Hindawi Publishing Corporation

Journal of Applied Mathematics

Volume 2014, Article ID 594501, 10 pages
http://dx.doi.org/10.1155/2014/594501

Research Article

Hindawi

Linear SVM-Based Android Malware Detection for

Reliable 10T Services

Hyo-Sik Ham,' Hwan-Hee Kim,' Myung-Sup Kim,> and Mi-Jung Choi'

! Department of Computer Science, Kangwon National University, 1 Kangwondaehak-gil, Gangwon-do 200-701, Republic of Korea
2 Department of Computer and Information Science, Korea University, 2511 Sejong-ro, Sejong-si 339-770, Republic of Korea

Correspondence should be addressed to Mi-Jung Choi; mjchoi@kangwon.ac.kr

Received 31 January 2014; Accepted 22 July 2014; Published 3 September 2014

Academic Editor: Young-Sik Jeong

Copyright © 2014 Hyo-Sik Ham et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Current many Internet of Things (IoT) services are monitored and controlled through smartphone applications. By combining IoT
with smartphones, many convenient IoT services have been provided to users. However, there are adverse underlying effects in such
services including invasion of privacy and information leakage. In most cases, mobile devices have become cluttered with important
personal user information as various services and contents are provided through them. Accordingly, attackers are expanding the
scope of their attacks beyond the existing PC and Internet environment into mobile devices. In this paper, we apply a linear
support vector machine (SVM) to detect Android malware and compare the malware detection performance of SVM with that of
other machine learning classifiers. Through experimental validation, we show that the SVM outperforms other machine learning

classifiers.

1. Introduction

The Internet of Things (IoT) is the communications between
things or physical and logical objects organized with net-
works to extend into a communication network like the
existing Internet [1]. It is a generic term of technologies that
have intelligent interfaces which actively interact. If things
communicate with each other and have intelligent interfaces,
they would have new functions beyond their own existing
characteristics. The newly obtained properties would bring
us convenience and huge usefulness. Machine-to-machine
communication or IoT is likely to serve a company with the
advancement of smartphones.

IoT technologies and smartphones have been connected
to provide a variety of services all over the world. Audi, a
German company, offers a service that automatically records
data such as mileage and location of electric bicycles through
a smartphone [2], while TBWA Helsinki, a company in the
Republic of South Africa, provides a service that connects
smartphones with a shop window outside a store to check
and purchase goods by touching the show window [3].
NEC in Japan installs sensors measuring conditions such

as temperature, humidity, and rainfall on a farm to enable
smartphones to manage the farmland and crops [4]. Lock-
itron, an American company, provides a door lock service
using smartphones without keys [5]. Likewise, most IoT
services are monitored and controlled through smartphone
applications.

By combining IoT with smartphones, many convenient
IoT services [6] have been provided to users. For exam-
ple, using smartphone’s range of sensors (accelerometer,
Gyro, video, proximity, compass, GPS, etc.) and connectivity
options (cell, WiFi, Bluetooth, NFC, etc.), we can have a
well-equipped Internet of Things device in our pocket that
can automatically monitor our movements, location, and
workouts throughout the day. The Alohar Mobile Ambient
Analytics Platform [7] efficiently collects location and other
mobile sensor data and quickly analyzes it to understand a
smartphone user’s behavior. Through smartphone applica-
tions, we can remotely monitor and manage your home and
cut down on your monthly bills and resource usage. Smart
thermostats like the Nest [8] use sensors, real-time weather
forecasts, and the actual activity in your home during the day
to reduce your monthly energy usage by up to 30%. We can

http://dx.doi.org/10.1155/2014/594501

2
100 100
— C
).6
90
80
74
70
- 66
60 61
50 19
- 17 46 L
40 ° O
30
21
20 18-®
14 e -
_10 ¢ .
4
. §...gLl 3
0,0,0,0 0,0,0,0 0,0,0,0 0,0,0,0

Q12012 Q22012 Q32012 Q42012

o J2ME
e Android o Windows mobile

e Blackberry e Symbian

FIGURE 1: Increase of Android malware.

use the Nest application to connect to the thermostat from
a smartphone and can change the temperature miles from
home. However, there are adverse underlying effects in this
scenario such as invasion of privacy and information leakage.
Because there is a diversity of important personal information
such as user’s location, contact information, and certificates
in a smartphone, hackers pose a serious threat [9, 10].
Currently, hackers are expanding their targets from existing
PCs to smartphones. Security measures should be prepared to
protect users against attacks. A method should be prepared as
a security mechanism for detecting and controlling malware
that leaks information from smartphones or causes malicious
damage through malfunction [11].

Figure 11is a report by Finnish security company F-secure
which states that, 301 mobile malware samples from 2012,
238 samples targeted the Android platform [23]. While the
amount of malware that targeted other mobile platforms
gradually decreased as time went on from the Ist to 4th
quarter, Android showed a contrasting result. The reason
for the increase in Android malware was its open source
policy and its leniency to market application verification. In
addition, it easily allowed the distribution of malware in the
market through the repackaging method of inserting it in a
normal application.

