
find optimal constant values (α, β, γ, and δ). After several
tries, we set α, β, and γ as 161 280 (60 × 24 × 7 × 4 × 4)
and δ as 1440 (60 × 24). The constant value applied to the
proposed method was larger than that of the timeout‐based
method but resulted in similar completeness levels. The rea-
son behind the discrepancy in the constant value is that the
weight decrement amount performed at each maintenance
interval is larger in the proposed method (see Equation 7).
The accumulation method showed the best completeness of
the 3 methods analyzed, and it resulted in the highest number
of signatures. The average LD of the proposed method was
longer than the timeout‐based method, which means that sig-
natures created in the proposed method were able to identify
traffic for a longer period than the timeout‐based approach.
On the basis of the overall results, the proposed and the
timeout‐based methods demonstrated similar levels of com-
pleteness although they both retained relatively small number
of signatures. Furthermore, the average LD for the proposed
method was 3 times longer than the timeout‐based method.
Lastly, the average execution time of proposed method is lon-
ger than timeout‐based method because of the complexity of
the maintenance function, Equation 8, with 1‐core central
processing unit (CPU). However, we could decrease the exe-
cution time closing to that of the timeout‐based method by
parallel computation with 4‐core CPUs. Thus, we believe that
the execution time of proposed method is still able to operate
in real time as the timeout‐based method. This particular case
demonstrates significantly the improved performance of the
proposed method, and it is analyzed in further detail.

The proposed method retained a lower number of signa-
tures throughout most of the test periods compared to the
FIGURE 7 Number of signatures over time
accumulation and timeout‐based method. Figure 7 illustrates
the change in the number of signatures stored in the signature
repository during the test period by each method. The
number of signatures retained by the accumulation method
increased dramatically and continuously. Both the proposed
and the timeout methods demonstrated fluctuating values in
accordance with network traffic but remained well below
the levels attained by the accumulation method. On average,
our proposed method retained approximately 6% signatures
compared to accumulation method. Because the change of
signature reflects memory overhead, we can assure that the
proposed method is more effective in aspect of memory
use. Concerning the number of signature insertion and dele-
tion in the signature repository during 1 minute of mainte-
nance interval, the proposed method gave 200 on average,
whereas the timeout‐based method gave 1000 on average.
The proposed method showed one‐fifth less overhead than
the timeout‐based method. However, this number is negligi-
ble comparing to the total number of signatures in repository,
which is approximately 950 K on average.

The proposed method showed similar performance (byte
completeness) levels compared to the other methods but used
approximately 15 times less number of signatures. Figure 8
illustrates the flow and byte completeness of each day of
the test period for all 3 methods. Flow unit completeness
fluctuated mainly from 60% and 75% throughout the 30‐day
test periods. Weekday traffic was more complex and higher
in volume than weekend traffic because of the nature of the
campus network. As a result, the figures from the weekend
showed lower levels of completeness. This is because week-
end traffic was much lighter and came from fewer hosts.
The proposed method demonstrated higher completeness

FIGURE 8 Flow and byte completeness over time

FIGURE 10 Average life duration (LD) over time

12 YOON ET AL.
than the timeout‐based method for most test periods. As
reflected in Figure 8, the byte unit values fluctuated between
80% and 95%. The reason why byte completeness was higher
than flow completeness is due to the properties of the signa-
tures; most of the heavy flows are identified by the collected
signatures. Considering the entire test metrics, the proposed
method closely approached the completeness levels of the
accumulation method, which is the maximum value we can
expect, even outperformed the timeout‐based method of com-
pleteness throughout the testing period.

Examining this case further, the proposed method was
able to identify more traffic by flow and BCs using a smaller
number of signatures. Figure 9 shows the cumulative FCs
and BCs of the top 1000 signatures from the proposed and
timeout‐based methods. We selected the top 1000 signatures
after sorting the signatures by descending order of identified
FCs and BCs at the end of test. The x‐axis measures the num-
ber of signatures, and the y‐axis measures the cumulative FC
and BC values. The signatures managed by the proposed
method identified approximately 23 M flows or 2800 GB,
whereas the signatures managed by the timeout‐based
method identified approximately 19 M flows or 600 GB. This
shows that the proposed method was better retaining signa-
tures that identified more traffic (especially heavy flows) than
the timeout‐based method.

