
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 31, 1669-1692 (2015) 

1669  

Traffic Identification Based on Applications using  
Statistical Signature Free from Abnormal TCP Behavior* 

 
HYUN-MIN AN1, SU-KANG LEE1, JAE-HYUN HAM1,2 AND MYUNG-SUP KIM1,+ 

1Department of Computer and Information Science 
Korea University 

Sejong, 30019 Korea 
2The 2nd R&D Institute-1 

Agency for Defense Development 
Daejeon, 34188 Korea 

E-mail: {queen26; sukanglee; jhham; tmskim}@korea.ac.kr 

 
As network traffic becomes more complex and diverse from the existence of new 

applications and services, application-based traffic classification is becoming important 
for the effective use of network resources. To remedy the drawbacks of traditional 
methods, such as port-based or payload-based traffic classification, traffic classification 
methods based on the statistical information of a flow have recently been proposed. 
However, abnormal TCP behaviors, such as a packet retransmission or out-of-order pac- 
kets, cause inconsistencies in the statistical information of a flow. Furthermore, the 
analysis results cannot be trusted without resolving the abnormal behaviors. In this paper, 
we analyze the limitations of traffic classification caused by abnormal TCP behavior, and 
propose a novel application-based traffic classification method using a statistical sig- 
nature with resolving abnormal TCP behaviors. The proposed method resolves abnormal 
TCP behaviors and generates unique signatures for each application using the packet 
order, direction, and payload size of the first N packets in a flow, and uses them to 
classify the application traffic. The evaluation shows that this method can classify 
application traffic easily and quickly with high accuracy rates of over 99%. Furthermore, 
the method can classify traffic generated by applications that use the same application 
protocol or are encrypted.    
 
Keywords: application-level traffic classification, application identification, statistical 
signature, signature-based classification, statistics-based classification 
 
 

1. INTRODUCTION 
 

The classification of network traffic flows based on the application or services that 
generated them is crucial for the effective management and operation of network re- 
sources and for assuring quality of service (QoS) and service-level agreements (SLAs). 
For these policies, fast and accurate traffic classification at the application layer is 
essential. Accurate real-time traffic classification is an important part of determining the 
reliability of monitoring and controlling the application traffic of individual applications 
[1, 2]. Traditionally, traffic classification was accomplished using TCP or UDP port 
numbers, or payload data inspection [3]. However, once applications started using ran- 
dom port numbers or port numbers assigned to other protocols, the reliability of port-
based classification is diminishing. At the same time, the payload data inspection began 
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being limited in terms of complexity, privacy, and application encryption, which have 
made it difficult to effectively classify application traffic.  

Several statistical-flow-information based methods have been introduced to remedy 
the drawbacks of traditional port-based and payload-based classification [4, 5]. Classifi- 
cation approaches that use statistical information have certain advantages. For example, 
they can be applied to encrypted traffic, the usage of which has been recently increasing. 
In addition, such approaches do not need to analyze the packet payload data, and thus can 
classify traffic quickly. One problem of a classification approach is that it must wait until 
the end of the flow to complete the statistical information. Therefore, the traffic cannot 
be classified in real time. To overcome this problem, methods utilizing the first N packets 
of a flow have been studied. However, these methods demand a computation cost for 
feature extraction when producing statistical information, and because their machine 
learning (ML) algorithms have an extremely high computation complexity, they cannot 
be applied to real-time classification in networks with a very large bandwidth. In addition, 
because these methods classify application traffic into application protocols, their results 
are also not categorized based on each application. When applications use the same 
protocol, these methods will classify several applications into one application protocol. 
Therefore, they cannot be applied to many different network management and operation 
policies that are adjusted to each application. Most of all, no studies have shown a 
process for resolving abnormal TCP behaviors, such as packet retransmissions and out-
of-order packets. 

TCP provides transparent data transfers to the upper layer (application layer) through 
a trustworthy data stream channel between two end hosts. If an error occurs during the 
middle of a session, the receiver throws the packet away and the sender retransfers the 
packet. Thus, when a packet retransmission occurs from such an error, the receiver 
resolves the problem by throwing the erroneous packet away. Out-of-order packets can 
be incurred when a previous packet takes longer than a following packet during the 
transfer process. The receiver can detect and resolve this type of problem by comparing 
the sequence number of the packets. However, there is no detection process or resolution 
to these problems available at the traffic collection point. Therefore, all packets are 
collected, and the packet order may differ at each collection point. These problems cause 
the packets to become disordered and affect the statistical flow information. Owing to 
this limitation, the features lose their consistency. 

In this paper, we analyze abnormal TCP behaviors and propose an algorithm for 
resolving them. We also propose a traffic classification method based on applications 
using a statistical signature for resolving such behaviors. The signature represents the 
unique flow pattern of each application, which can be utilized to distinguish different 
applications. Our method generates statistical signatures for each application using 
statistical flow information from traffic traces of an application. Furthermore, our method 
classifies the application traffic easily and quickly during real network operations 
through a simple matching of new flows to the signatures of each application. 

In the generation of signatures for an application, flows of the application’s traffic 
traces are converted into flow vectors using the packet order, direction, and payload size 
of the first N packets of each flow. The flow vectors are then grouped according to the 
similarity between flow vectors using our flow grouping algorithm for identifying the 
unique flow patterns of an application. The groups of flow vectors are optimized and the 
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application signatures are extracted from each group using our group-optimization and 
signature-generation algorithm, respectively. For the classification of application traffic, 
the flow vector of a new flow in a real operation network is compared with each sig- 
nature using our signature-matching algorithm to determine the application belonging to 
the flow. 

The proposed method has four advantages. First, it can classify traffic based on the 
applications generating the traffic in real time, can be applied to networks with a large 
bandwidth, and is able to manage a large amount of traffic. It also uses only the packet 
order, direction, and payload size of the first N packets of a flow during traffic 
classification, and therefore does not need to analyze the packet payload data and can 
generate flow vectors without incurring a computation cost for the feature extraction 
from the flow. Our method also uses a simple comparison for signature matching with an 
extremely low computational complexity in comparison to ML algorithms. As a result, 
our method can operate effectively in real network operations. Second, it can obtain 
highly accurate classification results because it uses statistical signatures that reflect the 
unique flow patterns from each application. Our evaluation shows that our method can 
classify application traffic with high accuracy rates of more than 99.97%. Third, it can 
classify application traffic into each application, and not the application protocols, 
because it uses unique signatures for each application. Our evaluation also shows that our 
method can classify application traffic utilizing the same application protocol into the 
proper applications. Fourth, it resolves abnormal TCP behaviors that cause feature incon- 
sistency, and is therefore more robust than other methods. 

