



Abstract—Application-level traffic classification is essential for

effective network management and stable service provision. Recently,

traffic classification methods that are based on the statistical

information in a flow have been proposed for application-level traffic

classification. The packet transmission order, packet transmission

direction, and the packet size in a flow are used as statistical

information. However, differences in traffic collection points cause

inconsistencies in the statistical information of the flow. Furthermore,

the analysis results cannot be trusted. Therefore, in this paper, we

analyze the limitations on traffic classification caused by traffic

collection points, and we propose a novel method for resolving these

limitations. The proposed method is verified through experiments

conducted in a campus network.

Keywords—Full-duplex TCP session, statistical flow information,

traffic classification, traffic collection

I. INTRODUCTION

ENTERPRISE and campus networks typically impose a set

of policies, such as quality of service (QoS) and

service-level agreements (SLAs), for the efficient management

and operation of network resources. For example, schools and

public institutions implement policies to control traffic that

consumes excessive network resources and that is not related to

the organization’s purposes, such as peer-to-peer (P2P) and

game traffic. For these policies, fast and accurate traffic

classification in the application layer is essential. Recently,

several methods have been introduced that use statistical flow

information [1][2]. However, traffic classification methods that

use statistical flow information as their main feature have

limitations caused by traffic collection points.

In this paper, in order to resolve said limitations, we propose

a method for reordering packets by comparing the packet

sequence and the packet acknowledgement number. Through

experiments performed in a campus network, we detected a

number of abnormal sessions, which indicated that the

limitations described in the previous paragraphs must be

Hyun-Min An is with the Dept. of Computer and Information Science,

Korea Univ., 2511, Sejong-ro, Jochiwon-eup, Sejong, South Korea (e-mail:

queen26@korea.ac.kr).

Jae-Hyun Ham is with the Dept. of Computer and Information Science,

Korea Univ., 2511, Sejong-ro, Jochiwon-eup, Sejong, South Korea (e-mail:

jhham@korea.ac.kr).

Myung-Sup Kim is with the Dept. of Computer and Information Science,

Korea Univ., 2511, Sejong-ro, Jochiwon-eup, Sejong, South Korea

(corresponding author to provide phone: +82-44-860-1378; fax:

+82-44-860-1584; e-mail: tmskim@korea.ac.kr).

resolved in order to accurately classify traffic.

The remainder of this paper is organized as follows. Section II

briefly reviews and summarizes previous work. Section III

introduces the reasons for the limitations caused by traffic

collection points. Section III also introduces the methods for

detecting and resolving these limitations. Section IV describes

our experimental method and analyzes detection results.

Conclusions and future work are presented in Section V.

II. RELATED WORK

In today’s Internet environment, there are various

applications; therefore, classifying traffic at the application

level is not easy. In order to accurately classify such traffic,

several methods have been proposed. Traditional methods can

be divided into three types: signature-based classification [2],

classification based on the correlation of traffic [4], and

machine learning-based classification [5,6].

The targets of this paper are the signature-based and machine

learning-based classification methods. In this section, we

explain traffic classification methods using statistical flow

information [2], which our study briefly advanced.

We used statistical information that consists of transmission

order, transmission direction, and payload size of packets in a

flow. The direction is expressed as two values, positive (+) or

negative (–). In the case of the transmission control

protocol (TCP), the + sign means that the packet transfers from

the client to the server, and the – sign means that the packet

transfers from the server to the client. Because distinction

between the server and the client is not clear in the user

datagram protocol (UDP), the meaning of +/– merely indicates

that the directions are opposite. Therefore, we decide that the

first packet’s direction is +, and the following packets obtain

their direction value through comparison with the first packet’s

direction. Packets with the same direction are +; otherwise, the

packets are –. The payload size of a packet represents the

payload length in a packet that has payload data.

We use vector representation to express the feature explained

in the previous paragraph. We assume that kf is a k -th input

flow. The ,k id and ,k is are the transmission direction and

payload size of the i -th packet of the k -th flow, respectively.

The ,k id can have two direction values: + and –. kv is a

function that expresses kf into an N-dimensional vector. It can

be written as expressed in (1).

