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PAPER

A Lightweight Software Model for Signature-Based
Application-Level Traffic Classification System

Jun-Sang PARK†, Sung-Ho YOON†, Youngjoon WON††, Nonmembers, and Myung-Sup KIM†a), Member

SUMMARY Internet traffic classification is an essential step for stable
service provision. The payload signature classifier is considered a reli-
able method for Internet traffic classification but is prohibitively compu-
tationally expensive for real-time handling of large amounts of traffic on
high-speed networks. In this paper, we describe several design techniques
to minimize the search space of traffic classification and improve the pro-
cessing speed of the payload signature classifier. Our suggestions are (1)
selective matching algorithms based on signature type, (2) signature reorga-
nization using hierarchical structure and traffic locality, and (3) early packet
sampling in flow. Each can be applied individually, or in any combination
in sequence. The feasibility of our selections is proved via experimental
evaluation on traffic traces of our campus and a commercial ISP. We ob-
serve 2 to 5 times improvement in processing speed against the untuned
classification system and Snort Engine, while maintaining the same level
of accuracy.
key words: Internet traffic classification, payload signature, processing
speed, signature hierarchy

1. Introduction

As individual and corporate users become progressively de-
pendent on the Internet, network speeds are increasing and
a variety of services and applications are being developed.
Therefore, effective monitoring and analysis of Internet traf-
fic from an application perspective is necessary for efficient
network operation and management of various commercial
services such as pay-for billing, CRM and SLA.

Internet application traffic identification involves a se-
ries of processes ranging from capturing packets (traffic) on
a target network link to identifying and labeling packets for
categorization purposes. In previous studies, categorization
was not associated with an application name but rather an
L7 protocol name [1]–[3]. However, criteria for application
naming are needed because many applications can use an
L7 protocol such as hypertext transfer protocol (HTTP) for
various purposes. Distinguishing these types of HTTP traf-
fic based on their applications rather than on a single type
of HTTP traffic is reasonable. Therefore, the number of sig-
natures necessary to identify applications has been increas-
ing. As the number and complexity of signatures increase,
the processing speed of a payload signature-based classifica-
tion system has become a critical element in determining the
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performance of a traffic classification system (TCS).
However, processing speed has been a concern in hand-

ing real-time traffic on high-speed networks [4], [5]. Speed-
downgrading issues exist such as complexity and memory
usage of matching algorithms and the scalability of hard-
ware approaches (e.g., ASIC, FPGA).

In this paper, we propose three software-based tech-
niques to improve the processing speed of a payload signa-
ture traffic classifier. These include (1) the selective match-
ing algorithms based on signature type, (2) signature reorga-
nization using hierarchical structure and traffic locality, and
(3) early packet sampling in flow. Each technique can be
applied individually or in combination.

In particular, we address factors affecting the process-
ing speed of a payload signature classifier by examining
input data. Based on the various experimental analyses of
these performance factors, our proposed design techniques
attempt to minimize the search space of input traffic data as
well as that of signatures in the classification system. Signa-
ture reorganization especially reduces the signature search
space through a two-level signature hierarchy. Furthermore,
signature reorganization determines not only L7 protocol
naming but also application naming. Finally, we propose
the most effective combination of signature-matching algo-
rithms to several different forms of payload signatures.

We evaluate the feasibility of our methods by means of
campus and commercial ISP traffic traces. We rely on our
previous implementation of an untuned classification sys-
tem and in this paper, refer to the baseline system, which
we compare to the original and Snort systems [7]. In our
results, we observed two to five times improvement in pro-
cessing speed while maintaining the same level of accuracy
and completeness.

The paper is organized as follows. Section 2 describes
related work. Section 3 identifies factors affecting process-
ing speed and proposes our methods. In Sect. 4, we apply
our proposal to the classification system and prove its va-
lidity. Section 5 concludes the paper with suggestions for
future research.

