
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 31, 1669-1692 (2015)

1669

Traffic Identification Based on Applications using
Statistical Signature Free from Abnormal TCP Behavior*

HYUN-MIN AN1, SU-KANG LEE1, JAE-HYUN HAM1,2 AND MYUNG-SUP KIM1,+

1Department of Computer and Information Science
Korea University

Sejong, 30019 Korea
2The 2nd R&D Institute-1

Agency for Defense Development
Daejeon, 34188 Korea

E-mail: {queen26; sukanglee; jhham; tmskim}@korea.ac.kr

As network traffic becomes more complex and diverse from the existence of new

applications and services, application-based traffic classification is becoming important
for the effective use of network resources. To remedy the drawbacks of traditional
methods, such as port-based or payload-based traffic classification, traffic classification
methods based on the statistical information of a flow have recently been proposed.
However, abnormal TCP behaviors, such as a packet retransmission or out-of-order pac-
kets, cause inconsistencies in the statistical information of a flow. Furthermore, the
analysis results cannot be trusted without resolving the abnormal behaviors. In this paper,
we analyze the limitations of traffic classification caused by abnormal TCP behavior, and
propose a novel application-based traffic classification method using a statistical sig-
nature with resolving abnormal TCP behaviors. The proposed method resolves abnormal
TCP behaviors and generates unique signatures for each application using the packet
order, direction, and payload size of the first N packets in a flow, and uses them to
classify the application traffic. The evaluation shows that this method can classify
application traffic easily and quickly with high accuracy rates of over 99%. Furthermore,
the method can classify traffic generated by applications that use the same application
protocol or are encrypted.

Keywords: application-level traffic classification, application identification, statistical
signature, signature-based classification, statistics-based classification

1. INTRODUCTION

The classification of network traffic flows based on the application or services that
generated them is crucial for the effective management and operation of network re-
sources and for assuring quality of service (QoS) and service-level agreements (SLAs).
For these policies, fast and accurate traffic classification at the application layer is
essential. Accurate real-time traffic classification is an important part of determining the
reliability of monitoring and controlling the application traffic of individual applications
[1, 2]. Traditionally, traffic classification was accomplished using TCP or UDP port
numbers, or payload data inspection [3]. However, once applications started using ran-
dom port numbers or port numbers assigned to other protocols, the reliability of port-
based classification is diminishing. At the same time, the payload data inspection began

Received April 30, 2014; revised October 18, 2014; accepted December 2, 2014.
Communicated Meng Chang Chen.
* This research was supported by a Korea University Grant.
+ Corresponding author: tmskim@korea.ac.kr.

HYUN-MIN AN, SU-KANG LEE, JAE-HYUN HAM AND MYUNG-SUP KIM

1670

being limited in terms of complexity, privacy, and application encryption, which have
made it difficult to effectively classify application traffic.

Several statistical-flow-information based methods have been introduced to remedy
the drawbacks of traditional port-based and payload-based classification [4, 5]. Classifi-
cation approaches that use statistical information have certain advantages. For example,
they can be applied to encrypted traffic, the usage of which has been recently increasing.
In addition, such approaches do not need to analyze the packet payload data, and thus can
classify traffic quickly. One problem of a classification approach is that it must wait until
the end of the flow to complete the statistical information. Therefore, the traffic cannot
be classified in real time. To overcome this problem, methods utilizing the first N packets
of a flow have been studied. However, these methods demand a computation cost for
feature extraction when producing statistical information, and because their machine
learning (ML) algorithms have an extremely high computation complexity, they cannot
be applied to real-time classification in networks with a very large bandwidth. In addition,
because these methods classify application traffic into application protocols, their results
are also not categorized based on each application. When applications use the same
protocol, these methods will classify several applications into one application protocol.
Therefore, they cannot be applied to many different network management and operation
policies that are adjusted to each application. Most of all, no studies have shown a
process for resolving abnormal TCP behaviors, such as packet retransmissions and out-
of-order packets.

TCP provides transparent data transfers to the upper layer (application layer) through
a trustworthy data stream channel between two end hosts. If an error occurs during the
middle of a session, the receiver throws the packet away and the sender retransfers the
packet. Thus, when a packet retransmission occurs from such an error, the receiver
resolves the problem by throwing the erroneous packet away. Out-of-order packets can
be incurred when a previous packet takes longer than a following packet during the
transfer process. The receiver can detect and resolve this type of problem by comparing
the sequence number of the packets. However, there is no detection process or resolution
to these problems available at the traffic collection point. Therefore, all packets are
collected, and the packet order may differ at each collection point. These problems cause
the packets to become disordered and affect the statistical flow information. Owing to
this limitation, the features lose their consistency.

In this paper, we analyze abnormal TCP behaviors and propose an algorithm for
resolving them. We also propose a traffic classification method based on applications
using a statistical signature for resolving such behaviors. The signature represents the
unique flow pattern of each application, which can be utilized to distinguish different
applications. Our method generates statistical signatures for each application using
statistical flow information from traffic traces of an application. Furthermore, our method
classifies the application traffic easily and quickly during real network operations
through a simple matching of new flows to the signatures of each application.

In the generation of signatures for an application, flows of the application’s traffic
traces are converted into flow vectors using the packet order, direction, and payload size
of the first N packets of each flow. The flow vectors are then grouped according to the
similarity between flow vectors using our flow grouping algorithm for identifying the
unique flow patterns of an application. The groups of flow vectors are optimized and the

ROBUST TRAFFIC IDENTIFICATION USING STATISTICAL SIGNATURE

1671

application signatures are extracted from each group using our group-optimization and
signature-generation algorithm, respectively. For the classification of application traffic,
the flow vector of a new flow in a real operation network is compared with each sig-
nature using our signature-matching algorithm to determine the application belonging to
the flow.

The proposed method has four advantages. First, it can classify traffic based on the
applications generating the traffic in real time, can be applied to networks with a large
bandwidth, and is able to manage a large amount of traffic. It also uses only the packet
order, direction, and payload size of the first N packets of a flow during traffic
classification, and therefore does not need to analyze the packet payload data and can
generate flow vectors without incurring a computation cost for the feature extraction
from the flow. Our method also uses a simple comparison for signature matching with an
extremely low computational complexity in comparison to ML algorithms. As a result,
our method can operate effectively in real network operations. Second, it can obtain
highly accurate classification results because it uses statistical signatures that reflect the
unique flow patterns from each application. Our evaluation shows that our method can
classify application traffic with high accuracy rates of more than 99.97%. Third, it can
classify application traffic into each application, and not the application protocols,
because it uses unique signatures for each application. Our evaluation also shows that our
method can classify application traffic utilizing the same application protocol into the
proper applications. Fourth, it resolves abnormal TCP behaviors that cause feature incon-
sistency, and is therefore more robust than other methods.