Method for Resolving Traffic Classification

Limitations caused by Traffic Collection Points

Hyun-Min An, Jae-Hyun Ham, and Myung-Sup Kim

E

3rd International Conference on Computational Techniques and Artificial Intelligence (ICCTAI'2014) Feb. 11-12, 2014 Singapore

22

,1 ,1 ,2 ,2 , ,{ , , ..., }k k k k k k N k Nv d s d s d s    (1)

For flow grouping and traffic classification, we need a

measurement of the distance between two vectors as the

distance similarity measurement. In our method, we use the

distance per dimension; thus, the distance between two flow

vectors is represented by distance vector d . The i -th element

of the distance vector, id , is the difference between the i -th

element of two flow vectors. The distance vector d , which is

the distance between kv and jv , can be expressed as indicated

by (2) where ,k iv represents the i -th element of the k -th flow

vector.

,1 ,1 ,2 ,2 , ,(,) {| |,| |,...,| |}k j k j k j k N j Nd v v v v v v v v    (2)

Our method has been divided into two main parts: signature

generation and traffic identification. First, the signature

generation part converts flows into feature vectors that consist

of statistical flow information. The vectors are divided by

process. The process flows are entered into the flow-grouping

step and grouped by the distance similarity of flow vectors.

Then, our method optimizes the groups of all processes and

generates the signature in each group.

The traffic identification part generates flow through the use

of packets that are collected continuously. Next, the method

converts the flow into vectors and matches a flow vector with its

corresponding signature in order to identify the correct

application name.

III. LIMITATIONS CAUSED BY TRAFFIC COLLECTION POINTS

In traffic classification methods that use statistical flow

information, feature consistency is extremely important,

because these methods extract unique patterns from the traffic

statistical information, and classify the traffic by comparing the

statistical information of the traffic with the unique patterns.

Therefore, when unique patterns are extracted without resolving

this limitations, and are applied to points different from the

extraction point, the classification results cannot be trusted.

In this section, we explain the lack of feature consistency

caused by traffic collection points, and propose methods for

detecting and resolving such inconsistencies.

A. The lack of the feature consistency

In a full-duplex TCP session, one end host does not wait for

another host to finish transferring data, and begins transferring

its own data as the other host is still transferring. Accordingly,

packets that are transferred by the two end hosts cross in the

middle of the transmission path. At such a moment, feature

inconsistency occurs.

For example, if a client and a server communicate as shown in

Fig. 1, the traffic collection points, from C1 to C4, have a

different packet transmission order. Therefore, the statistical

information from each traffic trace collected by each collection

point is different from the others. Consequently, a lack of the

feature consistency has occurred.

Client Server

C1

Seq : 0

Ack : 0 Seq : 0

Ack : 0
Seq : 20

Ack : 0

Seq : 20

Ack : 60

Seq : 40

Ack : 60

Seq : 40

Ack : 20

Seq : 60

Ack : 20

C2 C3 C4

Fig. 1 Lack of Feature Consistency

B. Detecting Algorithm

For full-duplex TCP sessions, there is no correct order for

packet transmission; there is only the accepted order in which

end hosts send and receive packets. Therefore, a standard

packet order must be established. In this paper, we choose the

packet order accepted by the client host as the standard, because

most TCP sessions start with a request from the client to the

server, and continue with a response from the server to the client.

In other words, the session changes continuously according to

requests from the client. Thus, in this paper, and regardless of

the traffic collection point location, we reorder the packets in a

flow according to the standard order.

Fig. 2 shows the pseudo code for the detecting algorithm. The

algorithm’s input data is the TCP session that has payload

packets. The payload packet is the packet that has payload data.

P(n) indicates the n-th packet in the session. P(n)(Seq) and

P(n)(Ack) are the sequence number and acknowledgement

number of the n-th packet in the session, respectively. The

forward packet is the packet transferred from the client to the

server, and the backward packet is the packet transferred from

the server to the client. Our proposed method detects normal

TCP sessions and abnormal TCP sessions through four

detecting conditions that are derived by comparing P(n)(Seq),

P(n)(Ack), P(n+1)(Seq), and P(n+1)(Ack).

Before we explain all the cases using the subsequent figures

in this paper, we must define the symbols used in the figures.

For the normal cases, we use symbols from “n.1” to “n.4”; for

the abnormal cases, we use symbols from “a.1” to “a.4.” The

symbols from “C1” to “C3” represent the three traffic collection

points. The packet cross indicates that the forward packet and

the backward packet crossed before arriving to their destination.

