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Abstract 
 

Recently, network traffic has become more complex and diverse due to the emergence of new 
applications and services. Therefore, the importance of application-level traffic classification 
is increasing rapidly, and it has become a very popular research area. Although a lot of 
methods for traffic classification have been introduced in literature, they have some limitations 
to achieve an acceptable level of performance in real-time application-level traffic 
classification. In this paper, we propose a novel application-level traffic classification method 
using payload size sequence (PSS) signature. The proposed method generates unique PSS 
signatures for each application using packet order, direction and payload size of the first N 
packets in a flow, and uses them to classify application traffic. The evaluation shows that this 
method can classify application traffic easily and quickly with high accuracy rates, over 
99.97%. Furthermore, the method can also classify application traffic that uses the same 
application protocol or is encrypted. 
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1. Introduction 

Enterprise and campus networks typically impose a set of policies such as quality of service 
(QoS) and service-level agreements (SLAs) for the efficient management and operation of 
network resources. For example, schools and public institutions implement policies to control 
traffic that consumes excessive network resources and is not related to the purpose of the 
organization, such as P2P and game traffic. For these policies, fast and accurate traffic 
classification in the application layer is essential. Application-level traffic classification is a 
process that collects network packets and determines the identity of the application [1]. 
Accurate real-time application-level traffic classification is an important part of determining 
the reliability of monitoring and controlling the application traffic of individual applications 
[1][2][3]. 

Due to the importance of application-level traffic classification, a lot of methods have been 
introduced. Traditional methods commonly involve port-based or payload-based classification 
[4]. They were effective and precise in the early days of the Internet. However, the reliability 
of port-based classification is currently diminishing, because some users use inconsistent ports 
intentionally. At the same time, payload-based classification also has to face limitations in 
complexity, privacy issues and encrypted applications, which makes it difficult to classify 
application traffic effectively. 

Recently, several methods have been introduced that use statistical flow information to 
address the limitations of port-based and payload-based classification [5][6]. The 
classification approach that uses statistical information has some advantages. For example, it 
works for encrypted traffic, the usage of which has been increasing recently. In addition, it 
does not need to analyze the payload information of the packets, so it can classify the traffic 
quickly. A problem to this approach is that it has to wait until the end of the flow to complete 
the statistical information, so it cannot classify the traffic in real time. To overcome this 
problem, methods that use the first N packets of a flow have been studied, but they are also 
difficult to apply to real-time traffic classification in high-speed real operation networks. They 
require computation cost for the feature extraction to produce the statistical information, and 
because their machine learning (ML) algorithms have very high computation complexity, 
those methods cannot be applied to real-time classification in high-speed real operation 
networks. Their results are also not categorized by each application, because they classify the 
application traffic into application protocols. They classify several applications into one 
application protocol when the applications use the same protocol. Therefore, they cannot be 
applied to many network management and operation policies that adjust each application. 

In this paper, we propose a novel application-level traffic classification method using 
payload size sequence (PSS) signature. PSS signature represents the unique flow pattern of 
each application that can be utilized to distinguish applications. Our method generates PSS 
signatures for each application with statistical information of flows from application traffic 
traces. And, it classifies application traffic easily and quickly in real operation networks 
through simple signature matching of new flows to the PSS signatures of each application. 

In the generation of PSS signatures for an application, flows of its traffic traces are 
converted into PSS vectors using packet order, direction and payload size of the first N packets 
of each flow. PSS vectors are grouped according to similarity between PSS vectors by our 
flow grouping algorithm to identify unique flow patterns of the application. The groups of PSS 
vectors are optimized and the PSS signatures of the application are extracted from each group 
by our group optimization and signature generation algorithm, respectively. For classification 
of application traffic, the PSS vector of a new flow in a real operation network is compared 
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with each PSS signature using our signature matching algorithm to determine the application 
of the flow. 

The proposed method has three advantages. First, it can classify the application traffic in 
real time and can apply well to high-speed real operation networks that deal with a large 
amount of traffic. It uses only the packet order, direction and payload size of the first N packets 
of a flow during traffic classification, so it does not need to analyze packet payload data and 
can make PSS vectors without computation cost for the feature extraction from the flow. It 
also uses simple comparison for PSS signature matching that has extremely low computation 
complexity in comparison to ML algorithms. As a result, our method can operate effectively in 
real operation networks. Second, it can obtain highly accurate classification results, because it 
uses PSS signatures that reflect unique flow patterns of each application. Our evaluation 
shows that it can classify application traffic with high accuracy rates of more than 99.97%. 
Third, it can classify application traffic into each application, not application protocol, because 
it uses unique PSS signatures per application. Our evaluation also shows that it can classify 
application traffic that uses the same application protocol into each application. 

The remainder of this paper is organized as follows. Section 2 briefly reviews and 
summarizes the previous work. Section 3 introduces our proposed method in detail. Section 4 
describes our experimental method and analyzes classification results. The conclusion and 
future work are given in Section 5. 

2. Related Work 
A lot of traffic classification methods that use statistical information of application traffic 
flows have recently been studied [5][6]. These methods commonly use ML algorithms with 
the features (port number, flow duration, inter-arrival time, packet size, etc.) that can be 
characteristics of the application traffic. Because they do not analyze the payload data, there 
are no privacy problems and they can classify the traffic faster than payload-based methods. 
They can also classify encrypted traffic. Furthermore, by using high-quality algorithms that 
are qualified in the field of ML, they can classify the traffic with highly accurate results. 

