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SUMMARY

Current efforts to classify Internet traffic highlight accuracy. Previous studies have focused on the detection
of major applications such as P2P and streaming applications. However, these applications can generate
various types of traffic which are often considered as minor and ignorant traffic portions. As network appli-
cations become more complex, the price paid for not concentrating on minor traffic classes is in reduction of
accuracy and completeness. In this context, we propose a fine-grained traffic classification scheme and its
detailed method, called functional separation. Our proposal can detect, according to functionalities, different
types of traffic generated by a single application and should increase completeness by reducing the amount
of undetected traffic. We verify our method with real-world traffic. Our performance comparison against
existing DPI-based classification frameworks shows that the fine-grained classification scheme achieves
consistently higher accuracyand completeness. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Network traffic classification is an essential measure for understanding network status. Its results are
widely used for networkmanagement purposes including network planning, usage reporting and customer
charging. It plays an important role in user behavior analysis, a popular research topic for academia and
industry in recent years. Traffic classification can benefit service providers to comprehend customer
behavior so that greater satisfaction can be achieved through the provision ofpersonalized services.
In the early days of the Internet, traffic classification was facilitated by the understanding of

prevailing network protocols, which in turn relied on well-known TCP/UDP port numbers. This
port-mapping strategy can no longer ensure accuracy as new traffic characteristics such as unfamiliar
traffic composition, volume and application trends continue to evolve [1].
Today, the critical objective for Internet traffic classification is to achieve a high level of accuracy

and completeness. It is desirable to maximize both of these factors, and many variants have been
introduced to improve accuracy, completeness and efficiency. However, a lack of ground truth dataset
can raise accuracy questions. Many studies have aimed at capturing different levels of classification,
with some having a coarse goal (e.g. classifying traffic protocol/application type) and others having
a more detailed goal (e.g. identifying exact application names) [2]. It is often unfair to cross-compare
different classification methods in terms of accuracy. To address these issues, it is important to
investigate how we can provide meaningfulinformation based on limited classification results, rather
than struggle to improve classification accuracy by a small factor.
*Correspondence to: Youngjoon Won, Department of Information System, Hanyang University, Seoul, Korea.
†E-mail: youngjoon@hanyang.ac.kr

Copyright © 2013 John Wiley & Sons, Ltd.



351FINE-GRAINED TRAFFIC CLASSIFICATION
In this paper, we propose a fine-grained traffic classification scheme using functional separation.
This reduces the amount of undetected traffic and increases the completeness of traffic classification
correspondingly. Functional separation helps to identify different types of traffic generated by a single
application according to functionalities. The classification filters are then extracted from the respective
traffic groups in preparation for fine-grained traffic classification, which further classifies diverse
traffic groups arising from the functional separation.
The paper is organized as follows. Section 2 presents previous research on traffic classification.

Section 3 explains the proposed fine-grained traffic classification scheme. Section 4 describes the
functional separation process. Section 5 presents the evaluation results undertaken using a real-world
traffic dataset. Finally, Section 6 provides concluding remarks and possible future work. The
Appendix explains the validity of unsupervised Machine-learning algorithms with respect to
fine-grained traffic classification.
2. RELATED WORK

In this section, we describe various traffic classification approaches and categorize them according to
their levels of classification requirement and analysis capability.
2.1. Application traffic classification approaches

2.1.1. Port-based approach
Most traditional traffic classification methods rely on the inspection of transport layer port numbers.
Traffic application can often be inferred from a packet’s target port number, as registered in the
Internet Assigned Number Authority (IANA) port list [3].
The port-based approach is limited in terms of classification accuracy, as many applications

use port numbers not registered in the IANA port lists, and many P2P applications allocate mul-
tiple port numbers dynamically. Consequently, it can be difficult to match a certain port number
with an application. Moore et al. [1] assert that the accuracy of port-based identification is not
higher than 50–70%.
Nevertheless, the port-based approach is still a popular solution for classifying traffic within the

Internet backbone, owing to high traffic volume and limited computing resources for traffic
classification. Moreover, owing to its simplicity, the port-based approach is efficient in identifying
general trends of application usage.