Previous studies showed various approaches to detecting
mobile malware such as signature-based detection [12-15],
behavior-based detection [16-20], and taint analysis-based
detection [21, 22]. This paper identifies the issues of previous
studies and proposes a detection method through a linear
support vector machine (SVM) [24] to secure reliable IoT
services [25]. The linear SVM shows high performance
among machine learning algorithms in order to effectively
detect malware in the Android platform with monitored
resources during application runtime.

Journal of Applied Mathematics

The organization of this paper is as follows. In Section 2,
we summarize previous studies on mobile malware detection
and briefly introduce the linear SVM algorithm as a related
work. In Section 3, we explain resource monitoring informa-
tion and system for detecting malware. In Section 4, we show
experimental results for malware detection using various
machine learning classifiers. In Section 5, we conclude this
paper and propose possible future work.

2. Related Works

This section examines the trends of previous studies and
explains the linear SVM method for detecting mobile mal-
ware.

2.1. Mobile Malware Detection Trends. To detect abnormal
behaviors occurring in an existing mobile environment (mal-
ware, virus, worm, etc.), signature-based detection, behavior-
based detection, and taint analysis-based detection were
performed. Trends of the studies are summarized in Table 1
based on their detection techniques and collected data.
Signature-based detection [12-15] is a traditional method
used to detect malware in a PC environment. To define
signature, static and dynamic methods are simultaneously
used. Static analysis targets the source and object codes
and analyzes the codes without actually starting a program.
It decompiles the source code of a malware to discover
vulnerabilities that occur in commands, statements, and so
on. Dynamic analysis is a method of finding certain patterns
in memory leakage, traffic flow, and data flow while actually
running the program. However, a large amount of storage is
required for applying this method to the mobile environment,
and the performance overhead is high for pattern matching.
Behavior-based detection [16-20] is a method of detect-
ing invasion status by comparatively analyzing predeter-
mined attack patterns and process behavior that occur in a
system. It is one of the studies that has been receiving the
most attention recently due to signature-based detection’s
limited detection of malicious behavior. To detect abnormal
patterns, it mainly monitors event information that occurs
in smartphone features such as memory usage, SMS content,
and battery consumption. Host-based detection (for directly
monitoring information inside a device) and network-based
detection (for gathering information via network) are fre-
quently used. Since host-based detection increases the usage
of a smartphone’s battery and memory, a detection method
of collecting data inside the device and transmitting the data
to an outside analysis server is mainly used. In addition, a
machine learning technique is used to improve the analysis
rate of dynamic data. Therefore, it is highly important to
choose the proper features to be collected and select a suitable
machine learning algorithm for accurate detection.
Dynamic analysis-based detection [21, 22], also called
“taint analysis,” is a method of marking specific data and
monitoring the process of data being sent in an application
code to track the flow of data. Since a smartphone runs in
a virtual machine, this method is considered appropriate.
However, it is no longer being studied due to the difficulty

Journal of Applied Mathematics

TABLE 1: Trends of studies on mobile malware detection techniques.

Detection

. Author Collected data Description
technique
Schmidt et al. [12] Execut.able file Uses thF readelf command to carry out static analysis on executable
analysis files using system calls

Signature-based
technique

Blésing et al. [13]
Kou and Wen [14]

Bose et al. [15]

Source code analysis
Packet analysis

API call history

Uses the Android sandbox to carry out static/dynamic analysis on
applications

Uses functions such as packet-preprocessing and pattern-matching to
detect malware

Collects system events of upper layers and monitors their API calls to
detect malware

Behavior-based
technique

Schmidt et al. [16]

Cheng et al. [17]

Liu et al. [18]
Burguera et al. [19]

Shabtai et al. [20]

System log data

SMS, Bluetooth

Battery consumption
System call

Process information

Detects anomalies in terms of Linux kernels and monitors traffic,
kernel system calls, and file system log data by users

Lightweight agents operating in smartphones record service activities
such as usage of SMS or Bluetooth, comparing the recorded results
with users’ average values to analyze whether there is intrusion or not.
Monitors abnormal battery consumption of smartphones to detect
intrusion by newly created or currently known attacks

Monitors system calls of smartphone kernel to detect external attacks
through outsourcing

Continuously monitors logs and events and classifies them into
normal and abnormal information

Dynamic
analysis
technique

Fuchs et al. [21]

William et al. [22]

Data marking

Data marking

Analyzes malware by carrying out static taint analysis for Java source
code

Modifies stack frames to add taint tags into local variables and
method arguments and traces the propagation process through tags
to analyze malware

in applying it in an actual environment and because of the
overhead of tracking data flow to a low level.

2.2. Malware Detection via Linear SVM. In this paper, mal-
ware is detected based on the collected data by monitor-
ing resources in an Android environment. Behavior-based
detection involves the inconvenience of having to determine
malware infection status by examining numerous features.
Accordingly, behavior-based detection uses a machine learn-
ing method to enable automated malware classification and to
ensure its identification and accuracy. The machine learning
method is a method of entering the data collected from
the device as learning data to create a learning model and
applying some of the other data to the learning model.