Considering the average signature LD during the test
periods, the proposed method resulted in higher average
durations overall as shown in Figure 10; the average signature
LD is 4 times longer than those of the timeout‐based method.
A longer LD indicates that the signatures stored in the
FIGURE 9 Cumulative flow count (FC) and byte count (BC) of the top 1000 s
repository were used in traffic identification for a longer
period. This means that the proposed method was capable
of maintaining and identifying signatures for a long time. In
other words, the proposed method has a high possibility
to identify intermittent traffic generated by rarely used appli-
cations. Figure 10 shows how the average signature LD
changed at each maintenance interval during the test periods.
In the case of the timeout‐based method, LD averages
remained low because this approach deleted signatures from
the repository periodically.

Test results show that the proposed method was capable
of retaining signatures that identify traffic for a long time.
This means that the proposed maintenance method was
able to identify more traffic in the future. Figure 11 shows
the cumulative LDs of the top 10 000 signatures from the
proposed and the timeout‐based methods. We compiled the
ignatures

FIGURE 11 Cumulative life duration (LD) of the top 10 000 signatures

YOON ET AL. 13
top 10 000 signatures after sorting them in descending
order at the end of the test periods. The total cumulative
LD of signatures managed by the proposed method was
400 000 000 minutes. The average LD of 1 signature was
40 000 minutes (approximately 28 days), indicating that most
of the signatures were able to identify traffic during the entire
test period. By contrast, the average LD of 1 signature man-
aged by the timeout‐based method was only approximately
13 000 minutes (approximately 9 days).

The longer LD also reduces the signature naming over-
head, which is out of scope in this article. In case that an
HS is added and removed frequently, the signature naming
part should be executed to determine the application name
of the signature whenever it is added in the signature reposi-
tory. This could be a significant overhead when we are using
payload matching to determine the application name. Also,
the short LD makes it delayed to control traffic, such as
FIGURE 12 Comparison of execution times. CPU indicates central processing u

TABLE 7 Comparison of execution time

Maintenance Method Avg No. of Signatures, K

Avg Ex

Ident

Accumulation method 13 190 1432

Proposed method 911 17

Timeout method 980 18

Ident, identification; Maint, maintenance.
packet drop, bandwidth shape, and path change, because it
takes time to determine the application name.

The proposed method can operate in a real‐time environ-
ment. Figure 12 shows a comparison of the execution times
of the 3 methods during the 30 days of test period. The
execution time was measured at the identification and mainte-
nance part of our identification system at every 1‐minute
maintenance interval. The maintenance part includes all the
overhead except the identification overhead, such as the
calculation of maintenance equations, the deletions of old
signatures, and the insertion of new signatures. Among them,
the calculation of the maintenance function occupies most of
the maintenance overhead.

For accurate measurement, we checked the total user and
system times of target processes. Thus, the execution time
can reflect the total CPU use of the methods. The execution
time was proportional to the traffic volume and the number
of signatures. Accordingly, the execution time for the accu-
mulation method, which had the highest number of signa-
tures, increased continuously. However, the execution time
for the proposed and timeout‐based methods maintained a
steady level throughout the test period.

We measured the execution time of the methods on 2
different CPU platforms: 1‐core and 4‐core CPUs. For the
4‐core CPU platform, we modified the maintenance part of
each system with 4 threads executing the maintenance func-
tion concurrently. The accumulated method that does not
have any maintenance part gave the same execution time, as
shown in Figure 12 and Table 7. The timeout‐based method
that has a very simple equation for maintenance gave very lit-
tle improvement in total execution time, as shown in Table 7.
nit

ec Time with 1‐core Avg Exec Time with 4‐core

Maint Total Ident Maint Total

0 1432 1433 0 1433

29 46 17 7 24

1 19 18 0 18

14 YOON ET AL.
However, the proposed method gave a high improvement in
execution time closing to that of the timeout‐based method.
We could dramatically reduce it by parallel execution of
maintenance functions: Equations 7 and 8. We did not apply
parallel execution on the identification part, because it is
mainly dependent on the packet capture rate and network
speed in real operation network. However, the parallel execu-
tion of maintenance part is possible because the maintenance
function is periodically executed at the end of each 1 minute.