The remainder of this paper is organized as follows. Section 2 briefly reviews and
summarizes previous work in this area. Section 3 analyzes different abnormal TCP
behaviors and proposes algorithms for detecting and resolving these behaviors. Section 4
introduces our proposed classification method in detail. Section 5 describes our ex-
perimental method and analyzes the classification results. Some concluding remarks and
areas for future work are finally provided in Section 6.

2. RELATED WORK

Several traffic classification methods utilizing statistical information of application
traffic flows have recently been developed [4, 5]. These methods commonly use ML
algorithms and the characteristic features (e.g., port number, flow duration, inter-arrival
time, and packet size) of the application traffic. Because they do not analyze the payload
data, such methods can classify traffic faster than payload-based methods and no privacy
problems are incurred. In addition, these methods can classify encrypted traffic. Fur-
thermore, by using high-quality algorithms qualified for the ML field, these methods can
classify traffic with highly accurate results.

Table 1 compares the recent ML-based traffic classification methods that use fea-
tures as statistical information on the traffic flows. The Feature Extraction Range shows
the range in a flow necessary for extracting the features for traffic classification. In other
words, this column shows the amount of packets that must be investigated to complete
the features. A Full flow indicates that the method requires flow completion to extract the
flow features, which can be conducted at the end of the flow; therefore, it cannot classify
application traffic in real time. A Partial flow means that the method uses part of a flow

HYUN-MIN AN, SU-KANG LEE, JAE-HYUN HAM AND MYUNG-SUP KIM

1672

for extracting the flow features. The Feature Computation Cost shows the computational
overhead for the feature extraction. A value of Low means that the method does not
require any computations for feature extraction. An Average value indicates that the
method requires a simple computation for extracting features, and that the number of
features used is less than ten. A value of High indicates that the method uses features
requiring complex computations to be extracted, or uses more than ten features that
require a simple computation. ML Algorithm indicates the machine-learning algorithm
used in the proposed method, and it infers the computation complexity of the traffic
classification. Classification Traffic Class shows the class of application traffic classified
by the proposed method. Protocol indicates the application protocol, and Application is
each individual application. For example, N Protocols, two applications means that the
method can classify application traffic into N application protocols and two individual
applications.

Table 1. Comparison of recent ML-based traffic classification using statistical flow infor-
mation

Related
Work

Feature Extraction
Range

Feature Com-
putation Cost

ML Algorithm
Classification Traffic

Class

Bernaille
et al. [6]

Partial flow Low
K-Means, GMM,

HMM
N Protocols,

two applications

Tomaz Bujlow
et al. [7]

Partial flow High C5.0
N Protocols,

three applications

Y. Jin et al. [8] Full flow Medium
Modular architecture
combines three linear

ML Algorithms
N Protocols

J. Tan et al. [9] Full flow Medium
SVM optimized by

Particle Swarm
Optimization

N Protocols,
one application

R. Yuan
et al. [10]

Full flow Medium SVM N Protocols

Runyuan Sun
et al. [11]

Full flow High
Probabilistic Neural

Networks
N Applications

C. Yin
et al. [12]

Partial flow Low HMM
N Protocols,

five applications

Table 1 shows that some methods extract features at the end of a flow [8-11]; there-
fore, they cannot be applied to real-time traffic classification because they can determine
the application of a new flow only after the flow finishes. To overcome this limitation,
methods for extracting features in the first N packets of a flow have been studied [6, 7,
12], but the high feature computation cost or high computational complexity of the ML
algorithm used in these methods makes them difficult to achieve real-time traffic
classification in networks that have a very large bandwidth. In addition, most of these
methods mainly classify application traffic into each application protocol, not each
application, which is insufficient when applying the method to network management or
operation policies that adjust or control individual application traffic. Finally, there have

ROBUST TRAFFIC IDENTIFICATION USING STATISTICAL SIGNATURE

1673

been no studies resolving the limitations that occur from abnormal TCP behaviors or that
can change the statistical information of TCP sessions.

To overcome the limitations of previous methods using statistical information, the
proposed method resolves abnormal TCP behaviors and generates statistical signatures
for each application in advance. During traffic classification, our method composes flow
vectors from the first N packets of new flows without incurring any computation cost,
and performs signature matching with linear computation complexity for application
traffic classification. The proposed method classifies the application traffic into each
individual application and has the advantage of traffic classification using statistical
information.

3. ABNORMAL TCP BEHAVIOR

When a session is established using TCP, one of the transport layer protocols in
TCP/IP, a stream that guarantees continuous data transfers, is provided. TCP provides
transparent data transfers to the application layer through a trustworthy data-stream chan-
nel between two end hosts.

TCP uses the sequence (Seq) number for checking the transfer data sequence. The
Seq number increases with the payload size of the transferred packet. TCP also uses an
Acknowledge (ACK) number for checking whether the data transfer has been properly
completed. When data are transferred with no errors, the receiver sends an ACK number
indicating the transferred Seq number plus the transferred payload size to the sender. If
the receiver detects an error in a packet, it throws the packet out and sends the Ack
number for the discarded packet. The sender then retransmits the packet. If packets arrive
at the receiver in a disordered manner for a certain reason (e.g., the path of an earlier sent
packet to the receiver is longer than that of a later packet), the receiver rearranges the
packets in the proper order using each packet’s Seq number. In this way, TCP can
guarantee the correct order of a data stream.

However, TCP has no responsibility for correcting the packet order at a traffic
collection point. If there are no such processes for guaranteeing a data stream, traces of
collected traffic can contain several retransmitted packets and the sequence of packets is
disordered. Because errors such as a packet retransmission and out-of-order packets
occur irregularly, flows that are generated through the same behavior in an application
can be collected in a different packet sequence and indicate different statistical in-
formation. Finally, the traffic traces collected with no way to handle such errors are hard
to use for statistical-information based traffic classification. Therefore, we propose a
method for eliminating packet retransmissions, and properly reordering the packet
sequence at the traffic collection points.

3.1 Packet Retransmission

A packet retransmission influences the statistical information of a flow because a

retransmitted packet is collected at the traffic collection point along with the original
packet. This can change the information, such as the sequence, size, and the number of
the packets.

HYUN-MIN AN, SU-KANG LEE, JAE-HYUN HAM AND MYUNG-SUP KIM

1674

Fig. 1. Two types of packet retransmission.

There are two types of packet retransmission, each with its own process of elimi-
nation. In the first type of packet retransmission, the original packet and a retransmitted
packet have the same payload size and Seq number. To eliminate this, we store the
original packet and ignore the retransmitted packet for the original application behavior.
In the second type of packet retransmission, the payload size of the retransmitted packet
is bigger than that of the original packet because, when a packet retransmission is
required, TCP repacketizes the packet by adding more data to the payload of the original
packet to improve the performance. Fig. 1 shows the two types of packet retransmission.
For Type 2, the payload size of the retransmitted packet is changed at the transport layer.
In other words, with repacketized packets, the statistical flow information cannot reflect
the original application behavior.