2. Related Work

Internet traffic classification techniques such as port num-
ber matching, payload signature matching, statistics, and ap-
plication behavior-based methods have been the foundation
for traffic classification engines for many years [1], [3], [8],
[9]. However, these methods are not yet applicable to real

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers



2698
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.10 OCTOBER 2014

networks.
Port number matching is a simple but effective tech-

nique of identifying Internet traffic. The Internet Assigned
Numbers Authority (IANA) maintains a list of assigned port
numbers, but it does not guarantee sole usage by one appli-
cation. Arbitrary port usage is possible for multiple appli-
cations or for bypassing firewalls. Payload signature is a
unique string or binary pattern in the packet’s payload and
payload signature matching favors identification accuracy.
Despite its wide use in commercial products, payload sig-
nature matching has problems that Baldi et al. summarize as
follows. It (1) lacks robustness against packet loss, fragmen-
tation, and segmentation, (2) cannot extract payload signa-
tures, (3) is ineffective in encryption and tunneling, and (4)
requires many computing resources. With respect to (4), the
computation time is proportional to the traffic volume (e.g.,
session count) and the number of signatures [10]. Some al-
ternatives have been investigated to overcome these issues,
namely, statistic- [8] and behavior-based identification [9].
However, their applicability to real networks is still ques-
tionable because of the dynamic nature of Internet traffic.

In this paper, we examine the problem of computa-
tion time of a payload signature classifier. The processing
speed of a payload signature classifier is insufficient for real-
time management of high-speed networks. Snort is a pop-
ular payload-signature intrusion detection and application-
level traffic classification system and has a processing speed
of 100 Mbps on general-purpose processors [7]. Pattern-
matching time is the chief concern because it consumes 40
to 70% of the total processing time [4], [5], [12]. For faster
matching, several studies developed software-based solu-
tions to take advantage of the spatial locality of a nondeter-
ministic finite automaton (NFA) and the temporal locality of
deterministic finite automaton (DFA) [11], [12]. However,
the time complexity of the matching algorithms is entirely
dependent on input signature configuration. In particular,
multiple regular expression matching (e.g., “.*”) requires in-
tensive system resources and often results in a performance
bottleneck. Its high storage requirements and computational
cost to match all packets that traverse a link makes it impos-
sible for online classification of traffic at high-speed (Gbps)
links. Therefore, real-time traffic analysis on high-speed
links might be insufficient. T. Liu et al. [5] and R. Kandhan
et al. [13] proposed a fast pattern-matching method using
a hierarchical signature structure, which assumes that most
signatures include the meta-character “∧” and a common
substring. However, the signatures for identifying the appli-
cation name do not satisfy this assumption. Park et al. [15]
had suggested that the signature grouping method employ
a wildcard and group an expression such as “*” or “|” to
improve the processing speed of the classification system.
However, this method dramatically increases the processing
speed when applied to an NFA-partial algorithm. For exam-
ple, five signatures can be combined in a single signature.
This method, however, increases the matching speed by 20
times that of the five single-signature matching method.

Hardware-based systems such as ASIC and FPGA are

faster than software-based systems, but they have insuffi-
cient scalability to support new applications. To update
them, the chip must be redesigned, which usually requires
high production cost. Mitra et al. [14], [17] implemented an
NFA-based regular-expression engine on an SGI Altix 4700
workstation with FPGA support. The throughput of the NFA
improved noticeably as a result of their study, whereas the
compact memory requirement was maintained. However,
these approaches require a specialized computer with high-
processing power. Zhang et al. [6] proposed a multicore ar-
chitecture for application traffic classification and their de-
sign improved the overall execution time. However, the
lack of program parallelism in legacy network applications
greatly limits the full use of multicore architecture.

3. Methodology

In this section, we propose methods to improve the process-
ing speed of a payload signature classifier. In addition, we
introduce the traffic trace and baseline classification system
and conduct experiments to prove the validity of these solu-
tions.

3.1 Data Description

We collected two traffic traces. The first comes from the
Internet junction of the Korea University campus network,
which has 3,000 active users. The second derives from a
collection of 13,000–22,000 residential lines from a com-
mercial ISP in Korea. Table 1 displays the details of the
traffic trace, that is the full payload used to evaluate the per-
formance of the proposed methods in the experiment.

Figure 1 is a diagram that shows the verification net-
work for the location of traffic collection, configuration of
the classification system, and verification of the classified

Table 1 Traffic trace.