3rd International Conference on Computational Techniques and Artificial Intelligence (ICCTAI'2014) Feb. 11-12, 2014 Singapore

23

Remove all non-payload packets from the packet sequence

1: procedure Detect Normal Packet Sequence

2: Input : packet sequence of a TCP flow

3. if (P(n) (direction) == P(n+1) (direction)) then normal

 4: if (P(n) == Fp && P(n+1) == Bp) then normal

 5: if (P(n) == Bp && P(n+1) ==Fp) {

 6: if (P(n)(Ack) <= P(n+1)(Seq) && P(n)(Seq) < P(n+1)(Ack))

 7: then normal

 8: else abnormal

 9: }

10: end procedure

1: procedure Detect abnormal Packet Sequence

2: Input : packet sequence of a TCP flow

3: if (P(n) ==Bp && P(n+1) ==Fp) {

4: if (P(n)(Ack) <= P(n+1)(Seq) && P(n)(Seq) >= P(n+1)(Ack)) }

5: then abnormal

6: else normal

7: }

8: end procedure

Payload packet : a packet with payload data

Non-Payload packet : a packet without payload data

P(n): n-th payload packet in a TCP flow

Forward packet (Fp) : a packet from client to server

Backward packet (Bp) : a packet from server to client

Fig. 2 Pseudo code for the Detecting Algorithm

Fig. 3 shows the examples and the detecting condition for

four normal cases. Normal Case 1, the n.1, occurs when P(n)

and P(n+1) have the same transmission direction. Normal Case

2, the n.2, occurs when P(n) is the forward packet and P(n+1) is

the backward packet. When P(n) is the forward packet, we

always have a normal case, because the packet order for each

traffic collection point is the same as the standard packet order,

which is the client’s packet order. In Normal Cases 3 and 4, P(n)

is the backward packet, so we must compare P(n) to P(n+1) to

detect normalcy.

Normal Case 3, the n.3, indicates that P(n) is the backward

packet, but there are no packets crossing. Therefore, in the n.3,

regardless of the traffic collection point, the collected packet

order is fixed. In order to detect the n.3, a comparison between

the value of the sequence and the acknowledgment number of

P(n) and P(n+1) is essential.

Normal Cases 1, 2, and 3 are detected when no packets are

crossing. However, Normal Case 4 is detected after the packets

cross. In other words, if Normal Case 4 is detected on a traffic

collection point, there is at least one Abnormal Case 1 on the

other collection point. Normal Case 4, the n.4, has a condition in

which P(n) is the backward packet and P(n+1) is the forward

packet. In addition, there is a packet cross before the n.4.

Consequently, in order to detect the n.4, a comparison between

the value of the sequence and the acknowledgment number of

P(n) and P(n+1) is essential, just as it is for detecting the n.3.

In the example shown in Fig. 3, C1 and C2 collect packets in

the order accepted by the client. Conversely, the traffic

collection point C3 collects packets in a different order from the

client. Therefore, the unique patterns extracted from C1 or the

C2 cannot be used on C3 with fine accuracy.

Client Server

Seq : 0

Ack : 40

Seq : 20

Ack : 0

C3

Seq : 0

Ack : 0

· if (P(n) (direction) == P(n+1) (direction)

· if (P(n) = Fp && P(n+1) = Bp)

Seq : 20

Ack : 40

Seq : 40

Ack : 40

Seq : 40

Ack : 40

Seq : 60

Ack : 60

n.1

n.2

n.1

C2C1

n.1
n.1

n.2n.2

n.3 n.3

n.4

n.1
n.1

n.1

n.4 n.1

n.2 a.1

· if (P(n)(Ack) == P(n+1)(Seq) && P(n)(Seq) < P(n+1)(Ack))

· if (P(n)(Ack) < P(n+1)(Seq) && P(n)(Seq) < P(n+1)(Ack))

n.1

n.2

n.3

n.4

Fig. 3 Normal Case

Client Server

C3C2C1

Seq : 0

Ack : 0
Seq : 0

Ack : 0

 a.1

a.2

Seq : 0

Ack : 0

Seq : 0

Ack : 0

Seq : 20

Ack : 0

n.1

a.1· if (P(n)(Ack) == P(n+1)(Seq) && P(n)(Seq) == P(n+1)(Ack))

· if (P(n)(Ack) == P(n+1)(Seq) && P(n)(Seq) > P(n+1)(Ack)) a.2

Seq : 0

Ack : 0

Seq : 0

Ack : 0

Seq : 20

Ack : 0

Seq : 40

Ack : 0

a.1

a.1

n.2 a.1

n.2

n.2

n.2

n.2

n.1

n.1

n.1

n.1

n.1

a.2

a.2

a.2

Fig. 4 Abnormal Case 1, 2

Similarly, the unique patterns extracted from C3 cannot be

accurately used on C1 or C2. Consequently, in order to collect

the traffic, this problem must be resolved.