To correct the packet sequence for Type 2, we store the original packet and ignore
the retransmitted packet. Furthermore, we discard packets that are related with the
sequence of the retransmitted packet. To do so, we use the Seq number of each packet.

Remove all non-payload packets from the packet sequence
1: procedure Resolving Packet Retransmission
2: Input: P(n) in a TCP flow
3: find P(k) which P(k).dir == P(n).dir && biggest k in 0 < k < n
4: if(P(k).seq == P(n).seq)
5: then Delete P(n)
6: if(P(k).seq + P(k).len < P(n).seq)
7: then Delete P(n)
8: end procedure
9: Payload packet: a packet with payload data
10: Non-Payload packet: a packet without payload data
11: P(n): nth payload packet in a TCP flow
12: P(n).seq: nth payload packet’s sequence number
13: P(n).ack: nth payload packet’s acknowledge number
14: P(n).dir: nth payload packet’s transmission direction
15: P(n).len: nth payload packet’s payload length

Fig. 2. Algorithm for resolving packet retransmission.

ROBUST TRAFFIC IDENTIFICATION USING STATISTICAL SIGNATURE

1675

Fig. 2 shows the algorithm used for resolving a packet retransmission. When P(n) is
inputted, it is compared with the pre-stored packets that are transmitted in the same
direction. If a packet retransmission is detected, P(n) is deleted. The find P(k) function
checks only whether two packets have same direction or not, and the value of N is small
enough to make the proposed method classifies the traffic in real-time. Therefore, find
P(k) function is light-weight function and its overhead can be ignored.

3.2 Out-of-order Packets

When a connection is established between two end hosts, packets can be transferred

through different paths depending on the network status. If an earlier-sent packet is
transferred through more routers than a later-sent packet, the later-sent packet may arrive
at the receiver before the earlier-sent packet. In this situation, the packets are said to be
out-of-order. Fig. 3 shows an example of out-of-order packets.

The packet sequence at the receiver (Host B) is different from that of the sender

(Host A). The packet sequence at the receiver is corrected automatically based on the
TCP behavior. However, for traffic collection system (TCS), when traffic is collected at
the collection point (CP), a reordering process is basically not provided. Therefore, the
traffic is collected in a different sequence from the application behavior, which causes a
lack of consistency in the features. Fig. 4 shows such inconsistency caused by out-of-
order packets at CPs 1, 2, and 3. In this way, out-of-order packets influence the statistical
flow information. For a trustworthy traffic classification, the problem of out-of-order
packets must be resolved.

Fig. 5 shows the algorithm used for resolving out-of-order packets. When a packet
is captured, our method checks whether a packet is retransmitted or not, and removes the
packet when it is retransmitted. After that, it checks whether a packet is an out-of-order
packet or not. Therefore, the process to resolve out-of-order packets can adjust the out-
of-order packets regardless of retransmission packets.

Fig. 3. Out-of-order packets.

HYUN-MIN AN, SU-KANG LEE, JAE-HYUN HAM AND MYUNG-SUP KIM

1676

Fig. 4. The feature inconsistency caused by out-of-order packets.

Remove all non-payload packets from the packet sequence
1: procedure Resolve Packet Out-of-order
2: Input : P(n) in a TCP flow
3: find P(k) which P(k).dir == P(n).dir && biggest k in 0 < k < n
4: if(P(k).seq > P(n).seq)
5: find P(i) which P(i).dir == P(n).dir && P(i).seq < P(n).seq
6: && biggest i in 0 < i < k
7: find P(j) which P(j).dir == P(i).dir && smallest j in i < j < k
8: for P(m) from P(j1) to P(i+1)
9: if(P(m).dir != P(n).dir && P(m).ack == P(n).seq + P(n).len)
10: then put P(n) before P(m)
11: end procedure
12: if(P(m).dir != P(n).dir && P(m).ack < P(n).seq + P(n).len
13: then put P(n) after P(m)
14: end procedure
15: end for
16: put P(n) after P(i);
17: end if
18:end procedure

Fig. 5. Algorithm for resolving out-of-order packets.

ROBUST TRAFFIC IDENTIFICATION USING STATISTICAL SIGNATURE

1677

When P(n) is inputted, it is compared with the pre-stored packets transmitted in the
same direction. If there is a pre-stored packet that has a larger Seq number than P(n), the
out-of-order packet is detected and the situation is resolved. The latest transferred packet
that has the same direction and a smaller Seq number than P(n) is P(i). The earliest
transferred packet that has same direction and a larger Seq number than P(n) is P(j). P(n)
is located between P(i) and P(j) when there are no packets moving in the opposite
direction. If there are packets between P(i) and P(j) that are moving in the opposite
direction, the location of P(n) is determined based on these packets. If we find a packet
being transferred in the opposite direction that has the same Ack number as the Seq
number of P(n) plus payload size of P(n), we put P(n) in front of the packet. If we find a
packet transferred in the opposite direction that has a smaller Ack number than the Seq
number of P(n) plus payload size of P(n), we place P(n) behind this packet.

4. TRAFFIC CLASSIFICATION METHODOLOGY USING
STATISTICAL SIGNATURE

In this section, we describe the proposed traffic classification method after defining
a flow vector and describing the characteristics required to distinguish application traffic.
To classify application traffic, the signatures that are unique to each application are
necessary because we classify traffic into individual application classes, instead of into
application protocols. Compared with previous methods that classify traffic into app-
lication protocols, the proposed method can be utilized in a broad range of fields.

4.1 Flow Vector

In general, the first few packets of a flow communicate based on pre-defined rules

of the application. The first N packets of a flow can be used as a distinguishable feature
to identify the application because they communicate according to pre-defined rules and
are extremely different in each application [6].

In this study, we define a flow as a set of packets with sequence that are transmitted
in both directions based on a 5-tuple (source IP, destination IP, source port, destination
port, and L4 protocol). The packet order is formed according to a standard order, which
we defined previously, using the collection time.

The flow vector is presented with a sequence composed of the payload size and the
direction of the first internal N packets based on the packet order. The payload size and
transmission direction of each packet are expressed as an integer and “+/−,” respectively.
In the case of TCP, the transmission direction from the client to the server is defined as
“+,” and the opposite direction is defined as “−.” In the case of UDP, because the
distinction between the client and the server is not clear, the direction of the first packet
is expressed as “+,” and the opposite direction is determined as “−.” The flow vector is
composed only of packets that have a payload. The control packets, such as SYN or
ACK, in the TCP sessions are excluded. This prevents irregular control packets from
affecting the flow vector.