Fig. 1 Configuration of our baseline traffic classification system (TCS).
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Table 2 Application breakdown.

traffic. All packets are captured from the link of the Inter-
net border router by the packet capture system (PCS). The
PCS reports the traffic flows to the TCS, which in turn deter-
mines the application name of the flow based on the payload
signatures. A traffic measurement agent (TMA) is installed
at the end host, which then collects the connection/process
information of the host and periodically sends it to the traf-
fic measurement server (TMS). The information collected
by the TMAs includes socket connection information such
as IP addresses, port numbers, and L4 protocols [15] from
which we can obtain ground-truth information about the
traffic flows. The ground-truth flows from the TMS are used
to assess the accuracy of classification results from the TCS.

Table 2 indicates application usage in bytes using the
baseline classification system [15], which can cover 245
applications comprised of 845 payload signatures and can
achieve approximately 94% completeness on both traffic
traces.

Bro [21] is widely used for application protocol-level
analysis. We analyzed both traffic traces using Bro 2.1 to
prove the effectiveness of the TMA-based verification sys-
tem. Bro and our classification system employ similar meth-
ods regarding the classification units of flow and connec-
tion. The classification result of our system was consider-
ably similar to that of Bro.

The campus and ISP traces contain mainly web service
(naver, daum, nate) and P2P traffic generated by torrents
and donkey. These web services are provided by Internet
portal sites that are popular in Korea. The ISP HTTP traf-
fic includes traffic generated by multimedia-file download
applications. The campus network uses fixed IP addresses,
whereas the ISP uses dynamic IP addresses. Therefore, the
ISP trace includes some DHCP traffic for the assignment of
dynamic IP addresses. Both the campus and ISP traces con-
tain approximately 5% unknown traffic.

Table 3 displays the accuracy and completeness of the
baseline classification system used in the campus network
trace, which is evaluated by comparing the classification re-
sult of our baseline system and the ground-truth traffic data
at the TVS, as shown in Fig. 1. The accuracy is defined
by the rate of traffic that is correctly classified from the to-
tal, as shown in Eq. (1). Completeness refers to the results

Table 3 Performance of the baseline classification system.

Fig. 2 Classification process of the baseline system.

classified by the classification system, which is expressed as
a ratio of the total traffic, as shown in Eq. (2).

accuracy =
Correctly Identified Traffic

Identified Traffic
(1)

completeness =
Identified Traffic

Total Traffic
(2)

This guarantees greater than 95% accuracy and 92% com-
pleteness in terms of flow/packet/byte. The adequate perfor-
mance of the baseline classification system allows us to eval-
uate the proposed methods with the goal of improving the
processing speed of the baseline classification system while
maintaining the same level of accuracy and completeness.

3.2 Baseline Classification System

In this section, we describe the baseline classification sys-
tem used to evaluate the performance of the proposed meth-
ods. The overall classification process of the baseline sys-
tem consists of two consecutive subsystems: the PCS and
TCS.

The PCS collects all IP packets from a target network
link and generates flow data. A flow is a set of packets con-
taining the same 5-tuple packet header information (source
IP, destination IP, source port, destination port, and L4 pro-
tocol) and their reverse packets. Flow data contains the min-
imal information necessary to reduce the amount of traffic
data, such as the connection data; statistical data, which
contains packet count, flow duration, byte count, etc.; and
payload data of the first few packets. The TCS identifies the
application name of the flows based on the payload signa-
tures. We have developed the baseline system and deployed
it in our campus network for real-time classification of cam-
pus Internet traffic. The system specifications of the TCS
were Intel(R) Core(TM) i7 3.40 GHz CPU with 8 Gb RAM.
The baseline system adopts several algorithms and methods
that are commonly used in an application TCS. In this paper,
we mainly focus on the modules that utilize the TCS.

Figure 3 shows the input-data memory structure and
the inspection range of input data for the pattern-matching



2700
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.10 OCTOBER 2014

Fig. 3 Detail of the signature-matching module.

module of the baseline classification system. The baseline
system performs matching for the first 10 packets in a flow
and all bytes in a packet until a signature identifies a flow.
The system then compares every signature in order to ana-
lyze each flow.