2.1.2. Payload-based approach
This approach was proposed to resolve uncertainties not addressed by the port-based classification
approach [4,5]. Theoretically, a complete protocol parsing would be the most accurate way to classify
traffic. However, such protocol parsing may not be viable, as many applications use proprietary
protocols to avoid public disclosure, and some applications also incorporate well-known protocols into
their application layer. Protocol parsing is also complex, as it requires a great amount of computing
resources and is not suitable for real-time analysis for backbone.
Once a set of unique payload signatures is available for an application, the payload-based approach

can produce extremely accurate classification. Signatures can be manually extracted by network
administrators or security experts. This extraction processmust be preceded by protocol semantic
analysis or by empirical pattern recognition inspection of packet payloads. Sen et al. [5] generated
the signatures of a few P2P applications by analyzing their application layer protocols; using such
analysis, they were able to reduce false positives (FPs) and false negatives (FNs) to 5% of the total
bytes. As it is also important to find signatures that can feasibly deliver acceptable accuracy given
traffic in asymmetric routing environments (e.g.ISP backbone links), researchers have proposed
automated methods to extract application signatures in order to ease the manual signature generation
process [6–8].
Although the payload-based approach eliminates dependency on fixed port numbers and increases

traffic classification accuracy, it still has some drawbacks. Inspecting payload data is computationally
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resource intensive. Furthermore, extracting signaturesfrom encrypted or tunneled traffic can be diffi-
cult or impossible. Finally, privacy legislation with respect to payload inspection inhibits the use of
the payload-based approach.

2.1.3. Host behavior-based approach
The host behavior-based approach was proposed for the classification of traffic based on social
interactions observable even for encrypted payloads [9–11]. For example, Karagiannis et al. [9]
developed a method called BLINC, which identifies applications or services by comparing a captured
profile with predefined host behavior signatures (also described by graphlets). The key advantage of
this approach is flexibility, as no additional information on the application (such as port number) is
needed. Using a given set of pattern models, the authors claim that BLINC can identify application
traffic with more than 90% accuracy. However, classification is limited to identifying application
types, as exact application names cannot be classified.
Iliofotou et al. [10,12] proposed a graph-based representation of network traffic that captures the

network-wide interactions of applications. Traffic dispersion graphs (TDGs) represent an individual
IP address as a node and particular communications as edges between nodes. The idea behind BLINC
and TDGs is to investigate the communication pattern generated by a host and extract behavioral
patterns that may represent distinct activities or applications.

2.1.4. Statistical approach
The statistical approach exploits connection-related statistical information which can extracted by
examining only TCP/IP headers as a feature set regardless of techniques for traffic classification.
The major strength is that no payload inspection is required. In other words, this may provide a
better chance for handling encrypted traffic. The underlying idea is that the traffic at the network
layer has unique statistical properties for certain applications. Since machine learning (ML) was
first utilized for Internet flow classification in the context of intrusion detection in 1994 [13],
many others have used ML algorithms to classify network traffic [14]. Learning algorithms such
as supervised, unsupervised, reinforcement and hybrid learning are used to build classifying
models [15–21]. They take the input in the form of a dataset of instances. An instance refers
to an individual and independent example of the dataset. Each instance is characterized by values
of its features that measure different characteristics. The dataset is ultimately presented as a ma-
trix of instances versus features.
2.2. Level of application traffic classification

2.2.1. Application protocol breakdown scheme
Traffic classification is a process of identifying network traffic based on the features that can be
passively observed in the traffic. The features and classification results may vary according to specific
classification requirements and analysis needs. Early on, traffic classification was performed as a part
of traffic characterization work, and was often motivated by the dominance of certain protocols in the
network. Several studies [22,23] analyzed the packet and byte distributions regarding transport and
application layer protocols. TCP/UDP port numbers map to a well-known TCP/UDP protocol. The
protocol breakdown scheme shows a rough estimation of the traffic composition and is still a popular
solution at the Internet backbone because of its high traffic volumes and limited computing resources
for traffic analysis [7,18,20,23–26].