For example, if a flow communicates in both directions, as shown in Fig. 6, the flow
vector has values of +20, −30, +20, +25, and −15, excluding the control packets, such as
SYN, SYN/ACK, and ACK.

HYUN-MIN AN, SU-KANG LEE, JAE-HYUN HAM AND MYUNG-SUP KIM

1678

Flow Vector = (+20, -30, +20, +25, -15)

Fig. 6. The flow vector.

From the observations on popular applications used in the Korea University campus

network, we found that applications can be distinguished based on their flow vectors. Fig.
7 shows the flow vectors from four different applications, Dropbox, Microsoft Outlook,
PuTTY, and Xshell. All flow vectors that have the same packet order and direction are
expressed as a group, which is plotted using a polygonal line. The vertical axis shows a
multiplication of the payload size and direction of the packets. The horizontal axis shows
the packet order. The multiplication of the payload size and direction of the packet can
have a value ranging from −1,460 to 1,460.

Fig. 7. The flow vectors of four different applications.

ROBUST TRAFFIC IDENTIFICATION USING STATISTICAL SIGNATURE

1679

Unlike PuTTY, most of the applications in Fig. 7 do not have flows that commu-
nicate using one identical flow vector pattern. The flows can be divided into either two or
three specific patterns, such as Xshell and Dropbox, or divided into a number of specific
patterns, such as Outlook. However, the flow vectors of each application show its own
unique characteristics when compared with the flow vectors of the other applications.

Fig. 8 shows each flow vector from six different applications, i.e., Xshell, PuTTY,
Dropbox, Nateon, Skype, and Naverlive. These are projected onto a two-dimensional
space to show the possibility of classification using a flow vector. We expressed only the
flows of each application after removing the outlier flows through our flow-grouping and
group-optimization algorithms. The flow grouping indicates the binding process of flows
that have similar flow vectors to identify the specific flow patterns of each application.
The outlier flows indicate the flows that cannot be regarded as a signature because the
number of similar flow vectors is extremely small. The horizontal axis shows the first
value of the flow vector, which indicates the multiplication of the payload size and the
direction of the first packet of the flow. The vertical axis shows the fourth value of the
flow vector, which is a multiplication of the payload size and the direction of the fourth
packet of the flow. Each point denotes a pair (first and fourth values) of flow vectors of
each application.

Originally, four flow groups are generated at Xshell, but three groups appear to be a
single group on a two-dimensional space because they have the same value for the first
and fourth packets. One group is generated for PuTTY, and four groups are generated for
Dropbox, but two groups overlap because they have similar values for the first and fourth
packets. For a similar reason, five groups are generated for Nateon, but three groups are
marked as a single group. For Naverlive, nine groups are generated, but seven groups
overlap. For Skype, 16 groups are generated, and some appear to be overlapped.

A flow group indicates a specific flow pattern or application behavior. As shown in
Fig. 8, the flows of each application have regular patterns, even if the flow vectors are
projected onto a two-dimensional space. Regular flow patterns can be used to distinguish
between each application. Fig. 8 shows that, with the exception of Skype, the other five
applications have less than ten repeated flow patterns. Because the application behavior

Fig. 8. Projection of the flow vectors of six applications onto two-dimensional Euclid space.

HYUN-MIN AN, SU-KANG LEE, JAE-HYUN HAM AND MYUNG-SUP KIM

1680

varies, a number of flow groups are generated for Skype. Nateon and Naverlive overlap,
as shown in Fig. 8, but they have distinguishable values for the second, third, and fifth
packets. The flow groups of Naverlive and Skype appear to be overlapping, but they are
in fact slightly different in the other packets. Therefore, we know that the proposed flow
vector can be used to classify application traffic. Furthermore, distinguishable flow
vectors between PuTTY and Xshell, which use the same secure shell (SSH) protocol,
indicate that the proposed flow vector can be used to classify application traffic that uses
the same application protocol or is encrypted.

4.2 Statistical Signature

A signature represents a unique flow pattern of each application that can be utilized

to classify application traffic. The proposed method vectorizes flows from traces of
application traffic into flow vectors per application, and groups flow vectors based on
their similarity to identify flow patterns of each application. In sequence, a signature is
generated using a combination of a representative vector, which represents the flow
vectors of each group, and a distance threshold vector, which includes the flow vectors of
each group. If all of the individual flow vectors are used as a signature, the number of
signatures increases. As a result, managing the signatures becomes difficult, and the
system becomes overloaded when identifying the application traffic. Therefore, an
optimal signature combines the representative vector and distance threshold vector that
represent each group by grouping the application flow vectors.

Fig. 9. Flowchart of application traffic classification using statistical signature.

Fig. 9 shows a flowchart of the proposed application traffic classification method
using statistical signatures. Our method is divided into two stages: signature generation
and traffic identification. In the signature generation stage, the first step is to remove
abnormal TCP behaviors from the traces of traffic. Next, application flows of traces of

ROBUST TRAFFIC IDENTIFICATION USING STATISTICAL SIGNATURE

1681

ground truth traffic are vectorized into flow vectors, and the flows are grouped based on
the similarity between two flow vectors. Finally, signatures are extracted after optimizing
the groups. In the traffic identification stage, a new flow is generated from a series of
packets during a real network operation. Next, abnormal TCP behaviors in the flow are
removed, and the flow is vectorized into a flow vector using the first N packets. The flow
vector is classified into each application through signature matching with each signature.
The proposed method needs first N packets of each flow which don’t have abnormal TCP
behavior for feature. Therefore, when the packet retransmission occurs in a flow, it
collects packets more than the number of N for making up the N packets excluding the
retransmission packet.

4.2.1 Statistical signature generation

Statistical signature generation starts by removing abnormal TCP behaviors from

the traces of traffic. In the second step, flows are vectorized into a flow vector. The flow
vector vk of flow fk can be expressed as Eq. (1), and each element vk,i of vk can be written
as Eq. (2). Here, dk,i is the transmission direction of the ith packet of fk, and its value is
either +1 or −1. In addition, sk,i is the payload size of the ith packet of fk.

1 2(, ,...,)k k k knv v v v (1)
vk,i = dk,i  sk,i (2)

In the third step, flow vectors are grouped based on their similarity. The similarity

between two vectors is expressed as the distance vector that has elements as distance
between two vectors by each dimension. Similarity is used in the flow grouping and
signature matching algorithms. The distance vector dx,y = d(vx, vy) between vx and vy can
be written as (3).