The remainder of this paper is organized as follows. Section 2 briefly reviews and 
summarizes previous work in this area. Section 3 analyzes different abnormal TCP 
behaviors and proposes algorithms for detecting and resolving these behaviors. Section 4 
introduces our proposed classification method in detail. Section 5 describes our ex- 
perimental method and analyzes the classification results. Some concluding remarks and 
areas for future work are finally provided in Section 6. 

2. RELATED WORK 

Several traffic classification methods utilizing statistical information of application 
traffic flows have recently been developed [4, 5]. These methods commonly use ML 
algorithms and the characteristic features (e.g., port number, flow duration, inter-arrival 
time, and packet size) of the application traffic. Because they do not analyze the payload 
data, such methods can classify traffic faster than payload-based methods and no privacy 
problems are incurred. In addition, these methods can classify encrypted traffic. Fur- 
thermore, by using high-quality algorithms qualified for the ML field, these methods can 
classify traffic with highly accurate results. 

Table 1 compares the recent ML-based traffic classification methods that use fea-
tures as statistical information on the traffic flows. The Feature Extraction Range shows 
the range in a flow necessary for extracting the features for traffic classification. In other 
words, this column shows the amount of packets that must be investigated to complete 
the features. A Full flow indicates that the method requires flow completion to extract the 
flow features, which can be conducted at the end of the flow; therefore, it cannot classify 
application traffic in real time. A Partial flow means that the method uses part of a flow 
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for extracting the flow features. The Feature Computation Cost shows the computational 
overhead for the feature extraction. A value of Low means that the method does not 
require any computations for feature extraction. An Average value indicates that the 
method requires a simple computation for extracting features, and that the number of 
features used is less than ten. A value of High indicates that the method uses features 
requiring complex computations to be extracted, or uses more than ten features that 
require a simple computation. ML Algorithm indicates the machine-learning algorithm 
used in the proposed method, and it infers the computation complexity of the traffic 
classification. Classification Traffic Class shows the class of application traffic classified 
by the proposed method. Protocol indicates the application protocol, and Application is 
each individual application. For example, N Protocols, two applications means that the 
method can classify application traffic into N application protocols and two individual 
applications. 

Table 1. Comparison of recent ML-based traffic classification using statistical flow infor- 
mation 

Related 
Work 

Feature Extraction 
Range 

Feature Com-
putation Cost

ML Algorithm 
Classification Traffic 

Class 

Bernaille  
et al. [6] 

Partial flow Low 
K-Means, GMM, 

HMM 
N Protocols,  

two applications 

Tomaz Bujlow 
et al. [7] 

Partial flow High C5.0 
N Protocols,  

three applications 

Y. Jin et al. [8] Full flow Medium 
Modular architecture 
combines three linear 

ML Algorithms 
N Protocols 

J. Tan et al. [9] Full flow Medium 
SVM optimized by 

Particle Swarm 
Optimization 

N Protocols,  
one application 

R. Yuan  
et al. [10] 

Full flow Medium SVM  N Protocols 

Runyuan Sun  
et al. [11] 

Full flow High 
Probabilistic Neural 

Networks 
N Applications 

C. Yin  
et al. [12] 

Partial flow Low HMM 
N Protocols,  

five applications 

 

Table 1 shows that some methods extract features at the end of a flow [8-11]; there-
fore, they cannot be applied to real-time traffic classification because they can determine 
the application of a new flow only after the flow finishes. To overcome this limitation, 
methods for extracting features in the first N packets of a flow have been studied [6, 7, 
12], but the high feature computation cost or high computational complexity of the ML 
algorithm used in these methods makes them difficult to achieve real-time traffic 
classification in networks that have a very large bandwidth. In addition, most of these 
methods mainly classify application traffic into each application protocol, not each 
application, which is insufficient when applying the method to network management or 
operation policies that adjust or control individual application traffic. Finally, there have 
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been no studies resolving the limitations that occur from abnormal TCP behaviors or that 
can change the statistical information of TCP sessions. 

To overcome the limitations of previous methods using statistical information, the 
proposed method resolves abnormal TCP behaviors and generates statistical signatures 
for each application in advance. During traffic classification, our method composes flow 
vectors from the first N packets of new flows without incurring any computation cost, 
and performs signature matching with linear computation complexity for application 
traffic classification. The proposed method classifies the application traffic into each 
individual application and has the advantage of traffic classification using statistical 
information. 

3. ABNORMAL TCP BEHAVIOR 

When a session is established using TCP, one of the transport layer protocols in 
TCP/IP, a stream that guarantees continuous data transfers, is provided. TCP provides 
transparent data transfers to the application layer through a trustworthy data-stream chan-
nel between two end hosts. 

TCP uses the sequence (Seq) number for checking the transfer data sequence. The 
Seq number increases with the payload size of the transferred packet. TCP also uses an 
Acknowledge (ACK) number for checking whether the data transfer has been properly 
completed. When data are transferred with no errors, the receiver sends an ACK number 
indicating the transferred Seq number plus the transferred payload size to the sender. If 
the receiver detects an error in a packet, it throws the packet out and sends the Ack 
number for the discarded packet. The sender then retransmits the packet. If packets arrive 
at the receiver in a disordered manner for a certain reason (e.g., the path of an earlier sent 
packet to the receiver is longer than that of a later packet), the receiver rearranges the 
packets in the proper order using each packet’s Seq number. In this way, TCP can 
guarantee the correct order of a data stream.  

However, TCP has no responsibility for correcting the packet order at a traffic 
collection point. If there are no such processes for guaranteeing a data stream, traces of 
collected traffic can contain several retransmitted packets and the sequence of packets is 
disordered. Because errors such as a packet retransmission and out-of-order packets 
occur irregularly, flows that are generated through the same behavior in an application 
can be collected in a different packet sequence and indicate different statistical in- 
formation. Finally, the traffic traces collected with no way to handle such errors are hard 
to use for statistical-information based traffic classification. Therefore, we propose a 
method for eliminating packet retransmissions, and properly reordering the packet 
sequence at the traffic collection points. 
 
3.1 Packet Retransmission 

 
A packet retransmission influences the statistical information of a flow because a 

retransmitted packet is collected at the traffic collection point along with the original 
packet. This can change the information, such as the sequence, size, and the number of 
the packets.  
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Fig. 1. Two types of packet retransmission. 
 

There are two types of packet retransmission, each with its own process of elimi-
nation. In the first type of packet retransmission, the original packet and a retransmitted 
packet have the same payload size and Seq number. To eliminate this, we store the 
original packet and ignore the retransmitted packet for the original application behavior. 
In the second type of packet retransmission, the payload size of the retransmitted packet 
is bigger than that of the original packet because, when a packet retransmission is 
required, TCP repacketizes the packet by adding more data to the payload of the original 
packet to improve the performance. Fig. 1 shows the two types of packet retransmission. 
For Type 2, the payload size of the retransmitted packet is changed at the transport layer. 
In other words, with repacketized packets, the statistical flow information cannot reflect 
the original application behavior. 