Table 1 compares the recent ML-based traffic classification methods that use features as 
statistical information of the traffic flows. The “Feature Extraction Range” presents the range 
in a flow that is necessary to extract its features for traffic classification. In other words, it 
represents the amount of packets that need to be investigated in order to complete the features. 
“Full flow” means that the method requires flow completion to extract its features, and the 
method can extract the features at the end of the flow, so it cannot classify application traffic in 
real time. “Partial flow” means that the method uses part of a flow to extract its features. The 
“Feature Computation Cost” presents the computation overhead for the feature extraction. 
“Low” means that the method does not need the computation for the feature extraction, and 
“Average” indicates the method needs simple computation for extracting features and the 
number of the used features is lower than 10. “High” means that the method uses the features 
that require complex computation to be extracted, or uses more than 10 features that require 
simple computation. The “ML Algorithm” presents the machine learning algorithm used in the 
method, and it infers the computation complexity for traffic classification. Finally, the 
“Classification Traffic Class” presents application traffic class that the method classifies into. 
“Protocol” indicates the application protocol, and “Application” means each individual 
application. For example, “N Protocols, two applications” means that the method can classify 
application traffic into N application protocols and two individual applications. 
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Table 1. Comparison of Recent ML-based Traffic Classification using Statistical Flow Information 

Related 
Work 

Feature 
Extraction 

Range 

Feature 
Computation 

Cost 
ML Algorithm Classification 

Traffic Class 

Bernaille et al. [7] Partial flow Low K-Means, GMM, HMM 
N Protocols, 

two applications 

Bujlow et al. [8] Partial flow High C5.0 
N Protocols, 

three applications 

Jin et al. [9] Full flow Medium 
Modular architecture  

(Three  linear ML Algorithms) 
N Protocols 

Tan et al. [10] Full flow Medium SVM optimized by Particle 
Swarm Optimization 

N Protocols, 
one application 

Yuan et al. [11] Full flow Medium SVM N Protocols 

Runyuan et al. [12] Full flow High Probabilistic Neural 
Networks N Applications 

Yin et al. [13] Partial flow Low HMM 
N Protocols, 

five applications 

 
Table 1 shows that some methods extract features at the end of a flow [9][10][11][12], so 

they cannot apply to the real-time traffic classification because they can determine the 
application of a new flow after it finishes. To overcome this limitation, the methods that 
extract features in the first N packets of a flow are studied [7][8][13]. However, high feature 
computation cost or high computation complexity of the ML algorithm in the methods makes 
it difficult to achieve the real-time traffic classification in high-speed real operation networks. 
In addition, most of the methods mainly classify application traffic into each application 
protocol, not each application, which is not sufficient to be applied to network management or 
operation policies that adjust or control individual application traffic. 

In order to overcome the limitations of previous methods using statistical information, the 
proposed method generates PSS signatures for each application in advance. During traffic 
classification, it composes PSS vectors from the first N packets of new flows without 
computation cost, and performs PSS signature matching with linear computation complexity 
for application traffic classification. It classifies the application traffic into each individual 
application and basically has advantages of traffic classification using statistical information. 

3. Traffic Classification Methodology using PSS Signature 
In this section, we describe the proposed traffic classification method after defining PSS and 
describing PSS characteristics to distinguish application traffic. 

In order to classify application traffic, PSS signatures that are unique to each application are 
necessary. We define PSS signature mathematically and propose PSS signature generation 
method. After that, we describe the traffic classification method based on the PSS signatures. 
In this paper, PSS signatures are generated per individual application instead of application 
protocol. It can be utilized in a broad range of fields in comparison with previous methods that 
classify traffic into application protocol. 
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3.1 Payload Size Sequence (PSS) 
In general, the first few packets of a flow communicate on the basis of pre-defined rules by an 
application. The first N packets of a flow can be used as a distinguishable feature to identify 
the application because they communicate according to pre-defined rules and are very 
different in each application [7]. 

In this study, we define the flow as a sequence set of packets transmitted in both directions 
based on a 5-tuple (source IP, destination IP, source port, destination port, and L4 protocol). 
Packet order is formed according to the collecting time. 

The PSS of a flow is presented as a sequence set that is composed of the payload size and 
direction of the first internal N packets based on packet order. The payload size and 
transmission direction of each packet are expressed as an integer and “+/−”, respectively. In 
the case of TCP, the transmission direction from client to server is defined as “+”, and the 
opposite direction is defined as “−”. In the case of UDP, because the distinction between client 
and server is not clear, the direction of the first packet is expressed as “+” and the opposite 
direction is determined as “−”. The PSS is composed of only packets in which payload exists. 
The control packets such as SYN or ACK in TCP sessions are excluded. This prevents 
irregular control packets from affecting the PSS. 

For example, if a flow communicates in both directions as shown in Fig. 1, the PSS of the 
flow has the values +20, −30, +20, +25, and −15, excluding the control packets such as SYN, 
SYN/ACK, and ACK. 
 

 

𝑃𝑆𝑆 = (+20,−30, +20, +25,−15) 

Fig. 1. Payload Size Sequence (PSS) of a Flow 
 

From the observations of popular applications in the Korea University campus network, we 
found that applications can be distinguished with their PSSs. Fig. 2 presents each PSS of four 
different applications, Dropbox, Microsoft Outlook, PuTTY, and Xshell. The PSSs that have 
the same packet order and direction are expressed as a flow group which is plotted with a 
polygonal line. The vertical axis shows the multiplication of the payload size and the direction 
of the packets. The horizontal axis shows packet order. The multiplication of the payload size 
and direction of the packet can have values from −1,460 to 1,460. 

Most of applications do not have flows that communicate with one identical pattern of PSS 
such as PuTTY. The flows can be either divided with two or three specific patterns such as 
Xshell and Dropbox, or divided with a number of specific patterns such as Outlook. However, 
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PSSs of each application show their own unique characteristics when they are compared with 
other applications. 
 