A diversity of classifiers is used for machine learning
techniques. Typically, there are DT (decision tree), BN
(Bayesian networks), NB (naive Bayesian), Random forest,
and SVM (support vector machine). DT [26] is a tree for
sorting based on the feature value to classify instances. In
this way;, it calculates probability values of being able to reach
each node and draws a result depending on the probability
values. BN [27] is a graphic model that combines a probability
theory based on Bayesian theory with a graphic theory. In
other words, it makes a conditional probability table with
the given data and configures a topology of the graph to
draw a conclusion. NB [28] assumes dependent features as
independent ones and calculates their probabilities to draw
a conclusion. RF [29] combines decision trees formed by the
independently sampled random vectors to draw a conclusion

and shows a relatively higher detection rate. RF is a machine
learning classifier frequently used for malware detection
studies in the Android environment [30, 31]. Neural net-
works technique [32] is another machine learning technique.
However, because neural networks technique consumes more
time than other classifiers when training [33], it is considered
difficult to apply to the malware detection system in which
real time is emphasized. Therefore, this paper does not
consider neural networks.

In this paper, a linear SVM method [24] is applied to
detect malware. SVM is one of the machine learning classi-
fiers receiving the most attention currently, and its various
applications are being introduced because of its high per-
formance [34]. The SVM could also solve the problem of
classifying nonlinear data. Of the input features, unnecessary
ones are removed by the SVM machine learning classifier
itself and the modeling is carried out, so there is some
overhead in the aspect of time. However, it could be expected
to perform better than other machine learning classifiers in
the aspect of complexity or accuracy in analysis [35].

Figure 2 shows how to find hyperplanes which are criteria
for the SVM to do the learning process to classify data. All
hyperplanes (a), (b) and (c) classify two things correctly,
but the greatest advantage of the SVM is that it selects
hyperplane (c) which maximizes the margin (the distance
between data) and accordingly maximizes the capability of
generalization. Therefore, even if input data is located near
a hyperplane, it has an advantage of being able to classify
more correctly compared to other classifiers. We verify that

Journal of Applied Mathematics

TABLE 2: Selected features for malware detection.

Resource type

Resource feature

RxBytes, TxBytes, RxPacket, TxPacket

Send/receive call
Send/receive SMS
CPU usage

Level, temperature, voltage
Process ID, process name, running process, context switches
Total size, shared size, allocated size, physical page, virtual set size, free size, heap size, dirty page
Total size, shared size, allocated size, physical page, virtual set size, free size, heap size, dirty page

Network
Telephone
SMS Message
CPU
Battery
Process
Memory Dab
@ ©
o0 ®
o0 PY o (b)
3 ®@g¢
% ¢ ® rgin
59 >< ><
X < X
¢ X
/ Feature 1

FIGURE 2: Data classification method of SVM.

SVM shows a good detection performance by comparing the
experimental results of SVM with those of other machine
learning classifiers (Bayesian network, decision tree, naive
Bayesian, and random forest) and SVM analysis technique.

3. Collection of Resource Information for
Malware Detection

This section presents a method of collecting resource infor-
mation for detecting Android malware. It explains collected
resource features and agents designed and implemented to
collect resource information inside Android devices.

3.1. Resource Features for Malware Detection. For detecting
malware that is the target of analysis, resource information
generated in a device is monitored when a user executes
normal applications or abnormal applications infected with
malware. In a previous study [20], every resource and event
generated in an Android device was defined and all these
features were used for analyzing malware.

However, the number of features is 88, which are too
many, most of them having low correlation, with the Android
memory structure not being reflected. In addition, some
of these 88 features could be extracted only if the root
permission is acquired. The 32 features proposed in this paper
are information that could be extracted even without the root
permission. In this paper, 32 features that are highly related
to targeted malware, as shown in Table 2, are defined by

classifying them into seven categories according to resource
type. This study does not monitor the total memory usage that
simply changes through an application execution but moni-
tors the usage amount classified into native area and Dalvik
machine area by considering the memory characteristics of
the Android platform. Dalvik machine memory is allocated
when running each application.

For the features proposed in this paper, every feature was
extracted about network, phone, message, CPU, battery, and
memory for each process. The existing study [20] used a
feature selection algorithm such as the information gain to
increase the detection system’s performance, but this paper
did not carry out the feature selection. As also mentioned
in Section 2.2, the reason was because the SVM classifier
autonomously carried out dimensional reduction function to
use only the required features for determining results.

3.2. Malware Detection System Architecture. To monitor the
selected resource features, an agent is needed that can con-
tinuously monitor the corresponding features inside a device.
This experiment alternatively executes a normal application
and an abnormal application on the Android platform to
test malware detection. Figure 3 shows the structure of the
Android malware detection system, which primarily consists
of a mobile agent and an analysis server.