2.2.2. Traffic clustering scheme
A straightforward classification, relying on IP protocol and port information, cannot provide in-depth
classification of traffic within a single protocol where similar traffic types use different protocols. This
scheme reflects traffic workload characteristics rather than the protocol composition [15,27,28].
McGregor et al. [15] proposed an ML-based classification methodology that can break the traffic down
into clusters: bulk transfers, small transactions and multiple transactions. This allows us to understand
the major types of traffic in a network.
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2013; 23: 350–381
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2.2.3. Application-type breakdown scheme
BLINC [9] is a connection-pattern-based classification method. It categorizes network traffic
according to application type rather than a specific application name, such as Web, game, chat, P2P,
DNS, FTP, streaming, mail and attack activities.This scheme resides between the former two
schemes [1,16,29–36]. The application-type breakdown scheme helps network administrators or
operators to understand dominant application types rather than specific application names or protocols.

2.2.4. Application breakdown scheme
The dominance of P2P networking in the Internet has had a huge influence on traffic classification
research and has led to more sophisticated heuristics. In this context, many researchers have focused
on identifying the exact application represented by the traffic [4–6,37–44]. Discovering byte signatures
[5] has been a popular solution. Regardless of its proven accuracy, the signature-based solution
possesses high processing overhead and privacy-breaching issues because it requires a packet header
and payload analysis. Recently, machine-learning techniques which use statistical information of the
transport layer [45] have been introduced to overcome privacy legislation related to packet payload
inspection. They focus on the fact thatdifferent applications have different communication patterns
(behaviors). Moreover, Szab ó et al. [46] introduced combinations of these existing methods in order
to balance between the level of classification completeness and accuracy. All these efforts are
presented to classify network traffic according to the name of application in use.
3. FINE-GRAINED TRAFFIC CLASSIFICATION

We propose a scheme, called fine-grained traffic classification, to provide more in-depth analysis. The
key is to develop a method for categorizing single-application traffic into different traffic groups. In
our previous work [2], we introduced the concept of the fine-grained traffic classification. This paper
focuses more on a detailed method and highlights its effectiveness on detecting minor traffic compared
to the conventional deep packet inspection (DPI)-based methods.
3.1. Significance of fine-grained traffic classification

The significance of fine-grained traffic classification derives from the traffic characteristics of Internet
applications. Previous studies mainly grapple with detecting major applications such as P2P and
streaming applications. Detecting these is heavily weighted toward classifying a few main functions
(e.g. file transfer in P2P) that generate the largest volume. Neglect of minor traffic inevitably
undermines the accuracy and completeness of classification.
We present a simple example of ignoring minor traffic: downloading a few music files using a P2P

client. Assuming the total traffic volume generated by the client was approximately 45.9 Mbytes, the
actual volume of downloads was only 24.1 Mbytes or less than 53% of the total generated traffic. This
result implies that the ancillary (outside of actual downloading) functionalities of the P2P client
generated a significant portion of the traffic.
Figure 1 compares the fine-grained traffic classification scheme with other traffic classification

schemes in Section 2.2. It can classify various types of traffic caused by a single application. A sin-
gle application typically has several functions, and each function will trigger traffic with unique
characteristics. By identifying various types of functional traffic, undetected or unclassified traffic
is less prevalent than the other schemes. While the others can do a simple top-n application analysis,
the proposed scheme can provide a distinctive view on data analysis, such as measurement of
pre-browsing time before download and raking of functions in use. It can serve as a new tool to
analyze user behavior.
3.2. Method for fine-grained traffic classification

The key is to develop a method for categorizing single-application traffic into different traffic groups.
This challenge differs from those facing traditional traffic classifications only in the degree of
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2013; 23: 350–381
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Figure 1. Relationship between fine-grained traffic classification and other traffic classification schemes