To correct the packet sequence for Type 2, we store the original packet and ignore 
the retransmitted packet. Furthermore, we discard packets that are related with the 
sequence of the retransmitted packet. To do so, we use the Seq number of each packet. 

 
Remove all non-payload packets from the packet sequence 
1: procedure Resolving Packet Retransmission 
2:  Input: P(n) in a TCP flow 
3:    find P(k) which P(k).dir == P(n).dir && biggest k in 0 < k < n 
4:    if(P(k).seq == P(n).seq ) 
5:      then Delete P(n) 
6:    if(P(k).seq + P(k).len < P(n).seq) 
7:      then Delete P(n) 
8: end procedure 
9: Payload packet: a packet with payload data 
10: Non-Payload packet: a packet without payload data 
11: P(n): nth payload packet in a TCP flow 
12: P(n).seq: nth payload packet’s sequence number 
13: P(n).ack: nth payload packet’s acknowledge number 
14: P(n).dir: nth payload packet’s transmission direction 
15: P(n).len: nth payload packet’s payload length 

Fig. 2. Algorithm for resolving packet retransmission. 
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Fig. 2 shows the algorithm used for resolving a packet retransmission. When P(n) is 
inputted, it is compared with the pre-stored packets that are transmitted in the same 
direction. If a packet retransmission is detected, P(n) is deleted. The find P(k) function 
checks only whether two packets have same direction or not, and the value of N is small 
enough to make the proposed method classifies the traffic in real-time. Therefore, find 
P(k) function is light-weight function and its overhead can be ignored. 

 
3.2 Out-of-order Packets 

 
When a connection is established between two end hosts, packets can be transferred 

through different paths depending on the network status. If an earlier-sent packet is 
transferred through more routers than a later-sent packet, the later-sent packet may arrive 
at the receiver before the earlier-sent packet. In this situation, the packets are said to be 
out-of-order. Fig. 3 shows an example of out-of-order packets. 

 

 
 
 
The packet sequence at the receiver (Host B) is different from that of the sender 

(Host A). The packet sequence at the receiver is corrected automatically based on the 
TCP behavior. However, for traffic collection system (TCS), when traffic is collected at 
the collection point (CP), a reordering process is basically not provided. Therefore, the 
traffic is collected in a different sequence from the application behavior, which causes a 
lack of consistency in the features. Fig. 4 shows such inconsistency caused by out-of-
order packets at CPs 1, 2, and 3. In this way, out-of-order packets influence the statistical 
flow information. For a trustworthy traffic classification, the problem of out-of-order 
packets must be resolved. 

Fig. 5 shows the algorithm used for resolving out-of-order packets. When a packet 
is captured, our method checks whether a packet is retransmitted or not, and removes the 
packet when it is retransmitted. After that, it checks whether a packet is an out-of-order 
packet or not. Therefore, the process to resolve out-of-order packets can adjust the out-
of-order packets regardless of retransmission packets. 

Fig. 3. Out-of-order packets. 



HYUN-MIN AN, SU-KANG LEE, JAE-HYUN HAM AND MYUNG-SUP KIM 

 

1676

 

 
Fig. 4. The feature inconsistency caused by out-of-order packets. 

 

Remove all non-payload packets from the packet sequence 
1: procedure Resolve Packet Out-of-order  
2:  Input : P(n) in a TCP flow 
3:  find P(k) which P(k).dir == P(n).dir && biggest k in 0 < k < n 
4:  if(P(k).seq > P(n).seq) 
5:    find P(i) which P(i).dir == P(n).dir && P(i).seq < P(n).seq  
6:                                 && biggest i in 0 < i < k 
7:    find P(j) which P(j).dir == P(i).dir && smallest j in i < j < k 
8:    for P(m) from P(j1) to P(i+1) 
9:      if(P(m).dir != P(n).dir && P(m).ack == P(n).seq + P(n).len) 
10:       then put P(n) before P(m) 
11:       end procedure 
12:     if(P(m).dir != P(n).dir && P(m).ack < P(n).seq + P(n).len 
13:       then put P(n) after P(m) 
14:       end procedure 
15:    end for 
16:  put P(n) after P(i); 
17:  end if 
18:end procedure 

Fig. 5. Algorithm for resolving out-of-order packets. 
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When P(n) is inputted, it is compared with the pre-stored packets transmitted in the 
same direction. If there is a pre-stored packet that has a larger Seq number than P(n), the 
out-of-order packet is detected and the situation is resolved. The latest transferred packet 
that has the same direction and a smaller Seq number than P(n) is P(i). The earliest 
transferred packet that has same direction and a larger Seq number than P(n) is P(j). P(n) 
is located between P(i) and P(j) when there are no packets moving in the opposite 
direction. If there are packets between P(i) and P(j) that are moving in the opposite 
direction, the location of P(n) is determined based on these packets. If we find a packet 
being transferred in the opposite direction that has the same Ack number as the Seq 
number of P(n) plus payload size of P(n), we put P(n) in front of the packet. If we find a 
packet transferred in the opposite direction that has a smaller Ack number than the Seq 
number of P(n) plus payload size of P(n), we place P(n) behind this packet. 

4. TRAFFIC CLASSIFICATION METHODOLOGY USING 
STATISTICAL SIGNATURE 

In this section, we describe the proposed traffic classification method after defining 
a flow vector and describing the characteristics required to distinguish application traffic. 
To classify application traffic, the signatures that are unique to each application are 
necessary because we classify traffic into individual application classes, instead of into 
application protocols. Compared with previous methods that classify traffic into app- 
lication protocols, the proposed method can be utilized in a broad range of fields. 

 
4.1 Flow Vector 

 
In general, the first few packets of a flow communicate based on pre-defined rules 

of the application. The first N packets of a flow can be used as a distinguishable feature 
to identify the application because they communicate according to pre-defined rules and 
are extremely different in each application [6]. 

In this study, we define a flow as a set of packets with sequence that are transmitted 
in both directions based on a 5-tuple (source IP, destination IP, source port, destination 
port, and L4 protocol). The packet order is formed according to a standard order, which 
we defined previously, using the collection time. 

The flow vector is presented with a sequence composed of the payload size and the 
direction of the first internal N packets based on the packet order. The payload size and 
transmission direction of each packet are expressed as an integer and “+/−,” respectively. 
In the case of TCP, the transmission direction from the client to the server is defined as 
“+,” and the opposite direction is defined as “−.” In the case of UDP, because the 
distinction between the client and the server is not clear, the direction of the first packet 
is expressed as “+,” and the opposite direction is determined as “−.” The flow vector is 
composed only of packets that have a payload. The control packets, such as SYN or 
ACK, in the TCP sessions are excluded. This prevents irregular control packets from 
affecting the flow vector. 