First, the mobile agent collects information for each
application through the resource monitoring component. The
data is collected from the Linux kernel in the mobile agent,
and the feature extractor is responsible for the collecting
of actual data. The feature extractor is comprised of four
collectors, and they collect information on variations in net-
work, memory, CPU, and battery. The collected feature infor-
mation is specified in Table 2 of Section 3.1. This collected
information is transferred to the data management module,
and the data management module transforms the collected
information into a vector form. The data constructed as a
vector form by the data management module is transferred to
the analysis server for evaluation. At such time, the reason for
transmitting data to an external server is because its overhead
is large in the aspect of time and resource if the modeling and
analysis are carried out by machine learning in the mobile
device. Therefore, to minimize such an overhead, malware
detection is carried out in the analysis server, and only the
detection result is transferred again to the mobile agent.

Malware | |- °°°°° "I r— ————————— { } ________

| Application framework

| Libraries/Dalvik virtual machine

Testing and

result report

Journal of Applied Mathematics 5
PP
/ { Android malware detection system h
/ Mobile agent N .—[Analysis server }1
I I
I
T ‘[Resource monitoring component]‘ T)ITTTTITITT N i !
I 1
! i | 1| Normal app. i ! o |
! Alarm module Database ! ! | information Learr‘ung P as.e !
! [Communication | [Data management module ! > (vectorized) | iGollected data | (machine learning | !
! module (vectorization of data) | ! | transmission ! classifier) :
| i | 1| Normalapp. |1 (vectorized ! !
| | Collected data | ! ! | information | information) !
i i ! (vectorized) !
Normal app. :J\ 1 | Feature extractor | ! '
& K [I T I o Normal app. !
I I i || Network | | Memory | [Battery CPU [|! i | information !
' i | |_collector | | collector collect(')_r| collector : X (vectorized) !
1 1
ol :
' i
! I
! I
1
! |
1
I
I
I
I

| Linux kernel
o=

FIGURE 3: Android malware detection system architecture.

The analysis server learns by using the vectorized resource
data for each application, which is transferred from the
mobile agent as input data. After learning, a model (pattern)
of the resource data for each application is created and, based
on it, the existence of malware is determined. If malware
is detected, an alarm message is transmitted to the user
through the alarm module. Figure 4 represents the algorithm
of the malware detection system proposed in this paper as a
sequence diagram.

Examining the overall flow of the algorithm, it extracts
feature information for each application and makes the
machine learning classifier to learn the extracted informa-
tion. Based on this learned information, it determines the
existence of malware. This method is not much different
from existing malware detection studies. Upon comparing
this paper with the existing studies, however, a difference
is found on the information on features and the applied
machine learning classifier.

4. Experimental Results

This section applies the proposed linear SVM technique.
It demonstrates the superiority of the SVM by comparing
it with four machine learning classifiers and describes the
experimental methods and results.

4.1. Android Malware Categories. This study chooses 14 of
the latest malware programs for each category to verify the
proposed method. Malicious applications are selected on the
basis of the “typical cases of malware causing great damage to
users” presented in the 2012 ASEC report [36] from Ahnlab
in Korea. Most of the Android-targeted malware is divided
into Trojan, spyware, root permission acquisition (exploit),

and installer (dropper). The reason for Trojan having a large
proportion of the selected malware is because most of the
malicious codes that occurred in 2012 were Trojan. Table 3
describes the malware to be analyzed in this study.

(i) Trojan: it looks harmless, but it is a program contain-
ing a risk factor in effect. Malware is usually included
in the program, so it basically executes the malware
when running the application.

(ii) Spyware: a compound word formed from “spy” and
“software” and it is a type of malware that is secretly
installed on a device to collect information. It is fre-
quently used for commercial uses such as repeatedly
opening pop-up advertisement or redirecting users to
a particular website. Spyware causes inconvenience
by changing a device’s settings or being difficult to
delete.

(iii) Root permission acquisition (exploit): it uses un-
known vulnerabilities or 0-day attacks. The new vul-
nerability is discovered but not yet patched for. It
is malware that acquires root permission to clear
security settings and makes additional attacks on the
Android platform.

(iv) Installer (dropper): it conceals malware in a program
and guides users to run malware and spyware. These
days, because it does not install one kind of malware
but multiple ones with the advent of multidroppers, it
makes detection more difficult.

4.2. Elements of Data Set. This paper uses 14 normal applica-
tions and 14 malicious ones embedded with malware to test
malware detection. The data set is composed of 90% normal
and 10% malicious applications. The reason for composing

6 Journal of Applied Mathematics

Feature Data management Machine learning classifier
User . . Database
extractor module (learning and testing phase)
[| Execute normal app. | Collect features |
and malware : (network, battery, X
j . CPU, andmemory) |
| P \
I
I
I
|

Vectorize the
collected data

Transfer the collected data

Training and analyzing of
vectorized data
(application information)

Transfer the vectorized data

i If the analysis server i
! detects malware, !
I it sends alert message to user !

1
1
|
1
1
1
1
1
|
1
1
!
|
1
|
1
1

Resource monitoring component | L Analysis server |

FIGURE 4: Sequence diagram for malware detection system.

