IEICE

TRANSACTIONS

on Information and Systems

VOL. E98-D NO. 11
NOVEMBER 2015

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.

The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.

Distribution by anyone other than the author(s) is prohibited.

A PUBLICATION OF THE INFORMATION AND SYSTEMS SOCIETY

-. The Institute of Electronics, Information and Communication Engineers
l Kikai-Shinko-Kaikan Bldg., 5-8, Shibakoen 3 chome, Minato-ku, TOKYO, 105-0011 JAPAN

1994

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.11 NOVEMBER 2015

[LETTER

HTTP Traffic Classification Based on Hierarchical Signature

Structure

Sung-Ho YOON', Jun-Sang PARK', Ji-Hyeok CHOI''", Youngjoon WON'"'", Nonmembers,

SUMMARY Considering diversified HTTP types, the performance bot-
tleneck of signature-based classification must be resolved. We define a sig-
nature model classifying the traffic in multiple dimensions and suggest a
hierarchical signature structure to remove signature redundancy and min-
imize search space. Our experiments on campus traffic demonstrated 1.8
times faster processing speed than the Aho-Corasick matching algorithm in
Snort.

key words: HTTP traffic classification, payload signature, signature hier-
archy, hash

1. Introduction

HTTP is a communication protocol for web browsing, P2P,
multimedia, and many others. Most enterprise networks of-
fer blocking at the application protocol level through a fire-
wall; however, HTTP is allowed without intervention. The
service providers offer their services that can communicate
over HTTP. Under this circumstance, the classification tax-
onomy needs multi-dimensional criteria (e.g., application,
function), not the L7 protocol criteria[1]. For example, it
is not obvious how to classify the HTTP traffic from the
YouTube service. The L7 protocol in use is HTTP; however,
the service name is YouTube. To classify the HTTP traffic
in more detail and in a different manners, we need to define
classification criteria that address the HTTP features and the
signature model. For better accuracy and classification com-
pleteness, a payload signature-based classification method
is appropriate. However, the performance bottleneck of the
signature-based classification must first be resolved regard-
ing HTTP types and heavy traffic services.

Garcia-Dorado ef al. [2] reported that HTTP traffic ac-
counts for over 30% of ISP and campus network. M. Baldi
et al. [3] suggested a method grouping traffic based on server
IP with seven major services offered via HTTP. However,
these studies have an accuracy issue because they could
not provide subdivided services. For accuracy reason, the
packet payload must be examined. Snort [4], an open source
intrusion detection system, analyses payload signature. 70%
of the whole processing time dedicates to the signature pat-

Manuscript received September 24, 2014.
Manuscript revised July 22, 2015.
Manuscript publicized August 19, 2015.
"The authors are with Korea Univ., Korea.
""The author is with LG Electronics Inc., Korea.
" The author is with ETRI, Korea.
177 The author is with Hanyang Univ., Korea.
a) E-mail: tmskim@korea.ac.kr (Corresponding author)
DOI: 10.1587/transinf.2014EDL8191

and Myung-Sup KIM'®, Member

tern matching. Its performance relies on time complexity
of matching algorithm and search space. Kawano et al. [5]
suggest that hash-based matching from the malignant URL
detection field is an appropriate method to minimize signa-
ture search space. To accomplish this, the matching process
is performed only on signatures that coincide with a given
hash-key value.

In this paper, we define a payload-signature model that
can classify HTTP traffic into multi-dimensional classes. It
stratifies the HTTP fields to determine the suggested cri-
teria. For performance enhancement, we minimize signa-
ture redundancy and search space by establishing a signa-
ture tree and hash-based matching. We evaluate our pro-
posal using campus traffic and compare to the Aho-Corasick
(AC) string-matching algorithm [6] in Snort. Our proposal
demonstrates 1.8 times faster in processing speed.

The remainder of this paper is organized as follows.
Section 2 explains our HTTP signature model and classifica-
tion method. Section 3 the validation on the campus traffic.
Finally, Sect. 4 concludes this paper.

2. HTTP Traffic Classification

In this section, we describe a method for multidimensional
and rapid classification of HTTP traffic.