Fig. 4 shows Abnormal Cases 1 and 2, which are the a.1 and

the a.2. In Fig. 4, the packet order of each traffic collection point,

from C1 to C3, is different from each other. In the a.1 case, P(n)

is the backward packet and P(n+1) is the forward packet. In

addition, there is essentially one packet cross. When the a.1

occurs, this abnormal case is quite simple to resolve, because

3rd International Conference on Computational Techniques and Artificial Intelligence (ICCTAI'2014) Feb. 11-12, 2014 Singapore

24

one packet cross creates two packet orders.

However, when the a.2, the a.3, or the a.4 occur, there are two

or more packet crosses, which create many packet orders;

consequently, the resolution of these problems is considerably

complicated. Abnormal Case 2, the a.2, occurs when two packet

crosses are caused by one forward packet and two backward

packets. Before the a.2 occurs, the a.1 always happens first.

Client Server

C1 C3

Seq : 0

Ack : 0

Seq : 0

Ack : 0
n.1

n.2

C2

a.1

Seq : 20

Ack : 0
n.1

n.2

Seq : 0

Ack : 0

Seq : 0

Ack : 0
n.1

n.2 a.1

Seq : 20

Ack : 0
n.1

n.2

Seq : 40

Ack : 0

n.1

n.1

· if (P(n)(Ack) < P(n+1)(Seq) && P(n)(Seq) == P(n+1)(Ack)) a.3

a.3

a.3

a.3

Fig. 5 Abnormal Case 3

Fig. 5 shows Abnormal Case 3, the a.3. The a.3 occurs when

two packet crosses are caused by one backward packet and two

forward packets. Before the a.3 occurs, the a.1 always happens

first, as is the case with the a.2.

C1 C4C2 C3

Client Server

Seq : 0

Ack : 0

Seq : 0

Ack : 0

n.1 n.2 a.1

Seq : 20

Ack : 0

Seq : 20

Ack : 0

n.1

a.2

n.1
n.1

a.3
n.2

· if (P(n)(Ack) < P(n+1)(Seq) && P(n)(Seq) > P(n+1)(Ack)) a.4

a.4

n.2

n.2

Fig. 6 Abnormal Case 4

Abnormal Case 4, the a.4, is represented in Fig. 6. The a.4 is

detected when two or more forward packets and backward

packets are crossed. The a.1, the a.2, and the a.3 occur before

the a.4. Many abnormal cases can occur at the same time;

therefore, a method that considers all cases is required in order

to resolve these problems.

C. Solving Algorithm

Fig. 7 shows the pseudocode for the solving algorithm. When

abnormal cases are detected in the traffic traces, the algorithm

exchanges the P(n) order for the P(n+1) order. When a packet

cross has occurred once, switching the packet order is required

only once to resolve the problem. However, if there are

continuous packet crosses, switching is required from the first

packet cross to the last. To handle this problem, when a packet

cross is detected, the algorithm exchanges the P(n) order for the

P(n+1) order, and backtracks to the top of the packet cross

problem until no abnormal cases are detected.

Remove all non-payload packets from the packet sequence

1: procedure Resolve Abnormal Packet Sequence

2: Input : packet sequence of a TCP flow

3. if (P(n) and P(n+1) are abnormal sequence) {

4: change P(n) and P(n +1);

5: n = n - 1;

6: if (P(n) and P(n+1) are abnormal sequence) goto 4:

7: }

8: end procedure

Fig. 7 Pseudocode for the Solving Algorithm

Fig. 8 shows the flowchart for the proposed detecting and

solving method. Two algorithms are used as a stream.

Start

Input Packet Data

n = 1

Compare P(n) with P(n+1)

Abnormal

Packet Sequnce of

a TCP flow

Is last Packet?

End

Change P(n), P(n+1)

sequence

Y

Y

Detect

Solution

N

N

n = n-1

n>0
Y

N

Fig. 8 Flowchart of the Detecting and Solving Method

3rd International Conference on Computational Techniques and Artificial Intelligence (ICCTAI'2014) Feb. 11-12, 2014 Singapore

25

IV. RESULTS AND ANALYSIS

In this section, we describe the results of the experiment that

analyzes the packet cross problem. This experiment shows the

frequency with which the packet cross problem occurs in real

traffic traces. For our evaluation, we collected bi-directional

packet traces from the Korea University campus network. The

campus network is configured with one router at the Internet

junction; thus, we collected the traffic traces from the router

using port mirroring. The one-day traffic, 2012-12-17 traffic,

was collected by KU-MON [7]; the traces consist of the TCP

sessions only.