Although the proposed method required more execution
time than the timeout‐based method because of the complex-
ity of the maintenance function, this can be reduced by con-
current processing of the maintenance function. Therefore,
the proposed method was still able to operate in real time.

The cumulative results from the 1‐month test periods
showed that the proposed method offered more completeness
with fewer signatures when compared to the timeout‐based
method. In addition, the proposed method further outper-
formed the timeout‐based method by exhibiting a longer aver-
age signature LD. The signatures managed by the proposed
method were also able to identify more traffic in the flow
and byte units for a long period. In addition, the short execu-
tion time of the method allowed it to run in real time. On the
basis of all the test results, the proposed maintenance method
outperformed both the accumulation method and the timeout‐
based method.
6 | CONCLUSION AND FUTURE WORK

The rapid growth in the number of Internet users worldwide
and the popularization of multimedia applications in recent
years has emphasized the importance of application‐level
traffic identification for efficient network management.
Various methods for identifying the Internet traffic have been
proposed, although it is challenging to apply them to real
operational networks because of issues such as signature
creation, computational complexity, privacy concerns, and
real‐time control. To overcome these limitations, we pro-
posed an HS‐based traffic identification method. Our method
identifies traffic using HSs in 3 main part: signature creation,
traffic identification, and signature management. To extract
HSs efficiently, we defined a bunch as a set of flows with
the same server.

Moreover, we proposed an efficient HS maintenance
method that retained only the most significant signatures in
a signature repository to promote system optimization. The
proposed approach consists of several maintenance elements
that were defined after analyzing various statistical metrics of
HSs. To prove the feasibility of our proposed method, we
used our system in a campus network during the course of
1 month. We defined various evaluation metrics and com-
pared our method with an accumulation and timeout‐based
method. The evaluation results showed that our proposed
method demonstrated similar performance (completeness)
to the accumulation method but required 1/25th the amount
of signatures. When compared to the timeout‐based method,
our approach provided higher completeness and used fewer
signatures. Furthermore, the signatures managed by our pro-
posed maintenance method were able to accurately identify
more traffic by flow and BC for the long term when com-
pared to the timeout‐based method. Thus, we were able to
prove that our proposed method is more effective than the
timeout‐based method.

For future work, we plan to extend the empirical experi-
ment to validate the proposed maintenance method in various
networks and apply the identification system to additional
real training and testing networks. In addition, we plan to
analyze a method that can automatically control the constant
values (α, β, and γ) in the maintenance function to reflect var-
ious target network environments.

REFERENCES

1. Callado A, Kamienski C, Szabo G, et al. A survey on Internet traffic identi-
fication. IEEE Commun Surveys Tuts. 2009;11(3):37–52. doi: 10.1109/
SURV.2009.090304

2. Nguyen TT, Armitage G. A survey of techniques for Internet traffic classifica-
tion using machine learning. IEEE Commun Surveys Tuts. 2008;10(4):56–76.
doi: 10.1109/SURV.2008.080406

3. Hyunchul K, KC Claffy, M Fomenkov, D Barman, M Faloutsos, KY Lee.
Internet traffic classification demystified: myths, caveats, and the best prac-
tices. In: Proceedings of the 2008 ACM CoNEXT Conference, Madrid,
Spain, Dec. 2008; 1–12. doi: 10.1145/1544012.1544023

4. Dainotti A, Pescap'e A, Claffy KC. Issues and future directions in traffic clas-
sification. IEEE Netw. 2012;26(1):35–40. doi: 10.1109/MNET.2012.6135854