For example, if a flow communicates in both directions, as shown in Fig. 6, the flow 
vector has values of +20, −30, +20, +25, and −15, excluding the control packets, such as 
SYN, SYN/ACK, and ACK. 
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Flow Vector = (+20, -30, +20, +25, -15) 

Fig. 6. The flow vector. 

 

 
 
From the observations on popular applications used in the Korea University campus 

network, we found that applications can be distinguished based on their flow vectors. Fig. 
7 shows the flow vectors from four different applications, Dropbox, Microsoft Outlook, 
PuTTY, and Xshell. All flow vectors that have the same packet order and direction are 
expressed as a group, which is plotted using a polygonal line. The vertical axis shows a 
multiplication of the payload size and direction of the packets. The horizontal axis shows 
the packet order. The multiplication of the payload size and direction of the packet can 
have a value ranging from −1,460 to 1,460. 

Fig. 7. The flow vectors of four different applications. 
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Unlike PuTTY, most of the applications in Fig. 7 do not have flows that commu-
nicate using one identical flow vector pattern. The flows can be divided into either two or 
three specific patterns, such as Xshell and Dropbox, or divided into a number of specific 
patterns, such as Outlook. However, the flow vectors of each application show its own 
unique characteristics when compared with the flow vectors of the other applications. 

Fig. 8 shows each flow vector from six different applications, i.e., Xshell, PuTTY, 
Dropbox, Nateon, Skype, and Naverlive. These are projected onto a two-dimensional 
space to show the possibility of classification using a flow vector. We expressed only the 
flows of each application after removing the outlier flows through our flow-grouping and 
group-optimization algorithms. The flow grouping indicates the binding process of flows 
that have similar flow vectors to identify the specific flow patterns of each application. 
The outlier flows indicate the flows that cannot be regarded as a signature because the 
number of similar flow vectors is extremely small. The horizontal axis shows the first 
value of the flow vector, which indicates the multiplication of the payload size and the 
direction of the first packet of the flow. The vertical axis shows the fourth value of the 
flow vector, which is a multiplication of the payload size and the direction of the fourth 
packet of the flow. Each point denotes a pair (first and fourth values) of flow vectors of 
each application. 

 

 
 

Originally, four flow groups are generated at Xshell, but three groups appear to be a 
single group on a two-dimensional space because they have the same value for the first 
and fourth packets. One group is generated for PuTTY, and four groups are generated for 
Dropbox, but two groups overlap because they have similar values for the first and fourth 
packets. For a similar reason, five groups are generated for Nateon, but three groups are 
marked as a single group. For Naverlive, nine groups are generated, but seven groups 
overlap. For Skype, 16 groups are generated, and some appear to be overlapped. 

A flow group indicates a specific flow pattern or application behavior. As shown in 
Fig. 8, the flows of each application have regular patterns, even if the flow vectors are 
projected onto a two-dimensional space. Regular flow patterns can be used to distinguish 
between each application. Fig. 8 shows that, with the exception of Skype, the other five 
applications have less than ten repeated flow patterns. Because the application behavior 

Fig. 8. Projection of the flow vectors of six applications onto two-dimensional Euclid space. 
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varies, a number of flow groups are generated for Skype. Nateon and Naverlive overlap, 
as shown in Fig. 8, but they have distinguishable values for the second, third, and fifth 
packets. The flow groups of Naverlive and Skype appear to be overlapping, but they are 
in fact slightly different in the other packets. Therefore, we know that the proposed flow 
vector can be used to classify application traffic. Furthermore, distinguishable flow 
vectors between PuTTY and Xshell, which use the same secure shell (SSH) protocol, 
indicate that the proposed flow vector can be used to classify application traffic that uses 
the same application protocol or is encrypted. 

 
4.2 Statistical Signature 

 
A signature represents a unique flow pattern of each application that can be utilized 

to classify application traffic. The proposed method vectorizes flows from traces of 
application traffic into flow vectors per application, and groups flow vectors based on 
their similarity to identify flow patterns of each application. In sequence, a signature is 
generated using a combination of a representative vector, which represents the flow 
vectors of each group, and a distance threshold vector, which includes the flow vectors of 
each group. If all of the individual flow vectors are used as a signature, the number of 
signatures increases. As a result, managing the signatures becomes difficult, and the 
system becomes overloaded when identifying the application traffic. Therefore, an 
optimal signature combines the representative vector and distance threshold vector that 
represent each group by grouping the application flow vectors. 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

Fig. 9. Flowchart of application traffic classification using statistical signature. 
 

Fig. 9 shows a flowchart of the proposed application traffic classification method 
using statistical signatures. Our method is divided into two stages: signature generation 
and traffic identification. In the signature generation stage, the first step is to remove 
abnormal TCP behaviors from the traces of traffic. Next, application flows of traces of 
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ground truth traffic are vectorized into flow vectors, and the flows are grouped based on 
the similarity between two flow vectors. Finally, signatures are extracted after optimizing 
the groups. In the traffic identification stage, a new flow is generated from a series of 
packets during a real network operation. Next, abnormal TCP behaviors in the flow are 
removed, and the flow is vectorized into a flow vector using the first N packets. The flow 
vector is classified into each application through signature matching with each signature. 
The proposed method needs first N packets of each flow which don’t have abnormal TCP 
behavior for feature. Therefore, when the packet retransmission occurs in a flow, it 
collects packets more than the number of N for making up the N packets excluding the 
retransmission packet. 

 
4.2.1 Statistical signature generation 

 
Statistical signature generation starts by removing abnormal TCP behaviors from 

the traces of traffic. In the second step, flows are vectorized into a flow vector. The flow 
vector vk of flow fk can be expressed as Eq. (1), and each element vk,i of vk can be written 
as Eq. (2). Here, dk,i is the transmission direction of the ith packet of fk, and its value is 
either +1 or −1. In addition, sk,i is the payload size of the ith packet of fk. 

 

1 2( , ,..., )k k k knv v v v    (1) 
vk,i = dk,i  sk,i (2) 
 
In the third step, flow vectors are grouped based on their similarity. The similarity 

between two vectors is expressed as the distance vector that has elements as distance 
between two vectors by each dimension. Similarity is used in the flow grouping and 
signature matching algorithms. The distance vector dx,y = d(vx, vy) between vx and vy can 
be written as (3). 

 

   ,1 ,1 ,2 ,2 , ,, , , ,x y x y x y x n y nd v v v v v v v v       (3) 
 
Statistical signature s is represented using a representative vector and distance 

threshold vector, as in Eq. (4), where c is the centroid vector of the flow vector group; t is 
the distance threshold vector, which can include every flow vector of the flow vector 
group; and s is the combination of c and t of the flow vector group. 

 
s = (c, t)   (4) 
 
Each flow vector v of flow vector group V(s), which is represented by the signature 

s = (c, t), should satisfy Eq. (5). The similarity between all v that belong to V(s) and the 
representative vector c should be less than or equal to distance threshold vector t. 