TABLE 3: Features of malware to be analyzed.

Malware category Malware Name Features

Zitmo Disguises as an Android security application
DroidKungFu Leaks personal information
Trojan Opfake Disguises as a game application (performance degradation)
Fakelnst Disguises as a game application (performance degradation)
Goldream Disguises as a game/animation application
LightDD Disguise as an adult application
Geimini Carries out a backdoor function
Adrd.AQ Carries out a backdoor function
Spyware
Snake Disguises as a game to leak information
Pjapps Adds malicious functions to a normal app.
Root permission Rootor.BT Makes terminal rooting (security dismantling)
acquisition (exploit) Basebridge Acquires root permissions and then communicates with an external server
SMSHider Guides to install malware through SMS
Installer (dropper)
Anserver Downloads other malware

the data set in this way is that normal applications are more
common than malicious ones when examining the ratio

considering portability between devices. In other words, it
shows that malware detection is possible even if the device’s

of applications used in the actual mobile environment. In
experiment, we construct the data set using a 5-fold cross-
validation method.

Figure 5 shows the 5-fold cross-validation method
applied to the data collected from respective devices. As
shown in Figure 5, the data collected from other devices are
crossed to organize the training and test sets. If the dataset is
organized like this, all the collected data are organized as the
training and test sets, so it could be said that it is a method

environment is different. It could also be verified that the
selected features are useful for detecting malware.

4.3. Evaluation Indicators. This section describes evaluation
indicators to verify the performance of experimental results.
The indicators used in this paper are TPR (true positive
rate), FPR (false positive rate), precision, accuracy, and F-
measure. Statistical information for the decision result is

Journal of Applied Mathematics

m \

|
1

1

I

Training set
Device 2 Device 3
I
Device4 Device5 |/

m \
Device 2 A

I

I

I

Training set
Device 1 Device 3 |1
1
Device4 Device 5 |/

m \

|
1

1

Dev1ce 1 Device 2 !
Dev1ce 3 Device 4)/

/
1
1
|
I
I
I
1
\

m \
:
1
I

Training set
Device I Device2 |1
q . |
Device4 Device5 |/

m \
Device 4 i

I

I

I

Device 1 Device 2 !
Device 3 Device 5 |/

FIGURE 5: Composition of training and test data set.

required to find the respective evaluation indicators. Table 4
is a confusion matrix for computing the evaluation indicators.

TP (true positive) is a numerical value of identifying the
uninfected status of a normal application. TN (true negative)
represents a number that correctly identifies an application
containing malware. FN (false negative) means a number that
incorrectly finds malware in an actually normal application.
FP (false positive) represents a number that incorrectly
finds no malware despite an application actually containing
malware. Based on the statistical information above, this
paper finds TPR (true positive rate), FPR (false positive rate),
precision, accuracy, and F-measure. Equations (1)-(5) for
respective indicators are as follows:

TPR = L, 1
TP + TN
FP
FPR = ——,
FP + TN 2)
TP
Precision = ————, (3)
FP + FP
TP
A =, 4
ceuracy = oy (4)

(Precision * Recall)

)

F-measure = 2 * — .
(Precision + Recall)

True positive rate (TPR) represents the proportion (1) of
correctly identified normal applications. False positive rate
(FPR) represents the proportion (2) of malware-containing
applications incorrectly identified as safe. If applications
containing malware are misdiagnosed, they could cause
serious damage to the system, so this indicator is considered
important. Precision is an indicator representing an error
of the decision value, which represents the proportion (3)
of correctly diagnosed normal applications. Accuracy is an

TABLE 4: Confusion matrix of evaluation indicators.

Predicted data
Positive Negative
Actual data Positive TP (true positive) ~ FN (false negative)
Negative FP (false positive) TN (true negative)

L0000
o=k NInoo
SoocSoSSooSodD

Precision

Accuracy F-measure

O Random forest
O SVM (support vector machine)

O Bayes net
B Decision tree
Naive Bayes

FIGURE 6: Detection results of respective classifiers.

indicator representing the system’s accuracy, expressed in the
proportion (4) of correctly identified normal applications and
ones containing malware, respectively, among the results. F-
measure is also called Fl-score and means accuracy (5) in the
aspect of decision results.

4.4. Experimental Results. Figure 6 shows malware detection
results according to machine learning classifiers. From the
TPR perspective, the random forest (TPR = 0.998) and SVM
(TPR = 0.999) show a good performance. For the FPR used
as the most important evaluation indicator when detecting
malware, SVM has FPR = 0.004, which could be determined
as the best classifier because its ratio of incorrectly classifying
normal applications as malicious is small, and it shows far
better performance than other classifiers also in terms of
accuracy and precision.