   ,1 ,1 ,2 ,2 , ,, , , ,x y x y x y x n y nd v v v v v v v v     (3)

Statistical signature s is represented using a representative vector and distance

threshold vector, as in Eq. (4), where c is the centroid vector of the flow vector group; t is
the distance threshold vector, which can include every flow vector of the flow vector
group; and s is the combination of c and t of the flow vector group.

s = (c, t) (4)

Each flow vector v of flow vector group V(s), which is represented by the signature

s = (c, t), should satisfy Eq. (5). The similarity between all v that belong to V(s) and the
representative vector c should be less than or equal to distance threshold vector t.

(,) for ()d v c t v V s   (5)

Multiple signatures of each application can exist, and Eq. (6) shows signature set S.

1 ,2{ , , , }nS s s s  (6)

HYUN-MIN AN, SU-KANG LEE, JAE-HYUN HAM AND MYUNG-SUP KIM

1682

The flow vectors of each application are extracted from flows of ground truth traffic
traces that are collected in advance. The statistical signature set is then generated based
on the flow vectors. Application traffic can be classified according to the signature set.

 
 

minimize

 minimize

maximize

ˆ
S

S suchthat t s

V s





 

 (7)

To obtain an optimal signature set Ŝ from the given ground truth flows of each

application, the conditions in Eq. (7) should be satisfied. Here, |S| indicates the number of
signatures s of S, t(s) is the distance threshold vector of signature s, and |V(s)| is the
number of flow vectors of set V(s) represented by signature s. Thus, Eq. (7) indicates the
minimization of the number of signatures, the minimization of the sum of distance thres-
hold vectors, and the maximization of the number of flow vectors that belong to each
signature for obtaining an optimal signature set.

The fourth step is the group optimization step. To generate the optimal signature set
ˆ,S the group optimization step removes the inappropriate outlier flow vectors, along with

the outlier groups after completing the flow grouping. The outlier flow vectors that are
inside the group and do not meet the requirement of Eq. (8) are removed. Because c is
recalculated every time a flow is grouped, the flows that are contained in a group can be
changed. Removing outlier flows is performed once at a flow and it just calculates
distance between the flow vector and the centroid vector of the flow vector group.
Therefore, the time complexity of removing outlier flows is O(n). In addition, the outlier
groups that satisfy the condition of Eq. (9) are removed because the groups that contain a
significantly small number of flows cannot represent the behavior of a specific
application. Removing outlier groups is performed once at a group and it just compares
the number of flows in the group and the threshold value. Therefore, the time complexity
of removing outlier groups is O(n).

d(vj ci)  ti for  vi  Vi citi of Gi (8)

,
1

minimal flow count
m

i ji
j

V 


  (9)

In the final step, signature set Ŝ is generated, and has five attributes similar to those

in Table 2. In Table 2, ID is the identity of the application for the signature. Proto is an
L4 protocol for the signature, and has a value of either TCP or UDP. Flow grouping is
achieved by flows that have the same L4 protocol, even if the flows are generated from
the same application. Dim is the dimension of the flow vectors that belong to a signature.
All flows that belong to the same signature have the same dimension. Because the
dimension indicates the number of internal packets of the flow that are vectorized into
the flow vector, the value of the dimension can range from one to N. However, the
minimum value is defined as three in this study because it is difficult to generate a
sensible signature using one or two-dimensional flow vectors. In addition, N is em-
pirically defined as five when considering real-time and accurate traffic classification.

ROBUST TRAFFIC IDENTIFICATION USING STATISTICAL SIGNATURE

1683

Bernaille et al. [13] also showed that the first five packets of a flow are sufficient to
distinguish each application. C-vector is the centroid vector of the signature and is
calculated using all flow vectors that belong to the signature. T-vector is the condition of
flow grouping and indicates the range of the group. The initial value of T-vector must be
able to include the largest number of flows that indicate the same flow pattern, and can
exclude flows that indicate different patterns. C-vector is used along with T-vector to
identify the application of a new flow during traffic classification.

Table 2. Attributes of a flow group.
Attribute Description Example

ID Application name bittorrent

Proto L4 protocol: TCP/UDP UDP

Dim Dimension of vector 5

C-vector Centroid vector (+20,+30,-50,+20,-30)

T-vector Distance threshold vector (2, 5, 8, 4, 5)

Fig. 10. Optimal initial value of T-vector element according to the F-measure.

Fig. 10 shows the classification performance of the proposed method using different
initial value of T-vector element. Performance is evaluated by mean of ten applications f-
measure. In the packet and byte perspective, using 10 for the initial value of T-Vector
element shows best performance. It is because, if the initial value of T-vector element
increases, the flows of different applications can be grouped together. However, there are
some variations in the flow perspective. In the network management, the amount of the
packet and byte are more important than the number of the flow because the packet and
byte occupy the bandwidth indeed. Therefore, in this study, the initial value of every T-
vector element is set 10 to identify unique flow patterns of each application properly in
the flow grouping.

4.2.2 Traffic identification

In traffic identification, the traffic of a real operation network is captured and clas-

sified based on the signature of each application. A new flow is generated with a series of

HYUN-MIN AN, SU-KANG LEE, JAE-HYUN HAM AND MYUNG-SUP KIM

1684

packets captured from a real network operation. Abnormal TCP behaviors in a flow are
removed, and the flow is vectorized into a flow vector using the packet order, direction,
and payload size of its first N packets. The flow vector is compared with each signature
to determine its identity. If the flow vector of a new flow is included in a signature by the
C- and T-vectors, its application is determined as the ID of the signature.

Thus, traffic identification finds signature si shown in Eq. (10) for the flow vector v
of a new flow. At this time, si should have the same L4 protocol and dimension as v.

si such that d(ci, v)  ti for si = (ci, ti) (10)

In this study, a flow vector uses only the packet order, direction, and payload size of

the first five packets of a flow; therefore, flow vectorization for converting a flow into a
flow vector using these features does not need any computational costs. In addition,
signature matching is a simple similarity comparison operation with a linear computation
complexity, as shown in Eq. (10). Therefore, traffic classification using these simple flow
vectorization and signature-matching algorithms does not require high computational
costs in comparison to previous methods, which enables real-time traffic classification in
networks that have a very large bandwidth.

Table 3. Ground truth traffic.
Traffic Class Applications Flow (103) Packet (103) Byte (106)

Skype P2P communications 2.9 43.9 17.6
Naverlive Video streaming 2.6 50,807.5 41,404.3

GomTV Internet TV service 15.2 2,637.0 2,515.6
Xshell Telnet/SSH client 1.2 177.1 22.8

Teamviewer Remote control 1.8 722.6 291.7

Nateon Instant messaging 0.9 337.1 62.5
Dropbox Cloud file sharing 11.1 294.8 158.5
PuTTY Telnet/SSH client 0.7 80.4 11.5

Outlook MS mail service 12.7 1,150.4 692.3
uTorrent P2P download 1,116.4 62,151.0 49,494.5

5. EVALUATION

In this section, we describe the results of a traffic classification test on a campus
network to verify the proposed traffic classification using statistical signatures.