           
PuTTY                                                                           Xshell 

         
Dropbox                                                                        Outlook 

Fig. 2. The PSSs of Four Applications 
 

A flow group indicates a specific flow pattern or application behavior. As shown in Fig. 2, 
flows of each application have regular flow patterns. The regular flow patterns can distinguish 
between different applications. Therefore, we can know that PSSs can be used to classify 
application traffic. Furthermore, distinguishable PSSs between PuTTY and Xshell which use 
the same SSH protocol indicate that PSSs can be used to classify application traffic which uses 
the same application protocol or is encrypted. 
 

3.2 PSS Signature 
A PSS signature represents each application’s unique flow pattern that can be utilized to 
classify application traffic. The proposed method vectorizes flows from application traffic 
traces into PSS vectors per application, and groups PSS vectors on the basis of the similarity 
between PSS vectors to identify flow patterns of the application. In sequence, a PSS signature 
is generated with the combination of a representative PSS vector which represents PSS vectors 
of each group, and a distance threshold vector which includes PSS vectors of each group. If all 
of the individual PSS vectors are used as signatures, the number of signatures increases. As a 
result, managing the signatures becomes difficult and the system is overloaded for the 
identification of application traffic. Therefore, an optimal PSS signature combines the 
representative PSS vector and the distance threshold vector that represent each group by 
grouping the application PSS vectors. 
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The PSS vector 𝑣𝑘 of a flow 𝑓𝑘  can be expressed as (1), and each element 𝑣𝑘,𝑖 of 𝑣𝑘 can be 
written as (2). 𝑑𝑘,𝑖 is the transmission direction of the i-th packet of 𝑓𝑘, and its value is either 
+1 or −1. 𝑠𝑘,𝑖 is the payload size of the i-th packet of 𝑓𝑘. 
 

𝑣𝑘 = (𝑣𝑘,1,𝑣𝑘,2, … , 𝑣𝑘,𝑛)                         (1) 

𝑣𝑘,𝑖 = d𝑘,𝑖 × s𝑘,𝑖                                             (2) 

 
The similarity between two PSS vectors is expressed as the distance vector that has 

elements as distance between two PSS vectors by each dimension. Similarity is used in flow 
grouping and signature matching algorithms. The distance vector 𝑑𝑥,𝑦 = 𝑑(𝑣𝑥,𝑣𝑦) between 
𝑣𝑥 and 𝑣𝑦 can be written as (3). 
 

𝑑�𝑣𝑥 ,𝑣𝑦� = (�𝑣𝑥,1 − 𝑣𝑦,1�, �𝑣𝑥,2 − 𝑣𝑦,2�, … , �𝑣𝑥,𝑛 − 𝑣𝑦,𝑛�)                        (3) 
 

PSS signature s is represented with the representative PSS vector and the distance threshold 
vector, as in (4). c is the centroid PSS vector of the PSS vector group, and t is the distance 
threshold vector, which can include every PSS vector of the PSS vector group. s is the 
combination of c and t of the PSS vector group. 
 

 𝑠 = (𝑐, 𝑡)                                                              (4) 
 

Each PSS vector v of PSS vector group V(s), which is represented by the PSS signature s = 
(c, t), should satisfy (5). The similarity between all v that belong to V(s) and the representative 
PSS vector c should be less than or equal to distance threshold vector t. 
 

𝑑(𝑣, 𝑐) ≤ 𝑡  𝑓𝑜𝑟 ∀𝑣 ∈ 𝑉(𝑠)                                                (5) 
 

Multiple PSS signatures of each application can exist and (6) presents PSS signature set S. 
 

𝑆 = {𝑠1, 𝑠,2, … , 𝑠𝑛}                                                       (6) 
 

PSS vectors of each application are extracted from flows of ground-truth traffic traces that 
are collected in advance. After that, the PSS signature set is generated on the basis of the PSS 
vectors. Application traffic can be classified according to the PSS signature set. 
 

𝑆̂   such that �
minimize |𝑆|           
minimize ∑𝑡(𝑠)    
maximize ∑ |𝑉(𝑠)|

                                            (7) 

 
In order to obtain an optimal PSS signature set 𝑆̂ from the given ground-truth flows of each 

application, the condition of (7) should be satisfied. |𝑆| indicates the number of PSS signatures 
s of S, 𝑡(𝑠) is the distance threshold vector of PSS signature s, and |𝑉(𝑠)| is the number of 
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PSS vectors of set V(s) represented by PSS signature s. Thus, (7) indicates the minimization of 
the number of PSS signatures, the minimization of the sum of distance threshold vectors, and 
the maximization of the number of PSS vectors that belong to each PSS signature for obtaining 
an optimal PSS signature set. 

Fig. 3 presents the flowchart of the proposed application traffic classification method using 
PSS signature. The method is divided into two stages: signature generation and traffic 
identification. In the signature generation stage, application flows of ground-truth traffic traces 
are vectorized to PSS vectors using (1) and (2). Next, the flows are grouped on the basis of 
similarity between two PSS vectors which is defined by (3). Finally, PSS signatures are 
extracted after optimizing the groups. In the traffic identification stage, a new flow is 
generated from a series of packets in a real operation network and is vectorized to a PSS vector 
using the first N packets. The PSS vector is classified into each application by signature 
matching with each PSS signature. 
 

 
Fig. 3. Flow Chart of Application Traffic Classification using PSS Signature 

 

3.3 PSS Signature Generation 
In this section, we present some requirements of the ground truth traffic to generate optimal 
PSS signatures. Next, we describe PSS signature generation in detail. PSS signature 
generation is composed of flow grouping, group optimization and signature generation 
algorithms. The flow grouping algorithm is used to identify unique flow patterns for each 
application. The group optimization algorithm adjusts each flow group from the flow grouping 
to make an optimal PSS signature set, and the signature generation algorithm extracts PSS 
signatures from final groups. 
 