 
( ,  )  for ( )d v c t v V s    (5) 

 
Multiple signatures of each application can exist, and Eq. (6) shows signature set S. 
 

1 ,2{ , , , }nS s s s   (6) 
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The flow vectors of each application are extracted from flows of ground truth traffic 
traces that are collected in advance. The statistical signature set is then generated based 
on the flow vectors. Application traffic can be classified according to the signature set. 

 

 
 

minimize         

   minimize   

maximize

ˆ
S

S suchthat t s

V s





 

 (7) 

 
To obtain an optimal signature set Ŝ  from the given ground truth flows of each 

application, the conditions in Eq. (7) should be satisfied. Here, |S| indicates the number of 
signatures s of S, t(s) is the distance threshold vector of signature s, and |V(s)| is the 
number of flow vectors of set V(s) represented by signature s. Thus, Eq. (7) indicates the 
minimization of the number of signatures, the minimization of the sum of distance thres- 
hold vectors, and the maximization of the number of flow vectors that belong to each 
signature for obtaining an optimal signature set. 

The fourth step is the group optimization step. To generate the optimal signature set 
ˆ,S the group optimization step removes the inappropriate outlier flow vectors, along with 

the outlier groups after completing the flow grouping. The outlier flow vectors that are 
inside the group and do not meet the requirement of Eq. (8) are removed. Because c is 
recalculated every time a flow is grouped, the flows that are contained in a group can be 
changed. Removing outlier flows is performed once at a flow and it just calculates 
distance between the flow vector and the centroid vector of the flow vector group. 
Therefore, the time complexity of removing outlier flows is O(n). In addition, the outlier 
groups that satisfy the condition of Eq. (9) are removed because the groups that contain a 
significantly small number of flows cannot represent the behavior of a specific 
application. Removing outlier groups is performed once at a group and it just compares 
the number of flows in the group and the threshold value. Therefore, the time complexity 
of removing outlier groups is O(n). 

 
d(vj ci)  ti for  vi  Vi citi of Gi      (8) 

,
1

minimal flow count
m

i ji
j

V 


   (9) 

 
In the final step, signature set Ŝ  is generated, and has five attributes similar to those 

in Table 2. In Table 2, ID is the identity of the application for the signature. Proto is an 
L4 protocol for the signature, and has a value of either TCP or UDP. Flow grouping is 
achieved by flows that have the same L4 protocol, even if the flows are generated from 
the same application. Dim is the dimension of the flow vectors that belong to a signature. 
All flows that belong to the same signature have the same dimension. Because the 
dimension indicates the number of internal packets of the flow that are vectorized into 
the flow vector, the value of the dimension can range from one to N. However, the 
minimum value is defined as three in this study because it is difficult to generate a 
sensible signature using one or two-dimensional flow vectors. In addition, N is em- 
pirically defined as five when considering real-time and accurate traffic classification. 
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Bernaille et al. [13] also showed that the first five packets of a flow are sufficient to 
distinguish each application. C-vector is the centroid vector of the signature and is 
calculated using all flow vectors that belong to the signature. T-vector is the condition of 
flow grouping and indicates the range of the group. The initial value of T-vector must be 
able to include the largest number of flows that indicate the same flow pattern, and can 
exclude flows that indicate different patterns. C-vector is used along with T-vector to 
identify the application of a new flow during traffic classification. 
 

Table 2. Attributes of a flow group. 
Attribute Description Example 

ID Application name bittorrent 

Proto L4 protocol: TCP/UDP UDP 

Dim Dimension of vector 5 

C-vector Centroid vector (+20,+30,-50,+20,-30) 

T-vector Distance threshold vector (2, 5, 8, 4, 5) 

 

 
Fig. 10. Optimal initial value of T-vector element according to the F-measure. 

 

Fig. 10 shows the classification performance of the proposed method using different 
initial value of T-vector element. Performance is evaluated by mean of ten applications f-
measure. In the packet and byte perspective, using 10 for the initial value of T-Vector 
element shows best performance. It is because, if the initial value of T-vector element 
increases, the flows of different applications can be grouped together. However, there are 
some variations in the flow perspective. In the network management, the amount of the 
packet and byte are more important than the number of the flow because the packet and 
byte occupy the bandwidth indeed. Therefore, in this study, the initial value of every T-
vector element is set 10 to identify unique flow patterns of each application properly in 
the flow grouping.   

 
4.2.2 Traffic identification    

 
In traffic identification, the traffic of a real operation network is captured and clas-

sified based on the signature of each application. A new flow is generated with a series of 
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packets captured from a real network operation. Abnormal TCP behaviors in a flow are 
removed, and the flow is vectorized into a flow vector using the packet order, direction, 
and payload size of its first N packets. The flow vector is compared with each signature 
to determine its identity. If the flow vector of a new flow is included in a signature by the 
C- and T-vectors, its application is determined as the ID of the signature. 

Thus, traffic identification finds signature si shown in Eq. (10) for the flow vector v 
of a new flow. At this time, si should have the same L4 protocol and dimension as v.  

 
si such that d(ci, v)  ti for si = (ci, ti) (10) 
 
In this study, a flow vector uses only the packet order, direction, and payload size of 

the first five packets of a flow; therefore, flow vectorization for converting a flow into a 
flow vector using these features does not need any computational costs. In addition, 
signature matching is a simple similarity comparison operation with a linear computation 
complexity, as shown in Eq. (10). Therefore, traffic classification using these simple flow 
vectorization and signature-matching algorithms does not require high computational 
costs in comparison to previous methods, which enables real-time traffic classification in 
networks that have a very large bandwidth. 

 

Table 3. Ground truth traffic. 
Traffic Class Applications Flow (103) Packet (103)  Byte (106) 

Skype P2P communications 2.9 43.9 17.6 
Naverlive Video streaming  2.6 50,807.5 41,404.3 

GomTV Internet TV service  15.2 2,637.0 2,515.6 
Xshell Telnet/SSH client  1.2 177.1 22.8 

Teamviewer Remote control 1.8 722.6 291.7 

Nateon Instant messaging  0.9 337.1 62.5 
Dropbox Cloud file sharing  11.1 294.8 158.5 
PuTTY Telnet/SSH client  0.7 80.4 11.5 

Outlook MS mail service 12.7 1,150.4 692.3 
uTorrent P2P download 1,116.4 62,151.0 49,494.5 

5. EVALUATION 

In this section, we describe the results of a traffic classification test on a campus 
network to verify the proposed traffic classification using statistical signatures. 