5. Dainotti A, de Donato W, Pescapé A. TIE: a community‐oriented traffic clas-
sification platform. In: Proceedings of Traffic Monitoring and Analysis (TMA
2009). Berlin, Heidelberg;2009:64–74. LNCS 5537. doi: 10.1007/978‐3‐
642‐01645‐5_8

6. Li W, Canini M, Moore AW, Bolla R. Efficient application identification and
the temporal and spatial stability of classification schema. Computer Netw.
2009;53:790–809. doi: 10.1016/j.comnet.2008.11.016

7. Aceto G, Dainotti A, de Donato W, Pescap'e A. PortLoad: taking the best of
two worlds in traffic classification. In: Proceedings of INFOCOM IEEE
Conference on Computer Communications Workshops, San Diego, CA,
2010; 1–5. doi: 10.1109/INFCOMW.2010.5466645

8. Yoon S‐H, Park J‐W, O Young‐Seok, Park J‐S, Kim M‐S. Internet application
traffic classification using fixed IP‐port. In: Proceedings of the Asia‐Pacific
Network Operations and Maintenance Symposium (APNOMS 2009), LNCS
5787, Jeju, Korea, Sep. 2009; 21–30. doi: 10.1007/978-3-642-04492-2_3

9. Yoon S‐H, Park J‐S, Kim M‐S. Signature maintenance for Internet application
traffic identification using header signatures. In: Proceedings of the 4th IEEE/
IFIP International Workshop of the Maintenance of the Future Internet
(ManFI 2012), Hwaii, USA, Apr. 2012; 1151–1158. doi: 10.1109/
NOMS.2012.6212042

10. Yoon S‐H, Kim M‐S. An efficient method to maintain the header signatures
for Internet traffic identification. In Network Operations and Management
Symposium (APNOMS), 2013 15th Asia‐Pacific, 2013; 1–3.

11. Moore A, Papagiannaki K. Toward the accurate identification of network
applications. In: Proceedings of Passive and Active Network Measurement
(PAM 2005), LNCS 3431, Boston, USA, 2005; 55–68. doi: 10.1007/978-3-
540-31966-5_4

12. Baldi M, Baldini A, Cascarano N, Risso F. Service‐based traffic classifi-
cation: principles and validation. In: Proceedings of the IEEE 2009
Sarnoff Symposium, Princeton, NJ, USA, Mar. 2009; 1–6. doi: 10.1109/
SARNOF.2009.4850330

http://doi.org/10.1109/SURV.2009.090304
http://doi.org/10.1109/SURV.2009.090304
http://doi.org/10.1109/SURV.2008.080406
http://doi.org/10.1145/1544012.1544023
http://doi.org/10.1109/MNET.2012.6135854
http://doi.org/10.1016/j.comnet.2008.11.016
http://doi.org/10.1109/INFCOMW.2010.5466645
http://doi.org/10.1007/978-3-642-04492-2_3
http://doi.org/10.1109/NOMS.2012.6212042
http://doi.org/10.1109/NOMS.2012.6212042
http://doi.org/10.1007/978-3-540-31966-5_4
http://doi.org/10.1007/978-3-540-31966-5_4
http://doi.org/10.1109/SARNOF.2009.4850330
http://doi.org/10.1109/SARNOF.2009.4850330

YOON ET AL. 15
13. Karagiannis T, Broido A, Faloutsos M. Transport layer identification of P2P
traffic. In: Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement, 2004; 121–134. doi: 10.1145/1028788.1028804

14. Karagiannis T, Papagiannaki K, Faloutsos M. Blinc: multilevel traffic classi-
fication in the dark. In: Proceedings of the Special Interest Group on Data
Communication conference (SIGCOMM 2005), Philadelphia, PA, USA,
August 2005; 229–240. doi: 10.1145/1090191.1080119

15. Risso F, Baldi M, Morandi O, Baldini A, Monclus P. Lightweight, payload‐
based traffic classification: an experimental evaluation. In: Proceedings
of International Conference on Communications (ICC 2008), May 2008;
5869–5875. doi: 10.1109/ICC.2008.1097