Table I and II list the total detection amount of packet

crosses. The total flow and packet are the average number of

flows and packets that occurred in a minute. The flow detection

indicates the amount of flows where there is one or more packet

cross in the flow. The packet detection indicates the number of

packet crosses. When we analyzed the amount of bytes, we

measured it by adding the two packets that were involved in the

packet cross.

TABLE I

ABNORMAL RATE CASE BY CASE

Case Measure Total Detection Bytes Rate

a.1
Flow 16,282 349

3,345,013,424
2.141%

Packet 50,584 95 0.187%

a.2
Flow 16,282 24

1,625,395,644
0.148%

Packet 50,584 7 0.014%

a.3
Flow 16,282 7

332,020,732
0.042%

Packet 50,584 2 0.004%

a.4
Flow 16,282 2,932

932,006,201,946
18.007%

Packet 50,584 7,899 15.616%

TABLE II

TOTAL ABNORMAL CASE

Measure Total Detection Bytes Rate

Flows 16,282 3,120
937,308,631,746

19.162%

Packets 50,584 8,003 15.821%

The flow detection rate is 19.2%, and the packet detection

rate is 15.8%. From the aspects of the flow, we can see that the

abnormal flow rate is one-fifth of the normal flow rate.

Consequently, solving the abnormal flow rate is essential for a

trustworthy traffic classification.

V. CONCLUSION

In this paper, we analyzed the limitations caused by traffic

collection points. Then, we proposed a method that detects and

solves the limitations caused by traffic collection points,

namely, the packet cross problem. The results of the experiment

performed for evaluation purposes indicate that one-fifth of the

traffic flow demonstrate this problem. Until such problem is

solved, the traffic classification results of methods based on

statistical flow information cannot be trusted, because the

patterns used in these methods to collect traffic from a certain

point cannot be applied to other traffic collection points.

Our future studies will focus on the implementation and

verification of the solving algorithm. We will also research

other problems that can affect statistical flow information, as

well as analyze abnormal TCP sessions for the robustness of the

traffic classification method.

ACKNOWLEDGMENT

This research was supported by BK21 Plus Program and the

Basic Science Research Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of

Education, Science and Technology (2012R1A1A2007483).

REFERENCES

[1] Young-Tae Han and Hong-Shik Park, "Game Traffic Classification Using

Statistical Characteristics at the Transport Layer," ETRI Journal, Vol.32,

No.1, Feb., 2010, pp.22-32.

[2] Hyun-Min An, Jae-Hyun Ham, and Myung-Sup Kim, "Application Traffic

Classification using Statistic Signature," Proc. of the Asia-Pacific Network

Operations and Management Symposium (APNOMS) 2013, Hiroshima,

Japan, Sep. 25-27, 2013

[3] Liu, Hui Feng, Wenfeng Huang, Yongfeng Li, Xing “Accurate Traffic

Classification,” Networking, Architecture, and Storage, 2007.

International Conference

[4] Myung-Sup Kim, Young J. Won, and James Won-Ki Hong,

“Application-Level Traffic Monitoring and an Analysis on IP Networks,”

ETRI Journal, Vol.27, No.1, Feb., 2005, pp.22-42.

[5] Jeffrey Erman, Martin Arlitt, and Anirban Mahanti, “Traffic Classification

Using Clustering Algorithms,” Proc. of SIGCOMM Workshop on Mining

network data, Pisa, Italy, Sep. 2006, pp.281-286.

[6] Andrew W. Moore and Denis Zuev, “Internet Traffic Classification Using

Bayesian Analysis Techniques,” Proc. of the ACM SIGMETRICS, Banff,

Canada, Jun., 2005.

[7] Jun S. Park, Jin W. Park, Sung H. Yoon, Young S. Oh, Myung S. Kim,

"Development of signature Generation system and Verification Network

for Application Level Traffic Classification," in Proc. KIPS conf., PuSan,

Korea, Apr. 23-24, 2009, pp. 1288-1291.

3rd International Conference on Computational Techniques and Artificial Intelligence (ICCTAI'2014) Feb. 11-12, 2014 Singapore

26