3.3.1 Ground Truth Traffic 

Ground truth traffic has some requirements to generate optimal PSS signatures. First, all types 
of traffic of the concerned applications must be included. Applications can perform several 
functions and generate slightly different traffic patterns. Therefore, all types of traffic 
generated from an application should be collected to extract accurate signatures. Second, the 
traffic of each application should have more than a certain number of flows. The signature that 
is generated with too few flows can cause a decrease of reliability and a decline of 
distinguishable traffic in the application classification. Third, the traffic of each application 
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needs to be collected from multiple hosts. If any application traffic is collected by one host, the 
characteristics of traffic can be dependent on that host. For example, many applications can 
change their port number in the settings menu, and the port number that is modified by a user 
can be used as a signature of that host but cannot be used in other hosts. 

 

3.3.2 Flow Grouping 

The application flows are divided into multiple flow groups by similarity of PSS vectors in 
order to extract PSS signatures of each application from the repeated and unique patterns of 
flows. Each flow group, as shown in Table 2, has six properties. 

 

Table 2. Attributes of a Flow Group 
Attribute Description Example 

ID Application Name BitTorrent 
Proto L4 protocol: TCP/UDP UDP 

V Set of Flow vectors {v1,v2,v3,…,vn} 
Dim Dimension of vector 5 

C-vector Centroid PSS vector (+20,+30,-50,+20,-30) 
T-vector Distance threshold vector (10, 10, 10, 10, 10) 

 

In Table 2, “ID” is the identity of the application for the flow group. “Proto” is L4 protocol 
for the flow group, and it has the value of either TCP or UDP. The flow grouping is achieved 
by flows that have the same L4 protocol even if the flows are generated in the same application. 
“V” is the set of PSS vectors belonging to the group, and “Dim” is the dimension of the PSS 
vectors belonging to the group. All flows belonging to the same group have the same 
dimension. Because the dimension means the number of internal packets of the flow that is 
vectorized to the PSS vector, its value can be from 1 to N. However, the minimum value is 
defined as 3 in this study. This is because it is difficult to generate a sensible PSS signature 
with one- or two-dimensional PSS vectors. In addition, N is defined as 5 empirically with 
consideration for real-time and accurate traffic classification. Bernaille et al. [14] also shows 
that the first five packets of a flow are enough to distinguish each application. The C-vector is 
the centroid vector of the group and is used in the flow grouping task. The C-vector is 
calculated using all of the PSS vectors belonging to the group, and the calculation is repeated 
whenever a new PSS vector is added to or removed from the group during flow grouping. The 
T-vector is the condition of flow grouping and indicates the range of the group. The initial 
value of the T-vector must be a value that can include the largest number of flows that indicate 
the same flow pattern and can exclude flows that indicate different patterns. In this study, the 
initial value of every element of T-vector is defined as 10 on an experimental basis to identify 
unique flow patterns of each application properly in flow grouping. 

The flows that are grouped into one group during flow grouping have the same ID, Proto, 
and Dim, and they satisfy (8). 𝐺𝑖 indicates the i-th group, 𝑉𝑖 is the set of PSS vectors belonging 
to 𝐺𝑖 , and 𝑣𝑗  means the j-th PSS vector of 𝑉𝑖 . 𝑐𝑖  and 𝑡𝑖  are a C-vector and T-vector, 
respectively. Thus, (8) means that all of PSS vectors belonging to a specific group should be in 
the range that is formed with the C-vector and T-vector. 
 

𝑑�𝑣𝑗  , 𝑐𝑖� ≤ 𝑡𝑖   for ∀𝑣𝑗 ∈ 𝑉𝑖 , 𝑐𝑖 , 𝑡𝑖 of 𝐺𝑖                                                     (8) 
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Fig. 4 shows the pseudo-code of our flow grouping algorithm. Every flow of each 
application is entered into the flow grouping algorithm, after flows from ground-truth traces 
are represented as PSS vectors and divided according to each application. 𝑣𝑗 is the j-th PSS 
vector. 𝐺𝑖 means the i-th group, and 𝑐𝑖 is the C-vector of 𝐺𝑖. 𝑡𝑖 indicates the T-vector of 𝐺𝑖. 
𝜏𝑖,𝑗, which can have only 0 or 1, is newly defined for the flow grouping. When 𝑣𝑗 ∈ 𝐺𝑖, it has 
the value of 1. Otherwise, it has the value of 0. The flow grouping is completed when 𝜏𝑖,𝑗 = 1 
for all j. 

 

input    all PSS vectors of an application 
output  flow groups of an application 
1: n, m : max number of groups, PSS vectors 
2: i, j : index of group, PSS vector 
3:  
4: Set τi,j= 0, n = 0 
5: for each of the PSS vector vj, 0 ≤ j < 𝑚  

6: Find a Group Gi , 0 ≤ i < 𝑛 such that d(vj , ci) ≤ ti 
7:     if (Gi found ) then  
8:        τi,j = 1 
9:     else 
10:         n = n + 1 and i = n  
11:         create a new group Gi and τi,j = 1 
12:     end if 

13:     recalculate ci  through ci =  1
∑ τi,jm
j=1

× ∑ (τi,j × vj)m
j=1  

14: end for 
Fig. 4. Pseudo-code of Our Flow Grouping Algorithm 

 
The flow grouping algorithm performs the task after initialization of all 𝜏𝑖,𝑗  values. It 

detects the group that can contain a PSS vector by comparing the T-vector and the distance 
vector between the PSS vector and the C-vector. If the detection succeeds, the PSS is assigned 
to the group and the C-vector of the group is recalculated. If the detection fails, the algorithm 
generates a new group and calculates the C-vector of the group. The flow grouping is 
completed when the task is performed for all PSS vectors. 
 

3.3.3 Group Optimization and Signature Generation 

Group optimization removes the inappropriate outlier PSS vectors and groups after 
completing the flow grouping. The outlier PSS vectors that are inside the group and do not 
meet the requirement of (8), are removed. In addition, the outlier groups that satisfy the 
condition of (9) are removed. 

Because the C-vector of the flow group is continuously changing during the flow grouping, 
the outlier PSS vectors that do not belong to the final group appear, and they must be removed 
from the final group. In order to prevent the extraction of the meaningless behavior of 
application traffic as the PSS signature, and to minimize the number of PSS signatures of each 
application, the outlier groups that have less than a certain number of PSS vectors must be 
removed. (9) is the condition that removes the outlier groups. |𝑉𝑖| indicates the number of PSS 
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vectors belonging to the group 𝐺𝑖, and the minimal flow count is the pre-defined threshold 
value. 
 

|𝑉𝑖| = ∑ 𝜏𝑖,𝑗𝑚
𝑗=1 < 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 𝑓𝑙𝑜𝑤 𝑐𝑜𝑢𝑛𝑡                      (9) 

 
Next, a PSS signature is generated from each flow group. As shown in Table 3, each 

signature has five properties. 
 

Table 3. Attributes of a PSS Signature 
Attribute Description Example 

ID Application Name BitTorrent 
Proto L4 protocol: TCP/UDP UDP 
Dim Dimension of vector 5 

C-vector Centroid PSS vector {+18,+31,-46,+15,-30} 
T-vector Distance threshold vector {10, 8, 5, 7, 0} 

 

The ID, Proto and Dim of the PSS signature are inherited from each of the flow groups. 
After that, our signature generation algorithm calculates the C-vector of the flow group using 
(10) and assigns it to the C-vector of the PSS signature. Because the group optimization 
algorithm removed the PSS vectors that did not meet the conditions in (8), the C-vector should 
be recalculated. The C-vector is used with the T-vector to identify the application of a new 
flow during the traffic classification. 
 

 c𝑖 =  1
∑ τ𝑙,𝑗𝑚
𝑗=1

× ∑ (τ𝑖,𝑗 × v𝑗)𝑚
𝑗=1  𝑓𝑜𝑟 ∀𝑣𝑗 ∈ 𝑉𝑖  𝑜𝑓 𝐺𝑖                  (10) 

 
In addition, the signature generation algorithm calculates the T-vector of the flow group and 

assigns it to the T-vector of the PSS signature. Each element of the T-vector of all flow groups 
has the same value as an initial value. However, the distance threshold of each group that can 
contain all flows is different, because each group has different density and distribution of PSS 
vectors after the flow grouping is completed. Therefore, the T-vector should be minimized in 
order to eliminate misclassification errors during traffic classification. The T-vector is 
calculated using (11), which means that the T-vector has elements as the maximum distance 
between each PSS vector and C-vector by each dimension. Each element of the T-vector 
cannot be more than 10, because we assigned its initial value as 10 for each group. 
 

𝑡𝑖 = {m𝑎𝑥( |𝑣𝑗,1 − 𝑐𝑖,1|), m𝑎𝑥( |𝑣𝑗,2 − 𝑐𝑖,2|), … , m𝑎𝑥( |𝑣𝑗,𝑛 − 𝑐𝑖,𝑛|)}  𝑓𝑜𝑟  ∀𝑣𝑗 ∈ 𝑉𝑖, 𝑐𝑖 𝑜𝑓 𝐺𝑖      (11)     
 

Fig. 5 shows the removal of outlier PSS vectors and the T-vector minimization on a 
two-dimensional space to facilitate understanding. As shown in the left figure, some PSS 
vectors do not belong to the final group. This phenomenon occurs because the centroid vector 
changes during the flow grouping. The outlier PSS vectors are removed to eliminate the 
misclassification error. The right figure of Fig. 5 shows the minimization of the initial element 
value of the T-vector to the maximum distance between each PSS vector and C-vector by each 
dimension after the flow grouping. The final rectangle shape that is formed with the C-vector 
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and T-vector presents the geometrical form of the PSS signature of the application for the flow 
group on a two-dimensional space. 

 

 
Fig. 5. Removal of Outlier PSS vectors and the T-vector Minimization on Two-Dimensional Space 
 
Fig. 6 shows the pseudo-code of our group optimization and signature generation 

algorithms. They optimize the groups of all applications and generate the PSS signatures for 
each application from the groups. The optimized groups of each application indicate unique 
flow patterns that can identify new flows of the application effectively. Therefore, PSS 
signatures from the optimized groups can classify application traffic into each application with 
high accuracy. 
 

input   flow groups of all applications 
output  PSS signatures of application for flow groups 

1: for each of the flow Group Gi 
2:     Find vj such that τi,j = 1 and d�vj , ci� > ti 
3:     if (vj found) then τi,j = 0 
4: end for 
5: Find a Group 𝐺𝑖 such that (∑ 𝜏𝑖,𝑗𝑚

𝑗=1 < 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 𝑓𝑙𝑜𝑤 𝑐𝑜𝑢𝑛𝑡) 
6: if (𝐺𝑖  found) then eliminate G𝑖 and set τ𝑖,𝑗= 0 for all 𝑣𝑗  of G𝑖 where τ𝑖,𝑗= 1 
7:  
8: for each of the flow Group Gi 