Table 5 shows the results of the detailed malware detec-
tion of respective classifiers’ TPR/FPR indicators. RF has
Adrd.AQ (TPR = 1.000), Anserver (TPR = 0.996), and
Geimini (TPR = 0.962), which show higher performance than
other classifiers. For other malware, however, it is shown
that SVM gives higher performance with TPR = 0.953 on
average. In particular, NB does not at all detect specific
malware (Adrd.AQ, Anserver, DroidKungFu, GoldDream,
Opfake, PjApps, SMSHider, and Snake). For Opfake, SVM
gives relatively lower performance with TPR = 0.820. The
reason is that Opfake is expanded from Fakelnst, which
shows similar patterns, so it incorrectly detects Opfake as
FakeInst. However, it shows that TPR is about 31% more
improved than the random forest. Every classifier shows a
low numerical value in terms of FPR, but upon analysis of
the correlation with TPR it could be found that SVM shows
the best performance. Because the NB classifier’s TPR is also
0.000 if its FPR is 0.000, it could be said that NB is a classifier
unsuitable for detecting malware.

Journal of Applied Mathematics

TABLE 5: Detailed performance indicators of machine learning classifiers (TPR/FPR).

Normal and malware TPR FPR
BN DT NB RF SVM BN DT NB RF SVM
Normal 0.852 0.780 0.280 0.998 0.999 0.015 0.032 0.098 0.124 0.004
Adrd.AQ 0.695 0.671 0.000 1.000 0.957 0.012 0.017 0.000 0.004 0.002
Anserver 0.985 0.918 0.000 0.996 0.957 0.051 0.117 0.000 0.004 0.000
Basebridge 0.692 0.862 0.487 0.671 0.939 0.009 0.056 0.081 0.014 0.000
DroidKungFu 0.720 0.868 0.000 0.874 0.977 0.008 0.000 0.000 0.000 0.001
Fakelnst 0.946 0.709 0.263 0.838 0.985 0.005 0.000 0.001 0.001 0.011
Geimini 0.649 0.464 0.000 0.962 0.893 0.004 0.009 0.000 0.000 0.001
GoldDream 0.567 0.298 0.000 0.717 0.994 0.012 0.005 0.000 0.022 0.002
LightDD 0.663 0.562 0.373 0.645 0.957 0.012 0.035 0.284 0.000 0.000
Opfake 0.567 0.429 0.000 0.509 0.820 0.005 0.002 0.000 0.001 0.005
PjApps 0.946 0.659 0.000 0.548 0.996 0.032 0.012 0.000 0.003 0.003
RooterBT 0.868 0.451 0.782 0.573 0.966 0.009 0.000 0.318 0.008 0.004
SMSHider 0.778 0.766 0.000 0.773 0.949 0.001 0.054 0.000 0.001 0.001
Snake 0.422 0.205 0.000 0.703 0.935 0.013 0.007 0.000 0.001 0.001
Zitmo 0.750 0.503 0.378 0.789 0.967 0.060 0.025 0.087 0.033 0.001
Average 0.740 0.610 0.171 0.773 0.953 0.017 0.025 0.058 0.014 0.002
TABLE 6: Detailed performance indicators of machine learning classifiers (precision/accuracy/F-measure).
Normal and malware Precision Accuracy F-measure
DT NB RF SVM BN DT NB RF SVM BN DT NB REF SVM
Normal 0.963 0.920 0.571 0.790 0.992 0.943 0.908 0.704 0.915 0.997 0.904 0.844 0.375 0.882 0.995
Adrd. AQ 0.682 0.590 0.000 0.893 0.939 0.978 0.972 0.964 0.996 0.996 0.689 0.628 0.000 0.943 0.948
Anserver 0.532 0315 0.000 0.933 0.993 0951 0.885 0.945 0.996 0.997 0.691 0.469 0.000 0.963 0.975
Basebridge 0.803 0.455 0.246 0.724 0.999 0.976 0.940 0.897 0.970 0.997 0.744 0.596 0.327 0.696 0.968
DroidKungFu 0.842 1.000 0.000 0.997 0.983 0.977 0.993 0.945 0.993 0.998 0.776 0.929 0.000 0.932 0.980
FakeInst 0910 1.000 0911 0.973 0.836 0.992 0.985 0.960 0.990 0.989 0.928 0.830 0.408 0.900 0.905
Geimini 0.842 0.607 0.000 0.996 0.957 0.986 0.976 0971 0.999 0.995 0.733 0.526 0.000 0.979 0.924
GoldDream 0.730 0.780 0.000 0.653 0.962 0.964 0.956 0.945 0.963 0.997 0.639 0.431 0.000 0.683 0.978
LightDD 0.765 0.481 0.070 0.997 0.998 0971 0.943 0.697 0.981 0.998 0.710 0.518 0.118 0.783 0.977
Opfake 0.878 0.910 0.000 0.979 0.900 0.972 0.966 0.945 0.972 0.985 0.689 0.583 0.000 0.670 0.858
PjApps 0.554 0.707 0.000 0.880 0.941 0.967 0.975 0.959 0.978 0.997 0.699 0.682 0.000 0.675 0.967
RooterBT 0.846 1.000 0.117 0.802 0.926 0.985 0972 0.687 0.971 0.994 0.857 0.621 0.203 0.669 0.946
SMSHider 0.983 0.451 0.000 0.972 0.976 0.987 0.936 0.946 0.986 0.996 0.868 0.568 0.000 0.861 0.962
Snake 0.651 0.646 0.000 0.987 0.977 0.955 0.949 0945 0.983 0.995 0.512 0312 0.000 0.821 0.956
Zitmo 0.325 0.439 0.144 0.479 0.977 0.933 0.958 0.893 0.960 0.998 0.454 0.469 0.209 0.596 0.972
Average 0.754 0.687 0.137 0.870 0.957 0.969 0.954 0.894 0.977 0.995 0.726 0.600 0.109 0.804 0.954