For our evaluation, we collected bi-directional packet traces from the Korea
University campus network, which was configured with one router at the Internet
junction, and we collected the traces of traffic from the router using port mirroring.

To evaluate the traffic classification, it is crucial to obtain a firm ground truth. We
deployed traffic measurement agents (TMAs) on selected hosts in the campus network
and created ground truth traffic [14]. Using the ground truth traffic through these agents
is more reliable for evaluating the proposed classification method than using the results
of another particular classification method [15].

ROBUST TRAFFIC IDENTIFICATION USING STATISTICAL SIGNATURE

1685

Table 3 shows a summary of the ground truth traffic we obtained for our evaluation.
The traffic was arranged by each application, verifying that our method can classify the
traffic into each application. Because the traffic was collected over a period of time, the
traffic volume varies according to the frequency of use of each application and the
amount of traffic generated.

We divided the ground truth traffic into two different sets obtained on different
dates. One traffic set was used only for signature generation. The other traffic set was
used only for the traffic classification test. Table 4 shows the traffic flows for signature
generation, and the number of signatures that were generated for each application.

We use the completeness and accuracy as evaluation metrics in accordance with
most of the traditional literature [3, 4, 16]. Completeness is a metric of how much traffic
was classified. Accuracy is a metric indicating the rate of traffic that was correctly
classified. Accuracy is determined by comparing the classification results with the
ground truth. Further, accuracy is divided into the overall accuracy and the accuracy per
application, which represents the precision and recall for each application. These
evaluation metrics are expressed by the flow, packet, and byte to provide more detailed
information.

The proposed method classifies a large amount of ground truth traffic in just a few
minutes, which indicates its real-time traffic classification capability. Table 5 shows the
overall accuracy and completeness of the traffic classification test in terms of flows,
packets, and bytes. The Unresolved case indicates the results of a test without the
removal process for abnormal TCP behaviors, and the Resolved case indicates the results
of the test after all TCP abnormal behaviors were removed.

Table 4. Traffic flows for signature generation and the number of signatures for each
application.

Traffic Class Flow Signature
Skype 1,000 16

Naverlive 1,138 9

GomTV 2,229 9
Xshell 730 4

Teamviewer 842 9

Nateon 456 5
Dropbox 6,232 4
PuTTY 382 1

Outlook 5,774 49
uTorrent 64,773 192

Table 5. Overall accuracy and completeness using proposed method.

Overall Accuracy Completeness

Unresolved case Resolved case Unresolved case Resolved case

Flow 99.83% 99.95% 68.42% 68.43%
Packet 99.89% 99.97% 85.01% 87.71%
Byte 99.90% 99.97% 84.84% 87.98%

HYUN-MIN AN, SU-KANG LEE, JAE-HYUN HAM AND MYUNG-SUP KIM

1686

For the unresolved case, the results show that the proposed method can achieve high
accuracy rates of greater than 99.83% for all units for application traffic that were
classified. From the perspective of completeness, the flow completeness was 68.42%, but
the packet and byte completeness were 85.01% and 84.84%, respectively. The reason for
the low flow completeness compared to the packet and byte completeness is the
existence of uTorrent traffic. The classification results of uTorrent, which occupies the
largest ground truth, have a significant impact on the flow completeness. uTorrent traffic
occupies a maximum of 95% of ground truth flows, but only 5.8% of the uTorrent flows
are used to generate signatures. It is difficult to analyze the remaining 94.2% of flows
using the signatures from 5.8% of flows. However, the uTorrent classification results
show a maximum packet classification of 81.25% and a byte recall of 81.13%, which
affect the packet and byte completeness. This shows that the signatures of uTorrent
correctly classify heavy flows, such as file downloads with several packets and bytes,
which are more crucial for traffic monitoring and network management [17].

For the resolved case, the overall accuracy rates for all units of application traffic
are higher than 99.95%. This result is higher than for the unresolved case. Furthermore,
the flow, packet, and byte completeness are 68.43%, 87.71%, and 87.98%, respectively.
These results are also higher than for the unresolved case. These results show that
resolving abnormal TCP behaviors can improve the performance, even when using the
same method.

Tables 6 and 7 show the precision and recall for each application, respectively,
which are responsible for the overall accuracy and completeness. The results of the
unresolved case show that the proposed method can achieve high precision rates of more
than 99.79% for every application for all units, even when a few recall rates are relatively
low and affect the overall completeness.

Table 6. Precision of each application using proposed method.

Traffic
Class

Flow Packet Byte

Unresolved
case

Resolved
case

Unresolved
case

Resolved
case

Unresolved
case

Resolved
case

Skype 99.85% 99.96% 99.85% 99.97% 99.85% 99.97%

Naverlive 99.85% 99.88% 99..90% 99.91% 99..91% 99.91%

GomTV 99.81% 99.93% 99.85% 99.93% 99.87% 99.93%

Xshell 100% 100% 100% 100% 100% 100%

Teamviewer 99.85% 99.94% 99.85% 99.96% 99.85% 99.96%

Nateon 99.80% 99.91% 99.83% 99.92% 99.83% 99.92%

Dropbox 99.85% 99.90% 99.87% 99.90% 99.87% 99.90%

PuTTY 100% 100% 100% 100% 100% 100%

Outlook 99.79% 99.93% 99.80% 99.94% 99.81% 99.94%

uTorrent 99.83% 99.95% 99.89% 99.97% 99.89% 99.97%

For the unresolved case, each precision rate for every application reaches almost
100%. The flow precision rates are greater than 99.88% for all applications for all units,
and the packet and byte precision rates are over 99.90%. Furthermore, all precision rates

ROBUST TRAFFIC IDENTIFICATION USING STATISTICAL SIGNATURE

1687

Table 7. Recall of each application using proposed method.