16. Park J‐S, Yoon S‐H, Kim M‐S. Software architecture for a lightweight
payload signature–based traffic classification system. In: Proceedings of
Traffic Monitoring and Analysis (TMA 2011), LNCS 6613, Vienna, Austria,
Apr. 2011; 136–149. doi: 10.1007/978-3-642-20305-3_12

17. Park B, Won YJ, Hong JW. Toward fine‐grained traffic classification.
IEEE Commun Mag. 2011;49(7):104–111. doi: 10.1109/MCOM.2011.
5936162

18. Khalife J, Verdejo J, Hajjar A. Performance of OpenDPI in identi-
fying sampled network traffic. J Netw. 2013;8:71–81. doi: 10.4304/
jnw.8.1.71-81

19. Yeganeh S, Eftekhar M, Ganjali Y, Keralapura R, Nucci A. CUTE: traffic
classification using terms. In: Proceedings of 21st International Conference
on Computer Communications and Networks (ICCCN 2012), Munich,
2012; 1–9. doi: 10.1109/ICCCN.2012.6289207

20. Finamore A, Mellia M, Meo M, Rossi D. KISS: stochastic packet inspection
classifier for UDP traffic. IEEE/ACM Trans Netw. 2010;18(5):1505–1515.
doi: 10.1109/TNET.2010.2044046

21. Kumar S, Nandi S, Biswas S. Peer‐to‐peer network classification using
nu‐maximal margin spherical structured multiclass support vector machine.
In: Proceedings of Data Engineering and Management, LNCS 6411, 2012;
80–84. doi: 10.1007/978-3-642-27872-3_12

22. Yin C, Li S, Li Q. Network traffic classification via hmm under the guidance
of syntactic structure. Computer Netw. 2012;56(6):1814–1825. doi: 10.1016/
j.comnet.2012.01.021

23. Tan J, Chen X, Du M. An Internet traffic identification approach based on GA
and PSO‐SVM. J Comput. 2012;7(1):19–29. doi: 10.4304/jcp.7.1.19-29

24. Dehghani F, Movahhedinia N, Khayyambashi MR, Kianian S. Real‐time traf-
fic classification based on statistical payload content features. In: Proceedings
of Second International Workshop on Intelligent Systems and Applications
(ISA), 2010; 1–4. doi: 10.1109/IWISA.2010.5473467

25. Huang N‐F, Jai G‐Y, Chao H‐C, Tzang Y‐J, Chang H‐Y. Application traffic
classification at the early stage by characterizing application rounds. Inform
Sci. 2013;232:130–142. doi: 10.1016/j.ins.2012.12.039

26. Hu Y, Chiu D‐M, Lui JCS. Profiling and identification of P2P traffic. Com-
puter Netw. 2009;53(6):849–863. doi: 10.1016/j.comnet.2008.11.005

27. Cheng WQ, Gong J, Ding W. Identifying BT‐like P2P traffic by the dis-
creteness of remote hosts. 32nd Conference on local. Computer Netw.
2007;237–238. doi: 10.1109/LCN.2007.69

28. Ullah I, Doyen G, Bonnet G, Gaiiti D. A survey of synthesis of user behaviour
measurements in P2P streaming systems. IEEE Commun Surveys Tuts.
2011;14:734–749. doi: 10.1109/SURV.2011.082611.00134

29. Gringoli F, Salgarelli L, Dusi M, Cascarano N, Risso F, Claffy K. Gt: picking
up the truth from the ground for Internet traffic. SIGCOMM Comput Commun
Rev. 2009;39(5):12–18. doi: 10.1145/1629607.1629610

How to cite this article: Yoon, S.‐H., Park, J.‐S.,
Sija, B. D., Choi, M.‐J., and Kim, M.‐S. (2016),
Header signature maintenance for Internet traffic iden-
tification, Int J Network Mgmt, doi: 10.1002/nem.1959
AUTHOR BIOGRAPHIES

Sung‐Ho Yoon (sungho_yoon@korea.ac.kr, sungho.sky.
yoon@lge.com) is a senior research engineer in LG Electron-
ics. He received the B.S., M.S., and PhD degree in computer
science from Korea University, Korea, in 2009, 2011, and
2015, respectively. He joined LG Electronics in 2016. His
research interests include Internet traffic monitoring and
analysis, Internet security, and vehicle security.