Table 6 shows the detailed results of respective classifiers’
precision/accuracy. For the decision tree, the precision of
DroidKungFu, Fakelnst, and RooterBT is 1.000, which marks
the best performance. Their average precision is 0.687, which
is lower than SVM (precision = 0.957). For accuracy, SVM
shows higher performance with 0.995 on average. For the F-
measure, it is found that the SVM is 0.954 on average except
for Fakelnst, which gives superior performance from other
classifiers.

5. Conclusion and Future Work

This paper proposed an Android malware-detection mecha-
nism using machine learning algorithms for reliable IoT ser-
vices. This paper also proposed a machine learning technique
to remedy the disadvantage of the behavior-based technique
(one of the mobile detection techniques) and to correctly
detect malware targeting the Android platform. The first
problem of existing studies was that they were not suitable

Journal of Applied Mathematics

for generalization because they were not able to analyze
many types of malware. To solve this problem, the recent
domestic trend of malware targeting Androids was evaluated
and 14 malware programs were selected to apply them to
the proposed method. Second, because the features of the
existing papers focused only on the detection of some types
of malware or they had no correlation with malware, their
detection rate was reduced. This paper reflected the structural
characteristics of the Android platform to subdivide its
memory space. This study also selected the features having
much correlation with malware to increase efficiency. Third,
the portability between devices was considered to verify it
through the 5-fold cross-validation experimental method.
We concluded that the SVM technique could accurately
detect most malware in a relative sense by comparatively ana-
lyzing them with four classifiers (Bayesian network, decision
tree, naive Bayesian, and random forest).

Future studies may consider exposing hardly detectable
malware by resource information and sharper system accu-
racy. Because diverse variants and new types of mobile
malware are on the rise, further study on a technique that
could detect future malware should be scheduled. We plan
to develop an efficient and lightweight implementation of
the SVM algorithm that can be embedded to a smartphone
for real-time detection. We also plan to conduct malware
elimination and control by applying detection results to
actual mobile devices and networks.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science, ICT & Future
Planning (2013R1A1A3011698).

References

[1] N. Gershenfeld, R. Krikorian, and D. Cohen, “The internet of
things,” Scientific American, vol. 291, no. 4, pp. 76-81, 2004.

[2] Readwrite, “The Future of Connected Cars: What Audi is
Driving Towards,” 2012, http://readwrite.com.

[3] Brandingmagazine, Adidas’ Interactive Window Shopping Expe-
rience, 2012, http://www.brandingmagazine.com/.

[4] K. Moessner, E Le Gall, P. Cousin et al., “Internet of things
strategic research and innovation agenda,” in Internet of Things:
Converging Technologies for Smart Environments and Integrated
Ecosystems, 2013.

[5] J. Jensen, S. Copenhagen, and A. H. Larsen, Smart Intercom-
Enhancing the Apartment Intercom System, ACM Computing
Classification System, 2012.

[6] T.-T. Truong, M.-T. Tran, and A.-D. Duong, “Improvement of
the more efficient & secure ID-based remote mutual authenti-
cation with key agreement scheme for mobile devices on ECC,
Journal of Convergence, vol. 3, no. 2, pp. 25-36, 2012.

[7] Aloha, “Mobile Ambient Analytics Platform,” https://www
.alohar.com/developer/.

[8] Nest, “Nest Thermostat,” https://nest.com/.

[9] D. Werth, A. Emrich, and A. Chapko, “An ecosystem for user-
generated mobile service,” Journal of Convergence, vol. 3, no. 4,
2012.

[10] J. W.K. Gnanaraj, K. Ezra, and E. B. Rajsingh, “Smart card based
time efficient authentication scheme for global grid computing,”
Human-centric Computing and Information Sciences, vol. 3,
article 16, 2013.

[11] K. Sakurai and K. Fukushima, “Actual condition and issues
for mobile security system,” Journal of Information Processing
Systems, vol. 3, no. 2, pp. 54-63, 2007.

[12] A. Schmidt, A. Camtepe, and S. Albayrak, “Static smartphone
malware detection,” in Proceedings of the 5th Security Research
Conference (Future Security 2010), p. 146, 2010.

(13] T. Bldsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S.
Albayrak, “An android application sandbox system for suspi-
cious software detection,” in Proceedings of the 5th International
Conference on Malicious and Unwanted Software (Malware ’10),
pp- 55-62, Nancy, France, October 2010.