For our evaluation, we collected bi-directional packet traces from the Korea 
University campus network, which was configured with one router at the Internet 
junction, and we collected the traces of traffic from the router using port mirroring. 

To evaluate the traffic classification, it is crucial to obtain a firm ground truth. We 
deployed traffic measurement agents (TMAs) on selected hosts in the campus network 
and created ground truth traffic [14]. Using the ground truth traffic through these agents 
is more reliable for evaluating the proposed classification method than using the results 
of another particular classification method [15]. 
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Table 3 shows a summary of the ground truth traffic we obtained for our evaluation. 
The traffic was arranged by each application, verifying that our method can classify the 
traffic into each application. Because the traffic was collected over a period of time, the 
traffic volume varies according to the frequency of use of each application and the 
amount of traffic generated.  

We divided the ground truth traffic into two different sets obtained on different 
dates. One traffic set was used only for signature generation. The other traffic set was 
used only for the traffic classification test. Table 4 shows the traffic flows for signature 
generation, and the number of signatures that were generated for each application. 

We use the completeness and accuracy as evaluation metrics in accordance with 
most of the traditional literature [3, 4, 16]. Completeness is a metric of how much traffic 
was classified. Accuracy is a metric indicating the rate of traffic that was correctly 
classified. Accuracy is determined by comparing the classification results with the 
ground truth. Further, accuracy is divided into the overall accuracy and the accuracy per 
application, which represents the precision and recall for each application. These 
evaluation metrics are expressed by the flow, packet, and byte to provide more detailed 
information. 

The proposed method classifies a large amount of ground truth traffic in just a few 
minutes, which indicates its real-time traffic classification capability. Table 5 shows the 
overall accuracy and completeness of the traffic classification test in terms of flows, 
packets, and bytes. The Unresolved case indicates the results of a test without the 
removal process for abnormal TCP behaviors, and the Resolved case indicates the results 
of the test after all TCP abnormal behaviors were removed. 

 

Table 4. Traffic flows for signature generation and the number of signatures for each 
application. 

Traffic Class Flow Signature 
Skype 1,000 16 

Naverlive 1,138 9 

GomTV 2,229 9 
Xshell 730 4 

Teamviewer 842 9 

Nateon 456 5 
Dropbox 6,232 4 
PuTTY 382 1 

Outlook 5,774 49 
uTorrent 64,773 192 

Table 5. Overall accuracy and completeness using proposed method. 

 
Overall Accuracy Completeness 

Unresolved case Resolved case Unresolved case Resolved case 

Flow 99.83% 99.95% 68.42% 68.43% 
Packet 99.89% 99.97% 85.01% 87.71% 
Byte 99.90% 99.97% 84.84% 87.98% 
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For the unresolved case, the results show that the proposed method can achieve high 
accuracy rates of greater than 99.83% for all units for application traffic that were 
classified. From the perspective of completeness, the flow completeness was 68.42%, but 
the packet and byte completeness were 85.01% and 84.84%, respectively. The reason for 
the low flow completeness compared to the packet and byte completeness is the 
existence of uTorrent traffic. The classification results of uTorrent, which occupies the 
largest ground truth, have a significant impact on the flow completeness. uTorrent traffic 
occupies a maximum of 95% of ground truth flows, but only 5.8% of the uTorrent flows 
are used to generate signatures. It is difficult to analyze the remaining 94.2% of flows 
using the signatures from 5.8% of flows. However, the uTorrent classification results 
show a maximum packet classification of 81.25% and a byte recall of 81.13%, which 
affect the packet and byte completeness. This shows that the signatures of uTorrent 
correctly classify heavy flows, such as file downloads with several packets and bytes, 
which are more crucial for traffic monitoring and network management [17]. 

For the resolved case, the overall accuracy rates for all units of application traffic 
are higher than 99.95%. This result is higher than for the unresolved case. Furthermore, 
the flow, packet, and byte completeness are 68.43%, 87.71%, and 87.98%, respectively. 
These results are also higher than for the unresolved case. These results show that 
resolving abnormal TCP behaviors can improve the performance, even when using the 
same method. 

Tables 6 and 7 show the precision and recall for each application, respectively, 
which are responsible for the overall accuracy and completeness. The results of the 
unresolved case show that the proposed method can achieve high precision rates of more 
than 99.79% for every application for all units, even when a few recall rates are relatively 
low and affect the overall completeness. 

Table 6. Precision of each application using proposed method. 

Traffic 
Class 

Flow Packet Byte 

Unresolved  
case 

Resolved 
case 

Unresolved 
case 

Resolved 
case 

Unresolved 
case 

Resolved  
case 

Skype 99.85% 99.96% 99.85% 99.97% 99.85% 99.97% 

Naverlive 99.85% 99.88% 99..90% 99.91% 99..91% 99.91% 

GomTV 99.81% 99.93% 99.85% 99.93% 99.87% 99.93% 

Xshell 100% 100% 100% 100% 100% 100% 

Teamviewer  99.85% 99.94% 99.85% 99.96% 99.85% 99.96% 

Nateon 99.80% 99.91% 99.83% 99.92% 99.83% 99.92% 

Dropbox 99.85% 99.90% 99.87% 99.90% 99.87% 99.90% 

PuTTY 100% 100% 100% 100% 100% 100% 

Outlook 99.79% 99.93% 99.80% 99.94% 99.81% 99.94% 

uTorrent 99.83% 99.95% 99.89% 99.97% 99.89% 99.97% 

 

For the unresolved case, each precision rate for every application reaches almost 
100%. The flow precision rates are greater than 99.88% for all applications for all units, 
and the packet and byte precision rates are over 99.90%. Furthermore, all precision rates  
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Table 7. Recall of each application using proposed method. 

Traffic Class 
Flow Packet Byte 

Unresolved 
case 

Resolved
case 

Unresolved
case 

Resolved
case 

Unresolved 
case 

Resolved 
case 

Skype 65.70% 69.59% 68.90% 72.70% 81.18% 86.12% 

GomTV 70.10% 71.56% 90.26% 90.35% 90.44% 90.51% 

Naverlive 83.26% 84.24% 89.42% 90.96% 89.47% 91.07% 

Nateon 90.67% 91.30% 98.60% 98.64% 96.38% 96.41% 

Outlook 98.12% 98.50% 99.41% 99.80% 99.16% 99.55% 

Xshell 96.53% 96.28% 97.58% 97.29% 97.57% 97.29% 

PuTTY 72.15% 70.20% 65.45% 64.81% 59.08% 58.97% 

Teamviewer 99.05% 99.35% 98.72% 99.06% 98.31% 98.71% 

Dropbox 84.69% 88.87% 84.98% 85.15% 84.48% 84.56% 

uTorrent 66.50% 66.43% 81.25% 85.15% 81.13% 85.69% 

 