2.1 HTTP Signature Model

We apply flow-based traffic classification. A flow can be
seen from the viewpoint of a service, application, and func-
tion. For example, assume that a client watches a YouTube
video using Internet Explorer. If the traffic is divided into
the above three criteria: service, application, and function,
then they correspond to YouTube, Internet Explorer, and
video streaming, respectively. Table 1 defines the multi-
dimensional classification criteria. It can expand users’ un-
derstanding of traffic.

We define an HTTP signature model based on Table 1
criteria. We first extract the information that can distinguish
each criterion, namely User-Agent, Host, and URI fields

Table 1 Classification criteria.
Criteria Definition
Service All forms of IT services are to offer content to user
Application | Application program used by clients for service
Function Purpose of the traffic by user behavior

Copyright © 2015 The Institute of Electronics, Information and Communication Engineers

LETTER

(a) Request packet
GET /checkupdate.php?cl=&v=103246420 HTTP/1.1

Host : update.utorrent.com:7070

User-Agent : BTWebClient/3130(27220)

(b) Corresponding HTTP signature model

<signature code = “1">

<msg = “utorrent — BTWebClient — update™>

<payload = User-Agent : BTWebClient, Domain : utorrent, Host : update, UR
I: checkupdate>

Fig.1 HTTP request packet and its corresponding signature model.

Table2 HTTP signature field.
Field Extraction Method
User-Agent From thg end of thg User-Agent keyword to before ‘/°, \n’
(version information is excluded from signature)
Domain Defines keywords thaF are placed in front of Level 1 Domains
such as .com as domain (except IP and port number)
Defines keywords that are placed immediately ahead of
Host .
Domain as Host
URI Dcﬁpcs from after the Mcthod field to Abcforc the HTTP
version as URI (extracted directly by administrator)

from the HTTP request packet in Fig. 1 (a). The URI field
consists of the attributes and their values, representing func-
tion, for the requested data. From the keyword ‘checkup-
date’ in the URI, we can determine that this is an update
function. The host field can be divided into domain (utor-
rent.com) and host names (update). The domain is used as
a signature to identify the service name; the host indicates
the function by its domain. The user-agent field specifies
the application program. The program appears to be BT We-
bClient, an uTorrent service. Figure 1 (b) represents our sig-
nature format consisting of four fields. The signature code
is an identifier of the signature and msg specifies service,
application, and function. The payload specifies the signa-
tures corresponding to user-agent, domain, host, and URIL. If
it contains the three classification criteria, it is registered as
a signature. Base on the long-term analysis, we assure that
normal HTTP traffic contains the four fields indicating pro-
posed criteria. Thus, the proposed HTTP signature model
covers HTTP traffic except one of abnormal. Table 2 shows
the fields for signature extraction.

2.2 Signature Tree

We construct a signature tree to remove any redundancy
in the HTTP signatures. Keywords, such as Mozilla and
YouTube, commonly appeared at multiple locations. This is
denoted as signature redundancy. Because there are many
types of HTTP-based services that require numerous signa-
ture instances, signature redundancy slows down processing
speed. The tree can minimize the signature search space of
the classification system because it searches only the child.
Figure 2 presents a tree structure of seven signatures.

The tree consists of four levels, called 1-level (user-
agent), 2-level (domain), 3-level (host), and 4-level (URI).
Each level is defined based on the inclusion relationship
among the signatures. With respect to Table 2, we state
that level is formed starting from the user-agent, which has
a small number of unique signatures for domain, host, and

1995

Mozilla 1-level

[youtube | msn [google | 2-level

[static | 3-evel

login 4-level

‘www‘ ‘ null ‘

[_upload | | m‘ap |

video login origin img view

Fig.2 HTTP signature tree.