Traffic Class
Flow Packet Byte

Unresolved
case

Resolved
case

Unresolved
case

Resolved
case

Unresolved
case

Resolved
case

Skype 65.70% 69.59% 68.90% 72.70% 81.18% 86.12%

GomTV 70.10% 71.56% 90.26% 90.35% 90.44% 90.51%

Naverlive 83.26% 84.24% 89.42% 90.96% 89.47% 91.07%

Nateon 90.67% 91.30% 98.60% 98.64% 96.38% 96.41%

Outlook 98.12% 98.50% 99.41% 99.80% 99.16% 99.55%

Xshell 96.53% 96.28% 97.58% 97.29% 97.57% 97.29%

PuTTY 72.15% 70.20% 65.45% 64.81% 59.08% 58.97%

Teamviewer 99.05% 99.35% 98.72% 99.06% 98.31% 98.71%

Dropbox 84.69% 88.87% 84.98% 85.15% 84.48% 84.56%

uTorrent 66.50% 66.43% 81.25% 85.15% 81.13% 85.69%

for PuTTY and Xshell reach 100%. The PuTTY and Xshell use same protocol, SSH.
Even if the applications use the same application protocol, still they can generate
different payload data in the same procedure of pre-defined rules because there can be
different information of application, and the applications can customize the protocol in
the permissible range from protocol manual for their convenience. There are distinct
differences between Xshell and PuTTY in the direction and payload size of first five
packets based on packet order, although they use the same application protocol (SSH).
First, the sizes of the second packet are different from each other. The second packet
contains the SSH version and client program information. The difference in the payload
size occurs because the client program information of the two applications is different.
The payload size of second packet of Xshell is 49 bytes, and that of PuTTY is 28 bytes.
Second, the Xshell client transmits only the third packet for “key exchange init”, but the
PuTTY client transmits the third and fourth packets for “key exchange init”. Therefore,
the payload sizes of the third and fourth packets are different, additionally fourth packet
has different transmission direction for the two applications, which affects payload size
and transmission direction of successive packets such as the fifth packet. The proposed
method generates the signatures by application unit, so it can extract the characteristics of
individual application and can classifies the applications that use same protocol into
individual applications. For the resolved case, the performance indicates higher rates
than for the unresolved case. However, misclassifications still exist. A misclassification
is incurred by different abnormal behavior in each application. When an end host sends
its data stream regardless of the transferring data of opponent end host, the packet
sequence is disordered. There is no correct answer for this problem because there is no
intension of it. It occurs in the full-duplex TCP session or UDP session. Traffic clas-
sification robust to this abnormal behavior of applications is an important topic for our
future research.

A low flow completeness problem is shown in the flow recall rates of a few of the
applications, such as Skype, Naverlive, Xshell, and uTorrent. The flow recall rate is also

HYUN-MIN AN, SU-KANG LEE, JAE-HYUN HAM AND MYUNG-SUP KIM

1688

less than the packet and byte recall rates for most of the applications. This is because of
flows that have only one or two packets. We defined the minimum value for the
dimension of the flow vector as three, and generated the signatures. However, we used
only real traces of traffic of the applications studied in this test, and the signatures cannot
classify flows with only one or two packets. In addition, flows of TCP sessions that
terminated abnormally in traffic traces contributed to the low recall rates. Naverlive has
the largest gap between the flow and packet (or byte) recall. This means that the recall of
small flows that have only a few of packets (or bytes) and are unrelated to streaming is
low, but the recall of large flows that have several packets (or bytes) and are related to
streaming is high.

The recall rate of each application is also affected by the signature conflict policy.
For this study, our method classifies a new flow that is matched to several signatures
with different IDs as an unknown flow to provide high accuracy rates. If other policies
are applied, the recall rate can be improved. For example, our method can classify an
unknown flow into the application of the signature that has the highest similarity [18],
use consecutive port numbers [19] or server-specific port numbers [20], or report
applications with signatures that are matched to the unknown flow for the network
manager to determine its application. In the future, we will study the signature conflict to
improve the recall rate of each application. Performance improvement was achieved in
the recall of each application. Some applications, but not all, that use more full-duplex
sessions than others showed specific improvements in performance.

We compare the performance of the proposed method against that of the method
that is introduced by Bernaille et al. [6]. Bernaille et al. [6] proposed the use of clustering
techniques to achieve fine-grained classification based on size and direction of packets.
They used partial flow feature and their feature computation cost is low enough to
classify traffic in real-time. We implemented and evaluated K-Means Center from [6]
according to the paper [6] faithfully. The K is decided as 170 for the unresolved case and
160 for the resolved case by experimental basis likewise introduced in paper [6].

Fig. 11 shows the results of performance comparison of the proposed method and K-
Means Center. The performances of K-Means Center are increased after resolving the
abnormal TCP behaviors like proposed method. It evidently shows that if there are the
abnormal TCP behaviors, K-Means Center cannot classify the traffic accurately because
of the feature inconsistency occurred by abnormal TCP behaviors.

Overall accuracy Completeness

Fig. 11. Comparing performance of two methods.

ROBUST TRAFFIC IDENTIFICATION USING STATISTICAL SIGNATURE

1689

Shown as left side of Fig. 11, the proposed method achieves higher accuracy than K-
Means Center in the flow, packet, and byte perspectives. However, in the completeness
perspective, shown as the right side of the Fig. 11, the K-Means Center achieves higher
flow completeness than the proposed method. This is because the K-Means Center can
classify the almost uTorrent traffic while the proposed method classifies only heavy
uTorrent traffic. However, the proposed method achieves higher completeness in packet,
and byte perspective because the proposed method can classify the heavy flows better
than K-Means Center. In the network management, the amount of the packet and byte are
much more important than the number of the flow because the packet and byte occupy
the bandwidth indeed. Except the flow completeness, the proposed method shows higher
performance than K-Means Center. This is because the proposed method uses N-
dimensional similarity for measuring similarity between flow vectors while the K-Means
Center uses Euclidean distance that is only 1-dimensional similarity regardless of the
number of dimension of feature. Using N integers and N thresholds are much stricter than
using one real number and one threshold, obviously. In addition, the proposed method
groups the flow vectors which are generated from the same process, while K-means
Center clusters the total flow vector at once. Therefore, the proposed method can extract
the characteristic of individual application more accurately.

6. CONCLUSIONS

In this paper, we analyzed abnormal TCP behaviors and proposed an application-
based traffic classification method that uses statistical signatures by resolving such
behaviors. Abnormal TCP behaviors are the problems that should be resolved for robust
traffic classification because they result in feature inconsistency. A statistical signature
represents the unique flow pattern of each application and can be used to distinguish
applications. Statistical signatures for each application are generated by our flow group-
ing, group optimization, and signature-generation algorithms. Our method then classifies
new flows into individual applications through signature matching in real network opera-
tions.

Our method can be effectively applied to real-time traffic classification in networks
that have a very large bandwidth because it does not require any computational cost for
feature extraction, and because signature matching is a simple similarity comparison. Our
evaluation shows that the proposed method can classify application traffic easily and
quickly with high accuracy rates of more than 99% for every application for all units
when all abnormal TCP behaviors are resolved. We also evaluated the performances by
comparing the proposed method and K-Means Center that is introduced by Bernaille et al.
[6]. The proposed method achieves higher performance in the all perspectives except the
flow completeness. However, in the network management, the amount of the packet and
byte are much more important than the number of the flow because the packet and byte
occupy the bandwidth indeed. The evaluation also showed that our method can classify
traffic into each application that uses the same application protocol or encrypts its
payload. Therefore, our method can be applied to various types of network management
and operations that must control individual applications with high accuracy. In addition,
the resolution of abnormal TCP behaviors was verified through performance improve-

HYUN-MIN AN, SU-KANG LEE, JAE-HYUN HAM AND MYUNG-SUP KIM

1690

ments for the resolved cases.
Our future studies will focus on three areas. First, we will conduct a study on

signature conflicts to improve the completeness and recall ability of our method. Second,
we intend to rearrange the UDP packets according to the behaviors of each application to
increase the completeness and accuracy. Third, we will study an accurate and detailed
classification method for HTTP traffic by extending our proposed method.