Regarding the matching unit, the matching approaches
are divided into packet-based matching (PBM) and stream-
based matching (SBM). PBM sequentially compares pay-
load signatures and packets within a flow one by one,
whereas SBM compares the same elements to a packet
stream, which is the sum of two or more packet payloads.
The SBM thus requires more packets than does the PBM.
Moreover, the SBM requires additional overhead for recom-
bining packets that incur packet loss and undergo asymmet-
rical routing [1]. Therefore, we use PBM rather than SBM
in the baseline system.

We use an NFA-partial matching algorithm, which is
commonly used in a TCS such as Snort [7], for the baseline
system. In addition, an NFA-partial matching algorithm ex-
perimentally provides the highest average performance of a
single-matching algorithm used with all types of signatures.

The baseline classification system inspects the first 10
packets in a flow. Park et al. [16] investigated the first 100
packets in each flow for four different applications. They
discovered that the first few packets are used to send a signal
before transmitting the content data, and most of the appli-
cation signatures are located within the first few packets in
a flow. We confirm that the first 10 packets are sufficient to
ensure accuracy in the baseline system.

The classification taxonomy uses the application crite-
rion and not the L7 protocol criterion. Many studies tend
to confuse the concepts of L7 protocol and application clas-
sification. For instance, it is unclear how to classify HTTP
traffic from a YouTube application for data transfer. The L7
protocol of the traffic is HTTP, whereas the application name
is YouTube. If we do not use application criteria, we can-
not determine the end-user application. By using applica-
tion criteria, we can obtain more specific information about
traffic and human behavior patterns, and classify the same
traffic discovered by the L7 protocol.

3.3 Framework of the Proposed Method

Figure 4 shows the overall framework of the proposed and

Fig. 4 Framework of the proposed and baseline methods.

Table 4 Composition of signature.

baseline method that represents the processing paths of the
two methods regarding input and output data, the input-data
loading module, input-data memory structure, and pattern
matching.

We propose three main ideas: selective matching (SM),
signature reorganization (SR), and early sampling (ES). SM
uses different matching algorithms in accordance with the
signature types. SR minimizes the signature search space by
means of a two-level hierarchical signature structure (SR1)
and by dynamically changing the signature-memory order-
ing, referred to as a signature cache (SR2). ES minimizes
the number of packets in a flow and limits the byte size in
each packet. These methods can be applied individually or
in any sequence-free combination.

3.4 SM

Many algorithms exist for pattern matching, but no match-
ing algorithm exists for all input types. The performance
of the matching algorithm depends on how the signatures
are represented [12]. We separate the signatures into four
groups to evaluate the performance of the matching algo-
rithm according to the type of signature representation as
shown in Table 4. We initially divide the signature types
into two categories: explicit string and regular expression.
The explicit string is further divided into fixed- and variable-
offset strings based on the signature location. The fixed-
offset string defines the signature as a string or as hex val-
ues that appear on a specified offset of a packet payload.
In most cases, the offset appears at the beginning of the
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Table 5 Comparison of matching time based on signature type.

payload (e.g., eDonkey “0xe3” at offset 0). The variable-
offset string refers to the signature’s appearance at any po-
sition. Regular expression is divided again into two types
according to the frequency of the wildcard character (“*”)
in the signature. Table 4 shows that most signatures belong
to either one of the two groups, that is, either to the variable
offset of the explicit string or to the regular expression that
uses wildcard characters of less than or equal to 2.

Many studies on payload signature classifiers use mul-
tiple wildcard meta-characters (e.g., “.”, “*”) in their signa-
ture representation [18]. Some patterns even contain more
than 10 such wildcard fragments. As regular expressions are
converted into state machines for pattern matching, many
wildcards can cause the corresponding finite automaton to
grow exponentially. In fact, this may frequently occur when
the regular expression contains the Kleene closure opera-
tor, which means that an arbitrary number of characters may
be present in the specified position in the data being ana-
lyzed. Therefore, we divide the signature types according to
the frequency of appearance of the wildcard character “*”
in a signature. We apply each signature type to the Rabin-
Karp, DFA, and NFA matching algorithms. The Rabin-Karp
string-searching algorithm is widely used for pattern match-
ing [20], and it is easy to implement for hardware-based de-
vices. The DFA and NFA are typically used to accept regular
expressions.