Sig. 1 - “User-Agent: GoogleMa
Sig. 2 — “User-Agent: G

Sig. 3 — “Domain:
Sig. 4 — “User-Agen

Sig. 5 — “User-Agent: Skype, Domain: sky]
Sig. 6 — “User-Agent: GMM, Domai
Sig. 7 - “User-Agent: GMM, Domai

sle, Host: map, uri: view”
sle, Host: map, uri: update™

1la, Domain: you

tube, uri : musicvideo™

gle, Host: picasa, uri: view”
: google, uri: update”

U.A : GoogleMap|U.A : U.A:Mozilla |U.A: Skype UA: GMM
D :google D :google D :youtube |D :skype D :google
HK:119 HK: 120 HK: 121 HK: 122 HK:123

H : map H : map H : picasa

HK: 15 HK: 20

e

Sig. 1 Sig.2 Sig. 3 Sig. 4 Sig. 5 Sig. 6 Sig.7

Fig.3 Signature tree based on hash key.

URI in order. Upon completion of the HTTP flow, signa-
ture matching is performed on the flow progressively from
1-level to 4-level in the tree. It finishes when a leaf node is
encountered.

The signature tree can divide traffic into service, ap-
plication, and function. This tree can solve the signature-
overlapping problem because the overlapped strings per
level create a single node. It can build a single-tree regard-
less of the number of signatures. The signature tree can clas-
sify traffic with a single search because the entire signatures
consist of a tree. We compose each level of the tree as a hash
table, consequently minimizing the signature search space.
The hash functions are the Executable and Linkable Format
(ELF) function and the Bob Jenkins (BJ) function [7], [8].
We create each hash using both functions, and use one with
better performance, determined by comparing key collisions
and processing speed.

2.3 Hash-Based Matching

Figure 3 shows an example of hash-based tree. It consists
of three levels. 1-level is obtained by combining user-agent
and domain. 2-level and 3-level consist of the host and URI,
respectively.

A difference from the signature tree is that the user-
agent and domain levels are aggregated into a single hash
node in order to increase the matching speed. The user-
agent and domain-level, indicating application and service,
can be a matching key because each field value is extracted
under the same policy in the process of signature extraction
and signature matching. Thus, it is more effective to match
into a single after applying previous levels together. The
host and URI field-identifying functions are signatures that
require the intervention of administrator. It is possible for
the signature field values and matching traffic to be differ-

1996

SHT : Service Level Hash Table

1:
2: HHT: Host Level Hash Table
3: ULgyp : Sub URI list of SHT node
4: ULyyy : Sub URI list of HHT node
5: F: Flows, TF: Termination Flag
S:
6: //if setsigCode()is called, it inspects a next flow
7: for F,-F, do
8: if sig = ServiceKeyMatch(F,, SHT)
9: if ServiceTextMatch(F,,, sig)
10: if sig. TF setSigCode(F,)
11: else return unknown
12:
13: if sig = HostKeyMatch(F,, HHT)
14: if HostTextMatch(F,, sig)
15: if sig. TF setSigCode(F,)
17: if URITextMatch(F,, ULy setSigCode(F,)
18: else
19: if URITextMatch(F,, ULgyy) setSigCode(F,)
20: else
21: if URITextMatch(F,, ULgyp) setSigCode(F,)
22: else return unknown
23: done

Fig.4 Hash-based matching algorithm

ent. For this reason, our model does not aggregate compose
the host and URI fields into a single level. Unlike other lev-
els, the URI level is composed of strings that are not a key
value. The URI field cannot be a matching key with the
URI field that exists in the HTTP traffic because it does not
use the entire field as signature. Rather, it defines necessary
parts according to administrator’s decision.

Figure 4 presents the pseudocode of matching hash tree
and flow. A single input flow starts the key matching from
the user-agent and domain (U-D) level. If the key matching
succeeds, it continues with text matching. If text matching
agrees, then it confirms the ending flag. Matching can be
closed from the U-D level if the ending flag is set. How-
ever, we examine at the host and URI levels, and its analysis
is performed with a signature of the U-D level if the ex-
amination fails. A host-level examination assigns priority
on key matching, in the same manner as the U-D level. If
the matching succeeds, it continues to text matching. If the
text matching succeeds, it verifies the ending flag and con-
tinues on URI level matching. If the ending flag is set at
the host-level and the URI matching fails, then the analysis
terminates at the host level. If the URI level matching suc-
ceeds, the analysis is done at the URI level. If there is no
host level, the matching starts at the URI level.

3. Evaluation

We collected one-day sample traffic of 3,000 hosts at the
campus network. The HTTP traffic took 25.8%, 42.2%, and
48.6% in flow, packet, and byte. Approximately 50% of the
total byte was HTTP traffic and this tends to increase. Fig-
ure 5 illustrates a distribution of HTTP signatures for classi-
fication. Using HTTP traffic, we generated 1,065 HTTP sig-
natures specified three criteria such as service, application,
and function. Because there is traffic having insufficient in-
formation to extract the three criteria, some signatures have
only one or two criteria. The venn diagram indicates num-
ber of signature having the same criteria set. For example,
three criteria are specified in 406 signatures, and only 562

IEICE TRANS. INF. & SYST., VOL.E98-D, NO.11 NOVEMBER 2015

Fig.5 HTTP signature distribution.

Table 3 Classification result on campus traffic.

Service App. Function Flow Packet Byte
. . 1,482K 52,470 K 43,172 M
Naver | Mozilla Browsing (37.2%) (26.3%) (25.8%)
. 649 K 43954 K 31,760 M
Naver Mozilla News (16.3%) (22'1%) (18.9%)
. 470K 19,134 K 16,540 M
Naver | Mozilla Ad (11.8%) (9.6%) (9.9%)
_] 158K | I11,163K 11319 M
Daum | Mozilla Browsing (3.9%) (5.6%) (6.8%)
. 69 K 13,435K 10,420 M
Daum Mozilla News (1.7%) (6.7%) (6.2%)
. 62K 6,458 K 5,523 M
Daum | Mozilla Ad (1.5%) (3.2%) (3.3%)
. . 40K 3415K 3,248 M
Google | Mozilla Browsing (1.1%) (1.7%) (1.9%)
. . 35K 2,224 K 2,222 M
Korea U | Mozilla Browsing (1.8%) (1.1%) (1.3%)
. . 32K 2,024 K 2,104 M
Korea U | Mozilla Mail (0.8%) (1.0%) (1.2%)
27K 1913 K 1,821 M
Nate | NateOn i (0.7%) (0.9%) (1.1%)

signatures have service and application criteria.

The analysis results showed that 1,065 signatures clas-
sified 66.2%, 74.7%, and 78.6% in flow, packet, and byte,
respectively. Its classification rate increased when more ser-
vice signatures were found. Table 3 presents the classified
results by the signatures with more than two criteria from
service, application, and function. The majority of those
could be divided into service and application criteria.

In the campus traffic, the most used service was
‘Naver’, a #1 portal service in Korea. From the service
point of view, we observe a heavy traffic from popular portal
sites such as Naver and Google. The identified functions are
‘browsing’, ‘news’, ‘ad’, and ‘mail’ as in order of popular-
ity. In-depth classification of HTTP traffic is possible using
our multidimensional criteria and signature tree.

To evaluate the impact of BJ and ELF, we compute the
average conflict as the ratio of total signature over total key.
The average conflict reflects the degree of change and signa-
ture is the only hash key value. If it is equal to 1, it indicates
that the signature responds as the only key value. If it is
greater than 1, it implies a key collision. Figure 6 compares
the average conflict values of BJ and ELF according to hash
size. BJ is relatively less influenced by the decrease of hash
size. If the hash size becomes large, both hash functions are
converging to 1. Thus, BJ shows a better performance and
it is our choice for hash function.

Figure 7 shows processing times for the BJ tree and
the AC algorithm. Processing time can be determined as

LETTER

14 -o—-BJ
s —=-ELF
g 13
S
% 12
2 11

1

0 210 P PT] o 4 25 26 o 21 2

Hash Size
Fig.6 Average conflict of hash size.
350
300 A
o . '/ \ —-AC
/\ / \ ——BJ

: VAN

123 456 7 8 910111213 141516 17 18 19 20 21 22 23 24
Traffic Data Set(hour)

Processing Time(sec)

Fig.7 Processing time: AC vs. BJ.

BJ
BAC

il

100 200 300 400 500 600 700 800 900 1000

Signature #

Processing Time(sec)
oo

Fig.8 Processing time according to the number of signatures.

the time required to extract the necessary fields from the
traffic, create a hash key, and match the fields with those
of the actual traffic. Both processing times show minimal
difference when the traffic volume is relatively small. Over
the entire dataset in Fig. 7, the difference was 4 sec, 126 sec,
and 52 sec for min, max, and average. In fact, our BJ tree
shows approximately 1.8 times faster than AC.

The processing speed of general-purpose traffic clas-
sification systems can be slow when the number of signa-
tures for matching increases. On the contrary, Fig. 8 shows
that BJ does not have significant performance degradation in
speed while AC in Snort slows down. Because BJ is based
on hash function, it works in constant processing time re-
gardless of the number of signature. In contrast, AC recon-
stitutes the signature as a finite set. The size of finite set
increases according to the number of signature. Therefore,
the processing time proportionally increases with the num-
ber of signature.

1997

4. Conclusions

We suggested multidimensional traffic-classification criteria
considering various HTTP classification requirements. We
defined three classification criteria and signature tree to re-
solve signature redundancy and minimize its search space.
We used hash functions to stabilize the process speed re-
gardless of the number of signatures. Our experiment on the
campus traffic showed 1.8 times faster in process speed than
the conventional AC algorithm in Snort. For future work, we
plan to deal with the encryption traffic for HTTP services.

Acknowledgments

This research was supported by the Basic Science Re-
search Program through the National Research Founda-
tion of Korea (NRF) funded by the Ministry of Ed-
ucation, Science and Technology (2014R1A1A2057301,
2015R1D1A3A01018057), and Brain Korea 21 Plus
(BK21+).

References

[1] J.-H. Kim, S.-H. Yoon, and M.-S. Kim, “Study on Traffic Classifi-
cation Taxonomy for Multilateral and Hierarchical Traffic Classifica-
tion,” Proc. APNOMS, Seoul, Korea, Sept. 2012. DOI: 10.1109/AP-
NOMS.2012.6356105

[2] J.L. Garcia-Dorado, J.A. Herndndez, J. Aracil, J.E. Lopez de Vergara,
F.J. Montserrat, E. Robles, and T.P. de Miguel, “On the Duration and
Spatial Characteristics of Internet Traffic Measurement Experiments,”
Proc. IEEE Commun. Mag., vol.46, no.11, pp.148-155, Nov. 2008.
DOI: 10.1109/MCOM.2008.4689258

[3] M. Baldi, Politec. di Torino, Turin, A. Baldini, N. Cascarano, and
F. Risso, “Service-based traffic classification: Principles and Val-
idation,” Proc. Sarnoff Symposium, NJ, USA, March 2009. DOI:
10.1109/SARNOF.2009.4850330

[4] K. McAreavey, W. Liu, P. Miller, and K. Mu, “Measuring inconsis-
tency in a network intrusion detection rule set based on snort,” Proc.
International Journal of Semantic Computing, vol.5, no.03, pp.281—
322, Sept. 2011. DOI: 10.1142/S1793351X11001274

[5] S. Kawano, T. Okugawa, T. Yamamoto, T. Motono, and Y. Takagi,
“High-Speed DPI Method Using Multi-Stage Packet Flow Analyses,”
Proc. APSITT, Santiago, Nov. 2012.

[6] M. Finsterbusch, C. Richter, E. Rocha, J. Muller, and K. Hanssgen,
“A Survey of Payload-Based Traffic Classification Approaches,” Proc.
Communications Surveys & Tutorials, IEEE, vol.16, no.2, pp.1135-
1156, Oct. 2013. DOI: 10.1109/SURV.2013.100613.00161

[7]1 Tool Interface Standard (TIS) Executable and Linking Format (ELF)
Specification Version 1.2 (May 1995).

[8] B.Jenkins, “A New Hash Function for Hash Table Lookup,” 1997.