REFERENCES

1. M. S. Kim, Y. J. Won, and J. W. K. Hong, “Application-level traffic monitoring and
an analysis on IP networks,” ETRI Journal, Vol. 27, 2005, pp. 22-42.

2. T. T. T. Nguyen, G. Armitage, P. Branch, and S. Zander, “Timely and continuous
machine-learning-based classification for interactive IP traffic,” IEEE/ACM Tran-
sactions on Networking, Vol. 20, 2012, pp. 1880-1894.

3. A. Callado, C. Kamienski, G. Szabo, B. Gero, J. Kelner, S. Fernandes, et al., “A sur-
vey on internet traffic identification,” IEEE Communications Surveys and Tutorials,
Vol. 11, 2009, pp. 37-52.

4. T. T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic clas-
sification using machine learning,” IEEE Communications Surveys and Tutorials,
Vol. 10, 2008, pp. 56-76.

5. A. Dainotti, A. Pescape, and K. C. Claffy, “Issues and future directions in traffic
classification,” IEEE Network, Vol. 26, 2012, pp. 35-40.

6. L. Bernaille, R. Teixeira, and K. Salamatian, “Early application identification,” in
Proceedings of ACM CoNEXT Conference, 2006, Article No. 11.

7. T. Bujlow, T. Riaz, and J. M. Pedersen, “A method for classification of network
traffic based on C5.0 machine learning algorithm,” in in Proceedings of Interna-
tional Conference on Computing, Networking and Communications, 2012, pp. 237-
241.

8. Y. Jin, N. Duffield, J. Erman, P. Haffner, S. Sen, and Z. L. Zhang, “A modular
machine learning system for flow-level traffic classification in large networks,”
ACM Transactions on Knowledge Discovery from Data, Vol. 6, 2012, pp. 1-34.

9. J. Tan, X. Chen, and M. Du, “An internet traffic identification approach based on
GA and PSO-SVM,” Journal of Computers, Vol. 7, 2012, pp. 19-29.

10. R. Yuan, Z. Li, X. Guan, and L. Xu, “An SVM-based machine learning method for
accurate internet traffic classification,” Information Systems Frontiers, Vol. 12, 2010,
pp. 149-156.

11. S. Runyuan, Y. Bo, P. Lizhi, C. Yuehui, Z. Lei, and J. Shan, “Traffic classification
using probabilistic neural networks,” in Proceedings of International Conference on
Natural Computation, 2010, pp. 1914-1919.

12. C. Yin, S. Li, and Q. Li, “Network traffic classification via HMM under the guidance
of syntactic structure,” Computer Networks, Vol. 56, 2012, pp. 1814-1825.

13. L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian, “Traffic clas-
sification on the fly,” ACM SIGCOMM Computer Communication Review, Vol. 36,
2006, pp. 23-26.

14. B. C. Park, Y. J. Won, M. S. Kim, and J. W. Hong, “Towards automated application

ROBUST TRAFFIC IDENTIFICATION USING STATISTICAL SIGNATURE

1691

signature generation for traffic identification,” in Proceedings of IEEE Network
Operations and Management Symposium, 2008, pp. 160-167.

15. F. Gringoli, L. Salgarelli, M. Dusi, N. Cascarano, F. Risso, and K. C. Claffy, “GT:
picking up the truth from the ground for internet traffic,” ACM SIGCOMM Compu-
ter Communication Review, Vol. 39, 2009. pp. 12-18.

16. H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K. Lee, “Internet
traffic classification demystified: myths, caveats, and the best practices,” in Proceed-
ings of ACM CoNEXT Conference, 2008, Article No. 11.

17. K. C. Lan and J. Heidemann, “A measurement study of correlations of internet flow
characteristics,” Computer Networks, Vol. 50, 2006, pp. 46-62.

18. R. T. Gu, H. X. Wang, Y. M. Sun, and Y. F. Ji, “Fast traffic classification using joint
distribution of packet size and estimated protocol processing time,” IEICE Tran-
sactions on Information and Systems, Vol. E93D, 2010, pp. 2944-2952.

19. C. N. Lu, C. Y. Huang, Y. D. Lin, and Y. C. Lai, “Session level flow classification
by packet size distribution and session grouping,” Computer Networks, Vol. 56,
2012, pp. 260-272.

20. J. S. Park, S. H. Yoon and M. S. Kim, “Performance improvement of the payload
signature based traffic classification system using application traffic temporal lo-
cality,” in Proceedings of Asia-Pacific Network Operations and Management Sym-
posium, 2013, pp. 1-6.

Hyun-Min An received his B.S. degree in Computer Science
from Korea University, Korea, in 2012, and his M.S. degree in
Computer Science from Korea University, Korea, in 2014. He is
currently a researcher of Research Institute for Advanced Indus-
trial Technology, Korea University, Korea. His research interests
include Internet traffic classification and network management.

Su-Kang Lee received his B.S degree in Computer Science
from Korea University, Korea, in 2014. He is currently a master’s
student of Korea University, Korea. His research interests include
Internet traffic classification and network management.

HYUN-MIN AN, SU-KANG LEE, JAE-HYUN HAM AND MYUNG-SUP KIM

1692

Jae-Hyun Ham received his B.S. degree in Computer
Science and Engineering from Dongguk University, Korea, in
1999, and his M.S. degree in Computer Science and Engineering
from Postech, Korea, in 2001. He joined the Agency for Defense
Development, Korea, in 2001, where he is working currently as a
Senior Researcher in the Department of the 2nd R&D Institute-1.
He is also currently a Ph.D. student of Korea University, Korea.
His research interests include tactical network management, and
traffic monitoring and analysis.

Myung-Sup Kim received his B.S., M.S., and Ph.D. degree
in Computer Science and Engineering from Postech, Korea, in
1998, 2000, and 2004, respectively. From September 2004 to
August 2006, he was a Postdoctoral Fellow in the Department of
Electrical and Computer Engineering, University of Toronto,
Canada. He joined Korea University, Korea, in 2006, where he is
working currently as an Associate Professor in the Department of
Computer and Information Science. His research interests include
Internet traffic monitoring and analysis, service and network
management, and Internet security.