9:     calculate 𝑐𝑖 through 𝑐𝑖 =  1
∑ τi,jm
j=1

× ∑ (τi,j × vj)m
j=1  

10:     calculate 𝑡𝑖 through each element k of 𝑡𝑖 = m𝑎𝑥( |𝑣𝑗,𝑘 − 𝑐𝑖,𝑘|) for each 𝑣𝑗  
11: end for 
12: Set PSS signature of application for the flow Group 𝐺𝑖 = (𝑐𝑖,  𝑡𝑖)  

Fig. 6. Pseudo-code of Our Group Optimization and Signature Generation Algorithms 
 

3.4 Traffic Identification 
In the traffic classification, the traffic of a real operation network is captured and classified on 
the basis of the PSS signatures of each application. A new flow is generated with a series of 
packets that are captured from the real operation network. The flow is vectorized into a PSS 
vector using packet order, direction and payload size of its first N packets. The PSS vector is 
compared with each PSS signature to determine its identity. If the PSS vector of a new flow is 
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included in a PSS signature by the C-vector and T-vector, its application is determined as the 
ID of the PSS signature. 

Thus, traffic identification finds the PSS signature 𝑠𝑖 that presents in (12) for the PSS vector 
𝑣 of a new flow. At this time, 𝑠𝑖 should have the same L4 protocol and dimension as 𝑣. 
 

𝑠𝑖   such that  𝑑(𝑐𝑖 , 𝑣) ≤ 𝑡𝑖  for 𝑠𝑖 = (𝑐𝑖 , 𝑡𝑖)                     (12) 

 
In this study, a PSS vector uses only packet order, direction and payload size of the first five 

packets of a flow, so PSS vectorization that converts a flow into a PSS vector with those 
features does not need any computation cost. In addition, PSS signature matching is simple 
similarity comparison operation with linear computation complexity as shown in (12). 
Therefore, traffic classification, by these simple PSS vectorization and signature matching 
algorithms, does not require high computation costs in comparison to previous methods, 
which enables real-time traffic classification in high-speed real operation networks. 
 

input   PSS vector v, all PSS signatures 
output  application of the PSS vector v 

1: Find PSS signature si such that d(ci, v) ≤ ti 

2: if (one si found ) then application of v = ID of si 

3: else if (more than two si found) and (all si have the same ID) then application of v = ID of si 

4: else application of v = unknown 

5: end if 
Fig. 7. Pseudo-code of Our Signature Matching Algorithm 

 
Fig. 7 shows the pseudo-code of our signature matching algorithm. When the PSS vector of 

a new flow is entered, it looks for all PSS signatures that present in (12). If there is only one 
discovered signature, a new flow is classified as its ID. If the discovered signatures are more 
than two and have the same ID, a new flow is classified as their ID. However, a new flow will 
be classified as unknown if several PSS signatures with different IDs are found, which we 
define as the PSS signature conflict. In addition, the flow will be classified as unknown if no 
PSS signature exists that presents in (12). 

4. Evaluation 
In this section, we describe the result of traffic classification test in the campus network in 
order to verify the proposed application traffic classification using PSS signature. 
 

4.1 Ground Truth Traffic 
For our evaluation, we collected bi-directional packet traces from the Korea University 
campus network. The campus network was configured with one router at the Internet junction, 
so we collected the traffic traces from the router using port mirroring. 

In order to evaluate traffic classification, it is crucial to obtain a firm ground truth. We 
deployed traffic measurement agents (TMAs) on selected hosts in the campus network and 
created the ground-truth traffic [15][16]. The ground truth traffic through those agents is more 
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reliable than using the result of the particular classification method to evaluate the 
classification method [17]. 

Table 4 presents the summary of the ground truth traffic we obtained for evaluation. The 
traffic is arranged by each application to verify that our method can classify the traffic into 
each application. Because the traffic is collected over a period of time, the traffic volume is 
various according to the frequency of use of each application and the amount of generated 
traffic. 
 

Table 4. Ground Truth Traffic 
Traffic Class Description of Applications Flow (103) Packet (103) Byte (106) 

Skype P2P communications 2.9 43.9 17.6 
GomTV Internet TV service  15.2 2,637.0 2,515.6 
Naverlive Video streaming  2.6 50,807.5 41,404.3 
Nateon Instant messaging  0.9 337.1 62.5 
Outlook MS mail service 12.7 1,150.4 692.3 
PuTTY Telnet/SSH client  0.7 80.4 11.5 
Xshell Telnet/SSH client  1.2 177.1 22.8 
Teamviewer Remote control 1.8 722.6 291.7 
Dropbox Cloud file sharing  11.1 294.8 158.5 
uTorrent P2P download 1,116.4 62,151.0 49,494.5 

 

We divided the ground truth traffic into two different sets that were obtained on different 
dates. One traffic set was used only for PSS signature generation. The other traffic set was 
used only for the traffic classification test. Table 5 indicates the traffic flows for PSS signature 
generation, and the number of PSS signatures that are generated for each application. 
 

Table 5. Traffic flows for PSS Signature Generation and the Number of PSS Signatures for Each 
Application 

Traffic Class Flow # of PSS Signature 

Skype 1,000 16 
GomTV 2,229 9 
Naverlive 1,138 9 
Nateon 456 5 
Outlook 5,774 49 
PuTTY 382 1 
Xshell 730 4 
Teamviewer 842 9 
Dropbox 6,232 4 
uTorrent 64,773 192 

 

4.2 Evaluation Metrics 
We use completeness and accuracy as evaluation metrics, in accordance with most of 
traditional literatures [4][5][18]. Completeness is a metric of how much traffic was classified. 
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Accuracy is a metric that indicates rate of the rightly classified traffic. It is determined by 
comparing the classification results with the ground-truth. The accuracy is divided into the 
overall accuracy and accuracy per application which presents the precision, recall and 
F-measure for each application. These evaluation metrics are expressed by flow, packet, and 
byte to provide more detailed information. 
 

4.3 Results and Analysis 
The proposed method has classified a large amount of the ground truth traffic in just a few 
minutes, which shows the applicability to real-time traffic classification. Table 6 presents the 
overall accuracy and completeness of the traffic classification test in flow, packet, and byte. 
The results show that the proposed method can achieve high accuracy rates of greater than 
99.97% in all units for application traffic that was classified. 
 

Table 6. Overall Accuracy and Completeness 
 Overall Accuracy Completeness 

Flow 99.97% 10.03% 
Packet 99.99% 62.85% 
Byte 99.99% 67.32% 

 
From the completeness perspective, the flow completeness is 10.03%, but the packet and 

byte completeness are 62.85% and 67.32%, respectively. The classification result of uTorrent 
that takes up the largest ground truth causes a significant impact on it. The uTorrent traffic 
takes up to 95% of the ground truth flows, but only 5.8% of the uTorrent flows are used to 
generate PSS signatures. It is difficult to analyze the remaining 94.2% of flows using the PSS 
signatures from 5.8% of flows. However, the uTorrent classification results achieve up to 
48.60% packet and 54.69% byte recall that affect the packet and byte completeness. This 
explains that PSS signatures of uTorrent correctly classify heavy flows such as the file 
download with a lot of packets and bytes, which are more crucial for traffic monitoring and 
network management [19]. 
 

Table 7. Precision and Recall of Each Application 

Traffic Class 
Flow Packet Byte 

Precision Recall Precision Recall Precision Recall 

Skype 99.99% 51.49% 99.99% 69.84% 99.99% 85.07% 
GomTV 99.97% 5.48% 99.99% 83.57% 99.99% 89.92% 
Naverlive 99.99% 80.78% 99.99% 90.84% 99.99% 90.94% 
Nateon 99.97% 85.31% 99.99% 98.39% 99.99% 96.19% 
Outlook 99.98% 70.85% 99.96% 64.55% 99.96% 57.82% 
Xshell 100% 96.28% 100% 97.29% 100% 97.29% 
PuTTY 100% 98.13% 100% 99.50% 100% 99.30% 
Teamviewer 99.97% 50.41% 99.99% 83.68% 99.99% 83.79% 
Dropbox 99.98% 97.01% 99.98% 97.89% 99.98% 97.34% 
uTorrent 99.99% 9.12% 99.99% 48.60% 99.99% 54.69% 
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Table 7 presents the precision and recall per each application, which are responsible for the 
overall accuracy and completeness. The results show that the proposed method can achieve 
high precision rates of more than 99.96% for every application in all units, even if a few of 
recall rates are relatively low that affects completeness. 

Each precision rate for every application almost achieves 100%. The flow precision rates 
are greater than 99.97% for all applications in all units, and packet and byte precision rates are 
over 99.96% for all of them. Furthermore, all precision rates for PuTTY and Xshell achieve 
100%. The misclassification occurred by abnormal behaviors of each application such as 
packet retransmission and out-of-order. Robust traffic classification to abnormal behaviors of 
applications is an important topic for our future research. 

The low flow completeness problem exists on the flow recall rates of a few of applications 
such as Skype, GomTV, Teamviewer and uTorrent. The flow recall rate is also less than the 
packet and byte recall rates for most applications. This is because of flows that have only one 
or two packets. We defined the minimum value for the dimension of the PSS vector as 3 and 
generated PSS signatures. However, we used all real traffic traces of the concerned 
applications in this test and the PSS signatures cannot classify flows with only one or two 
packets. In addition, flows of TCP sessions that abnormally terminated in traffic traces, affect 
the low recall rates. GomTV has the largest gap between flow and packet (or byte) recall. This 
means that the recall of the small sized flows that have a few of packets (or bytes) and are 
unrelated to the streaming is low, but the recall of the big sized flows that have a lot of packets 
(or bytes) and are related to the streaming is high. 

The recall rate of each application is also affected by the policy for PSS signature conflict. 
Our method classifies a new flow that is matched to several PSS signatures with different IDs 
into unknown in order to provide high accuracy rates in this study. If other policies are applied, 
the recall rate can be improved. For example, our method can classify unknown into the 
application of the PSS signature that has the highest similarity [20], additionally use 
consecutive port numbers [21] or server specific port numbers [22], or report applications of 
PSS signatures that are matched to unknown for the network manager to determine its 
application. In the future, we will further study the PSS signature conflict to improve the recall 
rate of each application. 
 

Table 8. F-measure of Each Application 
Traffic Class Flow Packet Byte 

Skype 67.98% 82.24% 91.93% 
GomTV 10.39% 91.05% 94.69% 
Naverlive 89.36% 95.20% 95.25% 
Nateon 92.06% 99.18% 98.05% 
Outlook 82.93% 78.44% 73.26% 
Xshell 98.10% 98.63% 98.63% 
PuTTY 99.06% 99.75% 99.65% 
Teamviewer 67.02% 91.11% 91.18% 
Dropbox 98.47% 98.92% 98.64% 
uTorrent 16.72% 65.41% 70.71% 

 
Table 8 presents the F-measure for each application. This considers both precision and 

recall in a single metric using their harmonic mean. The results show that the proposed method 
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can achieve reasonable F-measures for every application in all units, except GomTV and 
uTorrent in the flow unit. The low F-measures of GomTV and uTorrent in the flow unit are 
caused by their low flow recall rates discussed above. However, their F-measures are 
reasonable in packet and byte units as shown in Table 8. This confirms that the proposed 
method correctly classifies heavy flows with a lot of packets and bytes for GomTV and 
uTorrent. 
 

4.4 Traffic Classification by Individual Applications 
The proposed method can classify traffic into each individual application that is more detailed 
and useful than the application protocol for network management and operation. Applications 
that use the same application protocol can be distinguished from each other with PSS 
signatures, because they communicate with different flow patterns even though they use the 
same application protocol. 

Table 9 shows the packet order and information of the first five packets of the flow that are 
generated by two applications, Xshell and PuTTY, which use the same SSH protocol. “Server” 
and “Client” in “Host” field indicate the transmission host that means the direction of the 
packet. The other fields indicate the payload size in bytes and the description of the packet. 

There are distinct differences between Xshell and PuTTY in the direction and payload size 
of the first five packets based on packet order, although they use the same application protocol 
(SSH) and data format based on packet order. First, the sizes of the second packet are different 
from each other. The second packet is sent from client to server, and it contains the SSH 
version and client program information. The difference in the payload size occurs because the 
client program information of the two applications is different. The payload size of Xshell is 
49 bytes, and that of PuTTY is 28 bytes. Second, the Xshell client transmits only the third 
packet for “key exchange init”, but the PuTTY client transmits the third and fourth packets for 
“key exchange init”. Therefore, the payload sizes of the third and fourth packets are different, 
additionally fourth packet has different transmission direction for the two applications, which 
affects payload size and transmission direction of successive packets such as the fifth packet. 

Due to the differences between Xshell and PuTTY, the traffic of the two applications can be 
distinguished using PSS signatures. In addition, Table 9 reminds us that encrypted 
applications communicate with fixed rules in the first N packets. It means that the proposed 
method can classify encrypted traffic. 
 

Table 9. Packets of Two Applications, Xshell and PuTTY, using the Same SSH Protocol 

Packet 
order 

Xshell Flow PuTTY Flow 

Host Size Description Host Size Description 

1st Server 21 SSH Protocol info Server 21 SSH Protocol info 

2nd Client 49 SSH Protocol info Client 28 SSH Protocol info 

3rd Client 640 Key exchange init Client 512 Key exchange init 

4th Server 784 Key exchange init Client 128 Key exchange init 

5th Client 272 Diffie-Hellman key     
exchange init Server 784 Key exchange init 

 
Table 10 presents the precision and recall of Xshell and PuTTY from Table 7 to show that 

our method can distinguish between two applications that use the same SSH protocol. Xshell 
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and PuTTY are classified with 100% precision and more than 96.28% recall in all units. No 
misclassification is why Xshell and PuTTY have clearly distinct flow patterns. In addition, the 
SSH protocol of Xshell and PuTTY has mostly communicated in the distinct flow patterns that 
PSS signatures represent, so high recall rates of greater than 96.28% and 98.13% in all units 
were achieved, respectively. 
 

Table 10. Classification result of Applications, Xshell and PuTTY, using the Same SSH 
Protocol 

Traffic Class 
Flow Packet Byte 

Precision Recall Precision Recall Precision Recall 

Xshell 100% 96.28% 100% 97.29% 100% 97.29% 
PuTTY 100% 98.13% 100% 99.50% 100% 99.30% 

 
We conducted a preliminary investigation into whether PSS signatures can be used to 

identify applications that use the same HTTP protocol through the simple test. Table 11 shows 
PSS signatures for three web browsers, Chrome, Firefox, and Internet Explorer, which all use 
the same HTTP protocol. The PSS signatures are generated from the main flow by accessing to 
three popular web sites. As shown in Table 11, their PSS signatures are different from each 
other, because their HTTP header fields are different even though they use the same HTTP 
protocol. In general, the User-Agent and Cookie fields of each web browser are different. 
Furthermore, there are some cases in which header fields of the reply packet are different, 
which results in different sizes of the reply packets. Therefore, the web browsers that use the 
same HTTP protocol can be distinguished by PSS signatures. The accurate and detailed 
classification method for HTTP traffic will be studied in our future work. 
 

Table 11. PSS Signatures of Three Web Browsers for Three Popular Web Sites 
Site URL Google Chrome Mozilla Firefox Internet  Explorer 

www.google.com (709, -693) (546, -496) (964, -496) 
www.yahoo.com (378, -439) (338, -439) (308, -439) 
www.facebook.com (502, -367) (375, -367) (326, -402) 

5. Conclusion and Future Work 
In this paper, we proposed an application-level traffic classification method that uses PSS 
signature. PSS signature represents the unique flow pattern of each application and can 
distinguish applications. PSS signatures for each application are generated by our flow 
grouping, group optimization and signature generation algorithms. After that, our method 
classifies new flows into individual applications through PSS signature matching in real 
operation networks. 

Our method can be applied effectively to real-time traffic classification in high-speed real 
operation networks, because it does not require any computation cost for the feature extraction 
and PSS signature matching is simple similarity comparison. The evaluation shows that our 
method can classify application traffic easily and quickly with high accuracy rates of more 
than 99.96% for every application in all units (flow, packet, and byte). The evaluation also 
shows that our method can classify traffic into each application that uses the same application 
protocol or encrypts its payload. Therefore, our method can be applied to the various network 
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management and operation that has to control individual applications with high accuracy in 
high-speed real operation networks. 

Our future studies will focus on three areas. First, we will conduct a study on the PSS 
signature conflict, to improve the completeness and recall of our method. Second, we intend to 
extend our method to be robust to abnormal behaviors of applications such as packet 
retransmission and out-of-order to increase its accuracy. Third, we will study the accurate and 
detailed classification method for HTTP traffic by extending our method. 
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