for PuTTY and Xshell reach 100%. The PuTTY and Xshell use same protocol, SSH. 
Even if the applications use the same application protocol, still they can generate 
different payload data in the same procedure of pre-defined rules because there can be 
different information of application, and the applications can customize the protocol in 
the permissible range from protocol manual for their convenience. There are distinct 
differences between Xshell and PuTTY in the direction and payload size of first five 
packets based on packet order, although they use the same application protocol (SSH). 
First, the sizes of the second packet are different from each other. The second packet 
contains the SSH version and client program information. The difference in the payload 
size occurs because the client program information of the two applications is different. 
The payload size of second packet of Xshell is 49 bytes, and that of PuTTY is 28 bytes. 
Second, the Xshell client transmits only the third packet for “key exchange init”, but the 
PuTTY client transmits the third and fourth packets for “key exchange init”. Therefore, 
the payload sizes of the third and fourth packets are different, additionally fourth packet 
has different transmission direction for the two applications, which affects payload size 
and transmission direction of successive packets such as the fifth packet. The proposed 
method generates the signatures by application unit, so it can extract the characteristics of 
individual application and can classifies the applications that use same protocol into 
individual applications. For the resolved case, the performance indicates higher rates 
than for the unresolved case. However, misclassifications still exist. A misclassification 
is incurred by different abnormal behavior in each application. When an end host sends 
its data stream regardless of the transferring data of opponent end host, the packet 
sequence is disordered. There is no correct answer for this problem because there is no 
intension of it. It occurs in the full-duplex TCP session or UDP session. Traffic clas- 
sification robust to this abnormal behavior of applications is an important topic for our 
future research. 

A low flow completeness problem is shown in the flow recall rates of a few of the 
applications, such as Skype, Naverlive, Xshell, and uTorrent. The flow recall rate is also 
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less than the packet and byte recall rates for most of the applications. This is because of 
flows that have only one or two packets. We defined the minimum value for the 
dimension of the flow vector as three, and generated the signatures. However, we used 
only real traces of traffic of the applications studied in this test, and the signatures cannot 
classify flows with only one or two packets. In addition, flows of TCP sessions that 
terminated abnormally in traffic traces contributed to the low recall rates. Naverlive has 
the largest gap between the flow and packet (or byte) recall. This means that the recall of 
small flows that have only a few of packets (or bytes) and are unrelated to streaming is 
low, but the recall of large flows that have several packets (or bytes) and are related to 
streaming is high. 

The recall rate of each application is also affected by the signature conflict policy. 
For this study, our method classifies a new flow that is matched to several signatures 
with different IDs as an unknown flow to provide high accuracy rates. If other policies 
are applied, the recall rate can be improved. For example, our method can classify an 
unknown flow into the application of the signature that has the highest similarity [18], 
use consecutive port numbers [19] or server-specific port numbers [20], or report 
applications with signatures that are matched to the unknown flow for the network 
manager to determine its application. In the future, we will study the signature conflict to 
improve the recall rate of each application. Performance improvement was achieved in 
the recall of each application. Some applications, but not all, that use more full-duplex 
sessions than others showed specific improvements in performance. 

We compare the performance of the proposed method against that of the method 
that is introduced by Bernaille et al. [6]. Bernaille et al. [6] proposed the use of clustering 
techniques to achieve fine-grained classification based on size and direction of packets. 
They used partial flow feature and their feature computation cost is low enough to 
classify traffic in real-time. We implemented and evaluated K-Means Center from [6] 
according to the paper [6] faithfully. The K is decided as 170 for the unresolved case and 
160 for the resolved case by experimental basis likewise introduced in paper [6].  

Fig. 11 shows the results of performance comparison of the proposed method and K-
Means Center. The performances of K-Means Center are increased after resolving the 
abnormal TCP behaviors like proposed method. It evidently shows that if there are the 
abnormal TCP behaviors, K-Means Center cannot classify the traffic accurately because 
of the feature inconsistency occurred by abnormal TCP behaviors. 

 

 

 
Overall accuracy                            Completeness 

Fig. 11. Comparing performance of two methods. 
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Shown as left side of Fig. 11, the proposed method achieves higher accuracy than K-
Means Center in the flow, packet, and byte perspectives. However, in the completeness 
perspective, shown as the right side of the Fig. 11, the K-Means Center achieves higher 
flow completeness than the proposed method. This is because the K-Means Center can 
classify the almost uTorrent traffic while the proposed method classifies only heavy 
uTorrent traffic. However, the proposed method achieves higher completeness in packet, 
and byte perspective because the proposed method can classify the heavy flows better 
than K-Means Center. In the network management, the amount of the packet and byte are 
much more important than the number of the flow because the packet and byte occupy 
the bandwidth indeed. Except the flow completeness, the proposed method shows higher 
performance than K-Means Center. This is because the proposed method uses N-
dimensional similarity for measuring similarity between flow vectors while the K-Means 
Center uses Euclidean distance that is only 1-dimensional similarity regardless of the 
number of dimension of feature. Using N integers and N thresholds are much stricter than 
using one real number and one threshold, obviously. In addition, the proposed method 
groups the flow vectors which are generated from the same process, while K-means 
Center clusters the total flow vector at once. Therefore, the proposed method can extract 
the characteristic of individual application more accurately. 

6. CONCLUSIONS 

In this paper, we analyzed abnormal TCP behaviors and proposed an application-
based traffic classification method that uses statistical signatures by resolving such 
behaviors. Abnormal TCP behaviors are the problems that should be resolved for robust 
traffic classification because they result in feature inconsistency. A statistical signature 
represents the unique flow pattern of each application and can be used to distinguish 
applications. Statistical signatures for each application are generated by our flow group-
ing, group optimization, and signature-generation algorithms. Our method then classifies 
new flows into individual applications through signature matching in real network opera-
tions. 

Our method can be effectively applied to real-time traffic classification in networks 
that have a very large bandwidth because it does not require any computational cost for 
feature extraction, and because signature matching is a simple similarity comparison. Our 
evaluation shows that the proposed method can classify application traffic easily and 
quickly with high accuracy rates of more than 99% for every application for all units 
when all abnormal TCP behaviors are resolved. We also evaluated the performances by 
comparing the proposed method and K-Means Center that is introduced by Bernaille et al. 
[6]. The proposed method achieves higher performance in the all perspectives except the 
flow completeness. However, in the network management, the amount of the packet and 
byte are much more important than the number of the flow because the packet and byte 
occupy the bandwidth indeed. The evaluation also showed that our method can classify 
traffic into each application that uses the same application protocol or encrypts its 
payload. Therefore, our method can be applied to various types of network management 
and operations that must control individual applications with high accuracy. In addition, 
the resolution of abnormal TCP behaviors was verified through performance improve- 
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ments for the resolved cases. 
Our future studies will focus on three areas. First, we will conduct a study on 

signature conflicts to improve the completeness and recall ability of our method. Second, 
we intend to rearrange the UDP packets according to the behaviors of each application to 
increase the completeness and accuracy. Third, we will study an accurate and detailed 
classification method for HTTP traffic by extending our proposed method. 