[14] X. Kou and Q. Wen, “Intrusion detection model based on
android,” in Proceedings of the 4th IEEE International Conference
on Broadband Network and Multimedia Technology (IC-BNMT
1), pp. 624-628, October 2011.

[15] A. Bose, X. Hu, K. G. Shin, and T. Park, “Behavioral detection
of malware on mobile handsets,” in Proceedings of the 6th
International Conference on Mobile Systems, Applications, and
Services, pp. 225-238, June 2008.

[16] A.-D. Schmidt, H.-G. Schmidt, J. Clausen et al., “Enhancing
security of linux-based android devices,” in Proceedings of the
15th International Linux Kongress, Lehmann, October 2008.

(17] J. Cheng, S. H. Y. Wong, H. Yang, and S. Lu, “SmartSiren: virus
detection and alert for smartphones,” in Proceedings of the 5th
International Conference on Mobile Systems, Applications and
Services (MobiSys °07), pp. 258-271, June 2007.

[18] L. Liu, G. Yan, X. Zhang, and S. Chen, “VirusMeter preventing
your cellphone from spies;” in Recent Advances in Intrusion
Detection , vol. 5758 of Lecture Notes in Computer Science, pp.
244-264, 2009.

[19] L. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid
behavior-based malware detection system,” in Proceedings of the
Ist ACM Workshop on Security and Privacy in Smartphones and
Mobile Devices (SPSM ’11), 2011.

[20] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss,
““Andromaly”: a behavioral malware detection framework for
android devices,” Journal of Intelligent Information Systems, vol.
38, no. 1, pp. 161-190, 2012.

[21] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “Scan-Droid
Automated Security Certification of Android Applications,”
2011.

[22] E. William, P. Gilbert, C. Byung-Gon et al., “TaintDroid: an
information-flow tracking system for realtime privacy mon-
itoring on smartphones,” in Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation
(OSDI ’10), pp. 1-6, USENIX Association, Berkeley, Calif, USA.

[23] F-Secure, “Mobile Threat Report,” Q4, 2012.

[24] C.J. C. Burgesm, “A tutorial on support vector machines for
pattern recognition,” Data Mining and Knowledge Discovery,
vol. 2, no. 2, pp. 121-167, 1998.

10

(25]

(26]

(27]
(28]
(29]

(30]

(31]

(34]

(35]

[36]

C. M. Medaglia and A. Serbanati, “An overview of privacy and
security issues in the internet of things,” in The Internet of
Things, pp. 389-395, Springer, New York, NY, USA, 2010.

S. B. Kotsiantis, “Supervised machine learning: a review of
classification techniques,” Informatica, vol. 31, no. 3, pp. 249-
268, 2007.

N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network
classifiers;” Machine Learning, vol. 29, no. 2-3, pp. 131-163, 1997.
R. Kohavi, Scaling up the Accuracy of Naive-Bayes Classifiers: A
Decision-Tree Hybrid, KDD, 1996.

L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
pp- 5-32, 2001

H. S. Ham and M. J. Choi, “Analysis of Android malware
detection performance using machine learning classifiers,” in
Proceedings of the International Conference on ICT Convergence
(ICTC’I3), pp. 490-495, 2013.

T. Kim, Y. Choi, S. Han et al., “Monitoring and detecting abnor-
mal behavior in mobile cloud infrastructure,” in Proceedings
of the IEEE Network Operations and Management Symposium
(NOMS ’I2), pp. 1303-1310, April 2012.

M. T. Hagan, H. B. Demuth, and M. H. Beale, Neural Network
Design, vol. 1, Pws, Boston, Mass, USA, 1996.

S. Mukkamala, G. Janoski, and A. Sung, “Intrusion detection
using neural networks and support vector machines,” in Pro-
ceedings of the International Joint Conference on Neural Networks
(IJCNN °02), vol. 2, pp. 1702-1707, IEEE, May 2002.

Y. Hwang, J. Kwon, J. Moon, and S. Cho, “Classifying malicious
web pages by using an adaptive support vector machine,
Journal of Information Processing Systems, vol. 9, no. 3, pp. 39-
404, 2013.

J. A. K. Suykens and J. Vandewalle, “Least squares support
vector machine classifiers,” Neural Processing Letters, vol. 9, no.
3, pp. 293-300, 1999.

Ahnlab, “Ahnlab ASEC Report,” 2012.

Journal of Applied Mathematics

Advances in

Operations Research

Advances in

Decision SC|ences

Journal of

Applied Mathematics

Journal of
Probability and Statistics

The Scientific
\{\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Journal of

Mathematics

Journal of

Illsmelth alhemaics

Mathematical Problems
in Engineering

Journal of

Function Spaces

Abstract and
Applied Analysis

Stochastic A nalysws

,;,,\K J :1?"
#(ﬁ)}?ﬂ(ﬂﬁf
f. \') :

International Journal of

Differential Equations

ces In

I\/\athemamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization

