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Abstract—Application-level traffic classification is essential for 

effective network management and stable service provision. Recently, 

traffic classification methods that are based on the statistical 

information in a flow have been proposed for application-level traffic 

classification. The packet transmission order, packet transmission 

direction, and the packet size in a flow are used as statistical 

information. However, differences in traffic collection points cause 

inconsistencies in the statistical information of the flow. Furthermore, 

the analysis results cannot be trusted. Therefore, in this paper, we 

analyze the limitations on traffic classification caused by traffic 

collection points, and we propose a novel method for resolving these 

limitations. The proposed method is verified through experiments 

conducted in a campus network. 

 

Keywords—Full-duplex TCP session, statistical flow information, 

traffic classification, traffic collection  

I. INTRODUCTION  

ENTERPRISE and campus networks typically impose a set 

of policies, such as quality of service (QoS) and 

service-level agreements (SLAs), for the efficient management 

and operation of network resources. For example, schools and 

public institutions implement policies to control traffic that 

consumes excessive network resources and that is not related to 

the organization’s purposes, such as peer-to-peer (P2P) and 

game traffic. For these policies, fast and accurate traffic 

classification in the application layer is essential. Recently, 

several methods have been introduced that use statistical flow 

information [1][2]. However, traffic classification methods that 

use statistical flow information as their main feature have 

limitations caused by traffic collection points. 

In this paper, in order to resolve said limitations, we propose 

a method for reordering packets by comparing the packet 

sequence and the packet acknowledgement number. Through 

experiments performed in a campus network, we detected a 

number of abnormal sessions, which indicated that the 

limitations described in the previous paragraphs must be 
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resolved in order to accurately classify traffic.  

The remainder of this paper is organized as follows. Section II 

briefly reviews and summarizes previous work. Section III 

introduces the reasons for the limitations caused by traffic 

collection points. Section III also introduces the methods for 

detecting and resolving these limitations. Section IV describes 

our experimental method and analyzes detection results. 

Conclusions and future work are presented in Section V.  

II. RELATED WORK 

In today’s Internet environment, there are various 

applications; therefore, classifying traffic at the application 

level is not easy. In order to accurately classify such traffic, 

several methods have been proposed. Traditional methods can 

be divided into three types: signature-based classification [2], 

classification based on the correlation of traffic [4], and 

machine learning-based classification [5,6].  

The targets of this paper are the signature-based and machine 

learning-based classification methods. In this section, we 

explain traffic classification methods using statistical flow 

information [2], which our study briefly advanced.  

We used statistical information that consists of transmission 

order, transmission direction, and payload size of packets in a 

flow. The direction is expressed as two values, positive (+) or 

negative (–). In the case of the transmission control 

protocol (TCP), the + sign means that the packet transfers from 

the client to the server, and the – sign means that the packet 

transfers from the server to the client. Because distinction 

between the server and the client is not clear in the user 

datagram protocol (UDP), the meaning of +/– merely indicates 

that the directions are opposite. Therefore, we decide that the 

first packet’s direction is +, and the following packets obtain 

their direction value through comparison with the first packet’s 

direction. Packets with the same direction are +; otherwise, the 

packets are –. The payload size of a packet represents the 

payload length in a packet that has payload data. 

We use vector representation to express the feature explained 

in the previous paragraph. We assume that kf  is a k -th input 

flow. The ,k id  and ,k is  are the transmission direction and 

payload size of the i -th packet of the k -th flow, respectively. 

The ,k id  can have two direction values: + and –. kv  is a 

function that expresses kf  into an N-dimensional vector. It can 

be written as expressed in (1). 
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,1 ,1 ,2 ,2 , ,{ , , ..., }k k k k k k N k Nv d s d s d s                      (1) 

 

For flow grouping and traffic classification, we need a 

measurement of the distance between two vectors as the 

distance similarity measurement. In our method, we use the 

distance per dimension; thus, the distance between two flow 

vectors is represented by distance vector d . The i -th element 

of the distance vector, id , is the difference between the i -th 

element of two flow vectors. The distance vector d , which is 

the distance between kv  and jv , can be expressed as indicated 

by (2) where ,k iv  represents the i -th element of the k -th flow 

vector.  

 

,1 ,1 ,2 ,2 , ,( , ) {| |,| |,...,| |}k j k j k j k N j Nd v v v v v v v v       (2) 

 

Our method has been divided into two main parts: signature 

generation and traffic identification. First, the signature 

generation part converts flows into feature vectors that consist 

of statistical flow information. The vectors are divided by 

process. The process flows are entered into the flow-grouping 

step and grouped by the distance similarity of flow vectors. 

Then, our method optimizes the groups of all processes and 

generates the signature in each group.  

The traffic identification part generates flow through the use 

of packets that are collected continuously. Next, the method 

converts the flow into vectors and matches a flow vector with its 

corresponding signature in order to identify the correct 

application name. 

III. LIMITATIONS CAUSED BY TRAFFIC COLLECTION POINTS 

In traffic classification methods that use statistical flow 

information, feature consistency is extremely important, 

because these methods extract unique patterns from the traffic 

statistical information, and classify the traffic by comparing the 

statistical information of the traffic with the unique patterns. 

Therefore, when unique patterns are extracted without resolving 

this limitations, and are applied to points different from the 

extraction point, the classification results cannot be trusted. 

In this section, we explain the lack of feature consistency 

caused by traffic collection points, and propose methods for 

detecting and resolving such inconsistencies. 

A. The lack of the feature consistency 

In a full-duplex TCP session, one end host does not wait for 

another host to finish transferring data, and begins transferring 

its own data as the other host is still transferring. Accordingly, 

packets that are transferred by the two end hosts cross in the 

middle of the transmission path. At such a moment, feature 

inconsistency occurs.  

For example, if a client and a server communicate as shown in 

Fig. 1, the traffic collection points, from C1 to C4, have a 

different packet transmission order. Therefore, the statistical 

information from each traffic trace collected by each collection 

point is different from the others. Consequently, a lack of the 

feature consistency has occurred. 

Client Server

C1

Seq : 0

Ack : 0 Seq : 0

Ack : 0
Seq : 20

Ack : 0

Seq : 20

Ack : 60

Seq : 40

Ack : 60

Seq : 40

Ack : 20

Seq : 60

Ack : 20

C2 C3 C4

Fig. 1 Lack of Feature Consistency 

B. Detecting Algorithm 

For full-duplex TCP sessions, there is no correct order for 

packet transmission; there is only the accepted order in which 

end hosts send and receive packets. Therefore, a standard 

packet order must be established. In this paper, we choose the 

packet order accepted by the client host as the standard, because 

most TCP sessions start with a request from the client to the 

server, and continue with a response from the server to the client. 

In other words, the session changes continuously according to 

requests from the client. Thus, in this paper, and regardless of 

the traffic collection point location, we reorder the packets in a 

flow according to the standard order. 

Fig. 2 shows the pseudo code for the detecting algorithm. The 

algorithm’s input data is the TCP session that has payload 

packets. The payload packet is the packet that has payload data. 

P(n) indicates the n-th packet in the session. P(n)(Seq) and 

P(n)(Ack) are the sequence number and acknowledgement 

number of the n-th packet in the session, respectively. The 

forward packet is the packet transferred from the client to the 

server, and the backward packet is the packet transferred from 

the server to the client. Our proposed method detects normal 

TCP sessions and abnormal TCP sessions through four 

detecting conditions that are derived by comparing P(n)(Seq), 

P(n)(Ack), P(n+1)(Seq), and P(n+1)(Ack).  

Before we explain all the cases using the subsequent figures 

in this paper, we must define the symbols used in the figures. 

For the normal cases, we use symbols from “n.1” to “n.4”; for 

the abnormal cases, we use symbols from “a.1” to “a.4.” The 

symbols from “C1” to “C3” represent the three traffic collection 

points. The packet cross indicates that the forward packet and 

the backward packet crossed before arriving to their destination.  
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Remove all non-payload packets from the packet sequence 

1: procedure Detect Normal Packet Sequence 

2:   Input : packet sequence of a TCP flow 

3.   if ( P(n) (direction) == P(n+1) (direction) ) then normal 

 

  4:   if ( P(n) == Fp && P(n+1) == Bp) then normal 

  5:   if ( P(n) == Bp && P(n+1) ==Fp) { 

 

  6:      if ( P(n)(Ack) <= P(n+1)(Seq) && P(n)(Seq) < P(n+1)(Ack) )          

  7:      then normal 

  8:      else abnormal 

  9:   } 

10: end procedure 

 

 

1: procedure Detect abnormal Packet Sequence 

2:   Input : packet sequence of a TCP flow 

3:   if ( P(n) ==Bp && P(n+1) ==Fp ) { 

 

4:     if ( P(n)(Ack) <= P(n+1)(Seq) && P(n)(Seq) >= P(n+1)(Ack) ) }         

5:     then abnormal 

6:     else normal 

7:   } 

8: end procedure 

 

 

 

Payload packet : a packet with payload data 

Non-Payload packet : a packet without payload data 

P(n): n-th payload packet in a TCP flow 

Forward packet (Fp) : a packet from client to server 

Backward packet (Bp) : a packet from server to client 

Fig. 2 Pseudo code for the Detecting Algorithm 

 

Fig. 3 shows the examples and the detecting condition for 

four normal cases. Normal Case 1, the n.1, occurs when P(n) 

and P(n+1) have the same transmission direction. Normal Case 

2, the n.2, occurs when P(n) is the forward packet and P(n+1) is 

the backward packet. When P(n) is the forward packet, we 

always have a normal case, because the packet order for each 

traffic collection point is the same as the standard packet order, 

which is the client’s packet order. In Normal Cases 3 and 4, P(n) 

is the backward packet, so we must compare P(n) to P(n+1) to 

detect normalcy.  

Normal Case 3, the n.3, indicates that P(n) is the backward 

packet, but there are no packets crossing. Therefore, in the n.3, 

regardless of the traffic collection point, the collected packet 

order is fixed. In order to detect the n.3, a comparison between 

the value of the sequence and the acknowledgment number of 

P(n) and P(n+1) is essential. 

Normal Cases 1, 2, and 3 are detected when no packets are 

crossing. However, Normal Case 4 is detected after the packets 

cross. In other words, if Normal Case 4 is detected on a traffic 

collection point, there is at least one Abnormal Case 1 on the 

other collection point. Normal Case 4, the n.4, has a condition in 

which P(n) is the backward packet and P(n+1) is the forward 

packet. In addition, there is a packet cross before the n.4. 

Consequently, in order to detect the n.4, a comparison between 

the value of the sequence and the acknowledgment number of 

P(n) and P(n+1) is essential, just as it is for detecting the n.3.  

In the example shown in Fig. 3, C1 and C2 collect packets in 

the order accepted by the client. Conversely, the traffic 

collection point C3 collects packets in a different order from the 

client. Therefore, the unique patterns extracted from C1 or the 

C2 cannot be used on C3 with fine accuracy. 

Client Server

Seq : 0

Ack : 40

Seq : 20

Ack : 0

C3

Seq : 0

Ack : 0

· if ( P(n) (direction) == P(n+1) (direction)

· if ( P(n) = Fp && P(n+1) = Bp) 

Seq : 20

Ack : 40

Seq : 40

Ack : 40

Seq : 40

Ack : 40

Seq : 60

Ack : 60

n.1

n.2

n.1

C2C1

n.1
n.1

n.2n.2

n.3 n.3

n.4

n.1
n.1

n.1

n.4 n.1

n.2 a.1

· if (P(n)(Ack) == P(n+1)(Seq) && P(n)(Seq) < P(n+1)(Ack) ) 

· if (P(n)(Ack) < P(n+1)(Seq) && P(n)(Seq) < P(n+1)(Ack) ) 

n.1

n.2

n.3

n.4
 

Fig. 3 Normal Case 

 

Client Server

C3C2C1

Seq : 0

Ack : 0
Seq : 0

Ack : 0

 a.1

a.2

Seq : 0

Ack : 0

Seq : 0

Ack : 0

Seq : 20

Ack : 0

n.1

a.1· if (P(n)(Ack) == P(n+1)(Seq) && P(n)(Seq) == P(n+1)(Ack) ) 

· if (P(n)(Ack) == P(n+1)(Seq) && P(n)(Seq) > P(n+1)(Ack) ) a.2

Seq : 0

Ack : 0

Seq : 0

Ack : 0

Seq : 20

Ack : 0

Seq : 40

Ack : 0

a.1

a.1

n.2 a.1

n.2

n.2

n.2

n.2

n.1

n.1

n.1

n.1

n.1

a.2

a.2

a.2

 
Fig. 4  Abnormal Case 1, 2 

 

Similarly, the unique patterns extracted from C3 cannot be 

accurately used on C1 or C2. Consequently, in order to collect 

the traffic, this problem must be resolved. 

Fig. 4 shows Abnormal Cases 1 and 2, which are the a.1 and 

the a.2. In Fig. 4, the packet order of each traffic collection point, 

from C1 to C3, is different from each other. In the a.1 case, P(n) 

is the backward packet and P(n+1) is the forward packet. In 

addition, there is essentially one packet cross. When the a.1 

occurs, this abnormal case is quite simple to resolve, because 
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one packet cross creates two packet orders.  

However, when the a.2, the a.3, or the a.4 occur, there are two 

or more packet crosses, which create many packet orders; 

consequently, the resolution of these problems is considerably 

complicated. Abnormal Case 2, the a.2, occurs when two packet 

crosses are caused by one forward packet and two backward 

packets. Before the a.2 occurs, the a.1 always happens first. 

 

Client Server

C1 C3

Seq : 0

Ack : 0

Seq : 0

Ack : 0
n.1

n.2

C2

a.1

Seq : 20

Ack : 0
n.1

n.2

Seq : 0

Ack : 0

Seq : 0

Ack : 0
n.1

n.2 a.1

Seq : 20

Ack : 0
n.1

n.2

Seq : 40

Ack : 0

n.1

n.1

· if (P(n)(Ack) < P(n+1)(Seq) && P(n)(Seq) == P(n+1)(Ack) ) a.3

a.3

a.3

a.3

 
Fig. 5 Abnormal Case 3 

 

Fig. 5 shows Abnormal Case 3, the a.3. The a.3 occurs when 

two packet crosses are caused by one backward packet and two 

forward packets. Before the a.3 occurs, the a.1 always happens 

first, as is the case with the a.2.  

 

C1 C4C2 C3

Client Server

Seq : 0

Ack : 0

Seq : 0

Ack : 0

n.1 n.2 a.1

Seq : 20

Ack : 0

Seq : 20

Ack : 0

n.1

a.2

n.1
n.1

a.3
n.2

· if (P(n)(Ack) < P(n+1)(Seq) && P(n)(Seq) > P(n+1)(Ack) ) a.4

a.4

n.2

n.2

 
Fig. 6 Abnormal Case 4 

 

Abnormal Case 4, the a.4, is represented in Fig. 6. The a.4 is 

detected when two or more forward packets and backward 

packets are crossed. The a.1, the a.2, and the a.3 occur before 

the a.4.  Many abnormal cases can occur at the same time; 

therefore, a method that considers all cases is required in order 

to resolve these problems.  

C. Solving Algorithm 

Fig. 7 shows the pseudocode for the solving algorithm. When 

abnormal cases are detected in the traffic traces, the algorithm 

exchanges the P(n) order for the P(n+1) order. When a packet 

cross has occurred once, switching the packet order is required 

only once to resolve the problem. However, if there are 

continuous packet crosses, switching is required from the first 

packet cross to the last. To handle this problem, when a packet 

cross is detected, the algorithm exchanges the P(n) order for the 

P(n+1) order, and backtracks to the top of the packet cross 

problem until no abnormal cases are detected. 

 

Remove all non-payload packets from the packet sequence 

1: procedure Resolve Abnormal Packet Sequence  

2:    Input : packet sequence of a TCP flow 

3.    if ( P(n) and P(n+1) are abnormal sequence ) { 

 

4:        change P(n) and P(n +1); 

 

5:        n = n - 1; 

6:        if ( P(n) and P(n+1) are abnormal sequence ) goto 4: 

 

7:     } 

8: end procedure 

 

 

Fig. 7  Pseudocode for the Solving Algorithm 

 

Fig. 8 shows the flowchart for the proposed detecting and 

solving method. Two algorithms are used as a stream. 

 

Start

Input Packet Data

n = 1

Compare P(n) with P(n+1)

Abnormal

Packet Sequnce of 

a TCP flow

Is last Packet?

End

Change P(n), P(n+1) 
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Y

Y

Detect 

Solution

N

N

n = n-1 

n>0
Y

N

 
Fig. 8 Flowchart of the Detecting and Solving Method 
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IV. RESULTS AND ANALYSIS 

In this section, we describe the results of the experiment that 

analyzes the packet cross problem. This experiment shows the 

frequency with which the packet cross problem occurs in real 

traffic traces. For our evaluation, we collected bi-directional 

packet traces from the Korea University campus network. The 

campus network is configured with one router at the Internet 

junction; thus, we collected the traffic traces from the router 

using port mirroring. The one-day traffic, 2012-12-17 traffic, 

was collected by KU-MON [7]; the traces consist of the TCP 

sessions only.  

Table I and II list the total detection amount of packet 

crosses. The total flow and packet are the average number of 

flows and packets that occurred in a minute. The flow detection 

indicates the amount of flows where there is one or more packet 

cross in the flow. The packet detection indicates the number of 

packet crosses. When we analyzed the amount of bytes, we 

measured it by adding the two packets that were involved in the 

packet cross. 
 

TABLE I 

ABNORMAL RATE CASE BY CASE 

Case Measure Total Detection Bytes Rate 

a.1 
Flow 16,282 349 

3,345,013,424 
2.141% 

Packet 50,584 95 0.187% 

a.2 
Flow 16,282 24 

1,625,395,644 
0.148% 

Packet 50,584 7 0.014% 

a.3 
Flow 16,282 7 

332,020,732 
0.042% 

Packet 50,584 2 0.004% 

a.4 
Flow 16,282 2,932 

932,006,201,946 
18.007% 

Packet 50,584 7,899 15.616% 

 
TABLE II 

TOTAL ABNORMAL CASE 

Measure Total Detection Bytes Rate 

Flows 16,282 3,120 
937,308,631,746 

19.162% 

Packets 50,584 8,003 15.821% 

 

The flow detection rate is 19.2%, and the packet detection 

rate is 15.8%. From the aspects of the flow, we can see that the 

abnormal flow rate is one-fifth of the normal flow rate. 

Consequently, solving the abnormal flow rate is essential for a 

trustworthy traffic classification. 

V. CONCLUSION 

In this paper, we analyzed the limitations caused by traffic 

collection points. Then, we proposed a method that detects and 

solves the limitations caused by traffic collection points, 

namely, the packet cross problem. The results of the experiment 

performed for evaluation purposes indicate that one-fifth of the 

traffic flow demonstrate this problem. Until such problem is 

solved, the traffic classification results of methods based on 

statistical flow information cannot be trusted, because the 

patterns used in these methods to collect traffic from a certain 

point cannot be applied to other traffic collection points.  

Our future studies will focus on the implementation and 

verification of the solving algorithm. We will also research 

other problems that can affect statistical flow information, as 

well as analyze abnormal TCP sessions for the robustness of the 

traffic classification method. 
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