We apply each signature type to the Rabin-Karp, DFA-
full, NFA-partial, and NFA-full matching algorithms to de-
termine the most reliable matching algorithm based on the
type of signature representation. Table 5 shows the average
processing time of the four matching algorithms for various
signature types.

The Rabin-Karp string-matching algorithm reveals the
most efficient performance for signatures of fixed offset.
Without a priori knowledge of the starting and ending po-
sitions of the payload, the Rabin-Karp algorithm created for
recognizing all substring matches can be extremely com-
plex. The DFA-full algorithm is selected for an explicit
string signature using a variable offset. Explicit strings gen-
erate DFA of length linear to the number of characters in
the pattern. In the worst case, the time complexities of
DFA and NFA are O(n) and O(n2), respectively. Finally,
the NFA-partial matching algorithm is used for signatures in
the form of a regular expression. The NFA-partial and NFA-
full matching algorithms are different. For example, given
a signature “∧AUTH.*” and an input “AUTH abc,” NFA-
full matching can report four possible matches: “AUTH,”

Fig. 5 Two-level hierarchical signature structure.

“AUTH a,” “AUTH ab,” and “AUTH abc.” In practice, it is
unnecessary to report all matching substrings because most
applications can be satisfied by a subset of those matches.
The NFA-partial will report one match instead of the four
and therefore, it is faster than the NFA-full matching algo-
rithm. We implemented the Rabin-Karp algorithm and used
the PCRE library [22] for the NFA algorithm, and the Boost
library [23] for the DFA algorithms.

3.5 SR

The performance of a string matching algorithm depends on
the search space of input data. This section describes how
to minimize the search space of the payload signatures pro-
vided to the classification system. We propose two main
ideas for reorganizing signatures: an SR1 and SR2.

3.5.1 SR1

In this section, we propose an SR1 to reduce the signa-
ture search space and to determine an application-protocol
name as well as application name for each flow. The
SR1 consists of application protocol-level signatures and
application-level signatures at the first and second levels,
respectively. An application protocol-level can be used by
many applications for various purposes. In our signature hi-
erarchy, the HTTP traffic is detected at the first level and the
application name is determined at the second level. The sig-
nature hierarchy is defined by an inclusion relationship in
which SY is an application protocol-level signature and SX

is an application-level signature. If all of the traffic identi-
fied using signature SX can be classified using signature SY,
then SY would include SX.

We define the SR1 using the automata formula. For-
mally speaking, DFA is a quintuple M = (Q,Σ, δ, q0,F)
where

1. Q is a finite set of states;
2. Σ is a finite set of input symbols;
3. δ: Q x Σ → Q is a transitional function that takes a state
and an input symbol and returns a state;
4. q0 is an initial state that belongs to the Σ set; and
5. F ⊂ Q is a set of final or accepting states.
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Fig. 6 Classified rate of traffic flows in CCDF.

For every signature, a corresponding finite automaton M ex-
ists that accepts the language L generated by the signature.

L(M) = {x | δ(q0, x) ∈ F} (3)

If M0 is an application protocol signature and M1 is an ap-
plication signature, they satisfy the inclusion relationship
shown in Eq. (4).

L(M0) ⊇ L(M1) (4)

In the SR1, the classification system first identifies the input
flow by means of the application protocol-level signature. If
a flow is classified by an application protocol-level signa-
ture containing application-level signatures, then the clas-
sification system can identify the flow by means of those
signatures. This hierarchical analysis can reduce the signa-
ture search space of the classification system as well as the
processing time. The baseline analysis method compares all
of the signatures one by one to analyze a flow, while the
proposed method can improve the processing speed of the
classification system by reducing the search space.

3.5.2 SR2

The popularity of certain applications can be inconsistent
because of the availability of well-known alternatives that
offer similar services such as popular websites, e-mail,
etc. [19]. These services motivate us to determine the
signature-matching order in the classification system. Fig-
ure 6 displays a CCDF graph that represents the signature
hit rate on the campus and ISP traffic traces. In our study,
signature hits occurred in only 70 of the 845 signatures for
each minute of traffic trace at a certain time of the day. In
addition, 70% of the traffic flows of both campus and ISP
traces were matched by only 35 or fewer signatures. The
byte distribution of classified traffic according to the signa-
tures is more uniform in the ISP than in the campus trace.
Because the number of hosts running on the campus is lim-
ited relative to the ISP, only certain applications operate dur-
ing a specified period. The majority of the traces at both the
campus and ISP are web-browser traffic and the HTTP sig-
nature works well. The signature ID 1 is an HTTP signature
for both campus and ISP traces.

Most traffic can be classified using a few signatures
during a specific period. We can minimize the search space

by first examining frequently occurring signatures and dy-
namically changing the ordering of signature memory ac-
cording to the signature hit ratio. We call this mechanism
signature caching. We use the following algorithm to rear-
range signature-memory ordering.

Alg. 1 Signature memory rearrangement.

We use the exponential average (EA) value of the sig-
nature hit count to rearrange the position of signatures in the
two-level signature structure. The EA value of each signa-
ture is calculated periodically with the hit count of the pe-
riod and the previous value to reflect the recent signature hit
count more than that of the past.

The system can deal with changes in application usage
according to the time flow by updating the hit count con-
stantly through the EA. The algorithm first calculates the
exponential average of the signature hit count (HCn) for the
current signature, and then, it determines the average cache
hit count (AHCn) of the signature. The constant α is set to
0.6 to calculate the EA. Based on the AHC values of every
signature, we rearrange the signatures by sorting them in the
descending order. The coefficient α represents the degree of
weight required to decrease the AHCn−1. The coefficient α
is such that the AHCn is given more weight than the AHCn−1

and means that more recent HC are considered more impor-
tant than older HC. This approach can achieve a reduction
of more than 50% signature search space than that of the
baseline classification system.

3.6 ES

Flow-based rather than packet-based analysis is commonly
used in traffic analysis and is employed in this study to min-
imize both the number of packets in a flow and the byte size
in the packet that is searched.

Figure 7 shows the distribution of the matched offset of
signatures regarding packet sequence in a flow and byte po-
sition in a packet as determined through experimental evalu-
ation on traffic traces at the campus and ISP. Most signatures
were found in the first two packets of the flow and within the
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Fig. 7 Distribution of the matched offset of the signature in packets at
the campus (a) and ISP (b).

first 500 bytes of those packets. Our baseline classification
system performs matching for the first 10 packets in each
flow and all bytes in a packet, thus dramatically degrading
performance. We can utilize these experimental results to
reduce the search space of the input data for the matching
algorithm.

The packets inspected are defined as the first n pack-
ets having a payload after the TCP connection setup. Ac-
cording to analysis results, the classification accuracy and
completeness increase as the number of packets inspected
increases. However, packets that follow the fifth packet are
almost identical. In other words, before sending the content
packets, most connections transmit a few control packets
that are common amongst all those having the same type of
connection. Most of the payload signatures can be extracted
from the first few packets in a flow. Therefore, the classifica-
tion result can be sufficiently accurate and the classification
time can be reduced by limiting the number of packets in-
spected to the first five packets in each flow.

In addition, the byte limit of a packet must be con-
sidered to reduce the search space of the input data for the
classification system. We can reduce the processing time of
our classification system by limiting the number of bytes in-
spected to the first 1,000 bytes in each packet payload. This
allows our system to cope with greater bandwidth from a
high-speed link.

4. Evaluation

We demonstrate a traffic classifier designed through the pro-
posed methods to achieve the goal of throughput improve-
ment. Then, we evaluate our proposed method by compar-
ing it with the baseline classification system and Snort sys-
tems.

4.1 Performance Gain

Figure 8 displays the improvement in performance of the

Fig. 8 Performance improvement of the methods when implemented in-
dividually and in combination as compared to the baseline system.

methods when employed individually and in combination.
The figure uses box-plot graphs to show the improved rates
of processing speed in the worst, average, and best cases,
employing dotted and solid lines to represent the ISP and
campus traces, respectively. The processing speed corre-
lates to the consumption time necessary to perform ma-
jor functions (e.g., activities related to load traffic and the
pattern-matching module) at one-minute intervals.