REFERENCES 

1. M. S. Kim, Y. J. Won, and J. W. K. Hong, “Application-level traffic monitoring and 
an analysis on IP networks,” ETRI Journal, Vol. 27, 2005, pp. 22-42.    

2. T. T. T. Nguyen, G. Armitage, P. Branch, and S. Zander, “Timely and continuous 
machine-learning-based classification for interactive IP traffic,” IEEE/ACM Tran- 
sactions on Networking, Vol. 20, 2012, pp. 1880-1894.         

3. A. Callado, C. Kamienski, G. Szabo, B. Gero, J. Kelner, S. Fernandes, et al., “A sur-
vey on internet traffic identification,” IEEE Communications Surveys and Tutorials, 
Vol. 11, 2009, pp. 37-52.   

4. T. T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic clas- 
sification using machine learning,” IEEE Communications Surveys and Tutorials, 
Vol. 10, 2008, pp. 56-76.       

5. A. Dainotti, A. Pescape, and K. C. Claffy, “Issues and future directions in traffic 
classification,” IEEE Network, Vol. 26, 2012, pp. 35-40.     

6. L. Bernaille, R. Teixeira, and K. Salamatian, “Early application identification,” in 
Proceedings of ACM CoNEXT Conference, 2006, Article No. 11.        

7. T. Bujlow, T. Riaz, and J. M. Pedersen, “A method for classification of network 
traffic based on C5.0 machine learning algorithm,” in in Proceedings of Interna- 
tional Conference on Computing, Networking and Communications, 2012, pp. 237-
241.     

8. Y. Jin, N. Duffield, J. Erman, P. Haffner, S. Sen, and Z. L. Zhang, “A modular 
machine learning system for flow-level traffic classification in large networks,” 
ACM Transactions on Knowledge Discovery from Data, Vol. 6, 2012, pp. 1-34.      

9. J. Tan, X. Chen, and M. Du, “An internet traffic identification approach based on 
GA and PSO-SVM,” Journal of Computers, Vol. 7, 2012, pp. 19-29.       

10. R. Yuan, Z. Li, X. Guan, and L. Xu, “An SVM-based machine learning method for 
accurate internet traffic classification,” Information Systems Frontiers, Vol. 12, 2010, 
pp. 149-156.      

11. S. Runyuan, Y. Bo, P. Lizhi, C. Yuehui, Z. Lei, and J. Shan, “Traffic classification 
using probabilistic neural networks,” in Proceedings of International Conference on 
Natural Computation, 2010, pp. 1914-1919.       

12. C. Yin, S. Li, and Q. Li, “Network traffic classification via HMM under the guidance 
of syntactic structure,” Computer Networks, Vol. 56, 2012, pp. 1814-1825.       

13. L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian, “Traffic clas- 
sification on the fly,” ACM SIGCOMM Computer Communication Review, Vol. 36, 
2006, pp. 23-26.        

14. B. C. Park, Y. J. Won, M. S. Kim, and J. W. Hong, “Towards automated application 



ROBUST TRAFFIC IDENTIFICATION USING STATISTICAL SIGNATURE 

 

1691

 

signature generation for traffic identification,” in Proceedings of IEEE Network 
Operations and Management Symposium, 2008, pp. 160-167.   

15. F. Gringoli, L. Salgarelli, M. Dusi, N. Cascarano, F. Risso, and K. C. Claffy, “GT: 
picking up the truth from the ground for internet traffic,” ACM SIGCOMM Compu- 
ter Communication Review, Vol. 39, 2009. pp. 12-18.      

16. H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K. Lee, “Internet 
traffic classification demystified: myths, caveats, and the best practices,” in Proceed- 
ings of ACM CoNEXT Conference, 2008, Article No. 11.      

17. K. C. Lan and J. Heidemann, “A measurement study of correlations of internet flow 
characteristics,” Computer Networks, Vol. 50, 2006, pp. 46-62.    

18. R. T. Gu, H. X. Wang, Y. M. Sun, and Y. F. Ji, “Fast traffic classification using joint 
distribution of packet size and estimated protocol processing time,” IEICE Tran-
sactions on Information and Systems, Vol. E93D, 2010, pp. 2944-2952.    

19. C. N. Lu, C. Y. Huang, Y. D. Lin, and Y. C. Lai, “Session level flow classification 
by packet size distribution and session grouping,” Computer Networks, Vol. 56, 
2012, pp. 260-272.   

20. J. S. Park, S. H. Yoon and M. S. Kim, “Performance improvement of the payload 
signature based traffic classification system using application traffic temporal lo- 
cality,” in Proceedings of Asia-Pacific Network Operations and Management Sym- 
posium, 2013, pp. 1-6.   
 
 

Hyun-Min An received his B.S. degree in Computer Science 
from Korea University, Korea, in 2012, and his M.S. degree in 
Computer Science from Korea University, Korea, in 2014. He is 
currently a researcher of Research Institute for Advanced Indus- 
trial Technology, Korea University, Korea. His research interests 
include Internet traffic classification and network management.   
 
 
 

 
 

Su-Kang Lee received his B.S degree in Computer Science 
from Korea University, Korea, in 2014. He is currently a master’s 
student of Korea University, Korea. His research interests include 
Internet traffic classification and network management. 
 
 
 
 
 
 

 
 
 



HYUN-MIN AN, SU-KANG LEE, JAE-HYUN HAM AND MYUNG-SUP KIM 

 

1692

 

Jae-Hyun Ham received his B.S. degree in Computer 
Science and Engineering from Dongguk University, Korea, in 
1999, and his M.S. degree in Computer Science and Engineering 
from Postech, Korea, in 2001. He joined the Agency for Defense 
Development, Korea, in 2001, where he is working currently as a 
Senior Researcher in the Department of the 2nd R&D Institute-1. 
He is also currently a Ph.D. student of Korea University, Korea. 
His research interests include tactical network management, and 
traffic monitoring and analysis. 
 

 
 

Myung-Sup Kim received his B.S., M.S., and Ph.D. degree 
in Computer Science and Engineering from Postech, Korea, in 
1998, 2000, and 2004, respectively. From September 2004 to 
August 2006, he was a Postdoctoral Fellow in the Department of 
Electrical and Computer Engineering, University of Toronto, 
Canada. He joined Korea University, Korea, in 2006, where he is 
working currently as an Associate Professor in the Department of 
Computer and Information Science. His research interests include 
Internet traffic monitoring and analysis, service and network 
management, and Internet security. 

 
 

 