Jun‐Sang Park (jungsang_park@korea.ac.kr, jungsang.
park@lge.com) a senior research engineer in LG Electronics.
He received the B.S., M.S., and Ph.D. degree in computer
science from Korea University, Korea, in 2008, 2010, and
2015, respectively. He joined LG Electronics in 2015. His
research interests include Internet traffic classification and
V2X security.

Baraka D. Sija (sijabarakajia25@korea.ac.kr) is an M.S.
degree student in the Department of Computer and Informa-
tion Science, Korea University, Korea. He received his B.S.
degree in Information and Communication System from
Semyung University, Korea, in 2016. His research interests
include Internet traffic monitoring and analysis, service and
network management, and Internet security.

Mi‐Jung Choi (mjchoi@kangwon.ac.kr) is an associate pro-
fessor in the Department of Computer Science, Kangwon
National University, Korea. She received her B.S. degree in
CS from Ewha Womans University in 1998, and M.S. and
Ph.D. degrees from the Dept. of CSE at POSTECH in 2000
and 2004, respectively. She was a Postdoctoral fellow at
INRIA, France from October 2004 to September 2005 and
at School of Computer Science, University of Waterloo, Can-
ada, from November 2005 to October 2006. Her research
interests include traffic measurement, M2M network and ser-
vice management, and mobile abnormality detection and
prediction.

Myung‐Sup Kim (tmskim@korea.ac.kr) is a professor in the
Department of Computer and Information Science, Korea
University, Korea. He received his B.S., M.S., and PhD
degree in Computer Science and Engineering from
POSTECH, Korea, in 1998, 2000, and 2004, respectively.
From September 2004 to August 2006 he was a postdoctoral
fellow in the Department of Electrical and Computer Engi-
neering, University of Toronto, Canada. He joined Korea
University in September 2006. His research interests include
Internet traffic monitoring and analysis, service and network
management, and Internet security.

http://doi.org/10.1145/1028788.1028804
http://doi.org/10.1145/1090191.1080119
http://doi.org/10.1109/ICC.2008.1097
http://doi.org/10.1007/978-3-642-20305-3_12
http://doi.org/10.1109/MCOM.2011.5936162
http://doi.org/10.1109/MCOM.2011.5936162
http://doi.org/10.4304/jnw.8.1.71-81
http://doi.org/10.4304/jnw.8.1.71-81
http://doi.org/10.1109/ICCCN.2012.6289207
http://doi.org/10.1109/TNET.2010.2044046
http://doi.org/10.1007/978-3-642-27872-3_12
http://doi.org/10.1016/j.comnet.2012.01.021
http://doi.org/10.1016/j.comnet.2012.01.021
http://doi.org/10.4304/jcp.7.1.19-29
http://doi.org/10.1109/IWISA.2010.5473467
http://doi.org/10.1016/j.ins.2012.12.039
http://doi.org/10.1016/j.comnet.2008.11.005
http://doi.org/10.1109/LCN.2007.69
http://doi.org/10.1109/SURV.2011.082611.00134
http://doi.org/10.1145/1629607.1629610
http://doi.org/10.1002/nem.1959
mailto:sungho_yoon@korea.ac.kr
mailto:sungho.sky.yoon@lge.com
mailto:sungho.sky.yoon@lge.com
mailto:jungsang_park@korea.ac.kr
mailto:jungsang.park@lge.com
mailto:jungsang.park@lge.com
mailto:sijabarakajia25@korea.ac.kr
mailto:mjchoi@kangwon.ac.kr
mailto:tmskim@korea.ac.kr