When all three methods are combined, the processing
speed improves by two times for the ISP and by five times
for the campus traces. Fewer applications run on the campus
network than on the ISP network, and therefore, the SR2 in
the campus network outperforms that in the ISP network. It
improves 1.25 times in the worst case when each method
is independently applied to the ISP and campus network
traces. The baseline classification system compares every
signature in order to analyze a flow, whereas the suggested
analysis method based on the hierarchical structure and sig-
nature caching can improve the processing speed of the clas-
sification system by reducing the search space. This method
can achieve a reduction of more than 200 out of 845 signa-
tures. Our baseline classification system performs matching
for every packet in the flow and all bytes in a packet until a
flow is identified by a signature, resulting in major perfor-
mance degradation. However, the ES, which shows the best
performance improvement, considerably reduces the traf-
fic search space for pattern matching. As a result of our
experiments, the ES can achieve a reduction of more than
60% payload as compared to that of the baseline classifica-
tion system. The SM is faster than the NFA-partial method,
yields the highest average performance for all types of sig-
natures, and can manage an average of 10% more payload
than can the NFA-partial method. The SR was obtained
by checking signatures proactively to minimize the search
space and is influenced by the number of applications and
users on the target network. The number of applications in-
creases as more users generate traffic and this, in turn, causes
frequent cache exchange in the SR2.

Figure 9 shows the results of the payload signature-
based analysis used to evaluate the performance of the pro-
posed methods through experimental evaluation on our cam-
pus traffic trace. The graph shows the processing time
spent in classifying a minute of traffic data during a single
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Fig. 9 Processing speed: Snort vs. the proposed method.

Fig. 10 Average number of matching attempts to analyze a flow.

hour. Approximately two times improvement in processing
speeds can be observed compared to Snort.

The proposed method can improve the processing
speed of the baseline classification system while maintain-
ing the same level of accuracy and completeness. Our pay-
load signature classifier achieves more than 95% accuracy
and 92% completeness. Although we can reduce the search
space of the classification system, the classification accu-
racy and completeness are the same as those of the original
system.

4.2 Spatial Effect

Signatures used in this study are extracted from the campus
trace and applied for the purpose of comparison with their
performance on the ISP trace. The spatial effective study
comprises two experiments: (1) determining the number of
matching attempts to analyze a flow, and (2) analyzing the
matched offset of signatures regarding byte position in pack-
ets.

Figure 10 compares the number of matching attempts
for a flow in both the campus and ISP traffic traces. We draw
the average matching attempts of the SM for one minute of
traffic trace during a one-hour period. The number of match-
ing attempts necessary to analyze a flow of ISP is more than
that for the campus trace.

We can reduce the search space of a signature through
the SR, which uses the exponential average value of the sig-
nature hit count to sort the SR2. Because the number of ap-
plications running on the campus network is fewer than that
on the ISP network, only certain applications operate during
a specified period in the campus network trace. Therefore,
the signature sorting is more effective on the campus than
on the ISP trace.

Fig. 11 Average matching offset of identified packets in CDF.

Figure 11 presents the CDF graphs that represent the
matched offset of signatures regarding byte position in pack-
ets on campus and ISP traffic traces. More than 75% and
52% of the classified flows in campus and ISP traces, re-
spectively, are matched within only 100 bytes. These flows
occur mainly because of activities in P2P-file download ap-
plications such as torrent and donkey. The number of flows
generated by torrent and donkey in the campus network are
more than those in the ISP networks. Therefore, the perfor-
mance of the ES on the campus network trace is better than
on the ISP network.

5. Conclusion

Payload signature classifiers are widely used in network
monitoring and analysis applications but have a major draw-
back in achieving real-time processing in a high-speed net-
work field.

In this paper, we address the factors affecting the pro-
cessing speed of the payload signature classifier. We exper-
imentally evaluated each factor and proposed a method to
create an efficient classification system. We proposed min-
imization methods for the search spaces of signatures and
input traffic data. It is possible to design a high-speed In-
ternet TCS according to the proposed methods. The sug-
gested architecture improved processing speed by approxi-
mately two to five times compared to that achieved in both
the baseline classification system and Snort, whereas main-
taining the same level of accuracy and completeness.

This method provides a software-based means to im-
prove the processing speed of general classification systems
in a given computing environment. We also plan to design a
multicore-based classification that will allow real-time anal-
ysis on a large-scale network.
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