354 B. PARK ET AL.
classification detail required. Accordingly, other existing methods, most of which use an application or
protocol classifier, can be applied to simplify the fine-grained traffic classification problem. First,
arbitrary classifiers (e.g. application signature, connection behavior model, statistical model) are
built for each application, with each classifier corresponding to a distinct function within the ap-
plication. A signature is selected as the classifier. As mentioned in Section 2, the signature-based
(or payload) traffic classificationhas its limits in handling encrypted traffic, yet it is by far the
most reliable in terms of accuracy. It is also convenient to apply new fine-grained signatures
to existing traffic classification systems such as commercial traffic shapers and intrusion detec-
tion devices. The US government forecasts that the market share of DPI will increase continu-
ously [47]. This implies that the signature-based approach is still reliable in practice despite its
obvious drawbacks.
Our method for fine-grained traffic classification consists of four parts: (i) collection of input data;

(ii) discrimination of the various functionalities within a single traffic of applications; (iii) classifica-
tion filter extraction; and (iv) trafficclassification using fine-grained signatures.
Figure 2 illustrates the workflow of a fine-grained traffic classification process. It consists of

offline and online components. The offline component builds a knowledge structure for the
online traffic classification system, whereas the online component runs the actual traffic classi-
fication process. The offline process starts with input data collection. The functional separation
of the offline process requires a collection of sanitized packets or packets belonging only to the
target application as its input data. We have developed a packet dump agent to collect the
packet trace for each process running in the operating system (OS). The collecting agent di-
vides the packets by flow and stores them in separate packet dump files tagged with origin pro-
cess names. It is important to keep datasets separated by flow and by process name in order to
reduce unnecessary flow comparison overhead in the functional separation step. If a given
dataset is a mixture of too many different applications, the discovery of common patterns
within an application may be hindered. Use of this design feature is necessary in ensuring
the efficiency and accuracy of functional separation, as it removes any uncertainty with respect
to the traffic being fed to the functional separation algorithm.
We consider the example of a host running n different applications with each application

executing mi different functional modules (where i indicates the application index number),
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2013; 23: 350–381
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Figure 2. Abstraction of fine-grained traffic classification process

355FINE-GRAINED TRAFFIC CLASSIFICATION
and each module generates differing types of traffic. The dump agent aggregates the resulting
traffic data into flows and stores each flow in a separate file. Each flow is tagged with an appli-
cation or process name acquired from the OS. The n stored groups of cleaned traffic, each la-
beled with an application name, are fed into the functional separation process, which classifies
the cleaned traffic into mi subcategories according to flow type. This functional separation
produces n ×mi groups of flow data. Each group of flow is used as input for traffic classification
filter extraction. In this case, the filter extraction’s output will be n ×mi groups, where a single
application can have at most mi signatures.
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2013; 23: 350–381
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4. FUNCTIONAL SEPARATION

Functional separation (FS) is an attempt to classify individual flows according to their function-
alities within an application. FS exploits the fact that equivalent functionalities share common
characteristics. Here we adopt the TCP/UDP port number and payload contents as grouping
criteria. Although assigned port numbers are not predictable, sessions sharing the same port num-
ber in a certain time slot can be placed in the same functional group. If a functional session
allocates different port numbers, the actual packet contents are also examined in order to sort
flows based on similarities of application protocol layers.
Figure 3 illustrates the entire FS process, which consists of three different

grouping/decomposition steps. The solid rectangles in the figure illustrate how the traffic data
are organized after each grouping/decomposition step, and the dashed rectangles illustrate the
information used in each step. The role of each grouping/decomposition step is described
as follows:

1. Port-relation grouping (PRG) involves the assortment of flows based on their dependencies
to assigned port numbers. In this step, flow information is generated from the traffic trace
as 5-tuples, i.e. (source IP address, tdestination IP address, source port, destination port,
protocol). During the PRG step, the port numbers are treated as indices without function-
related information. For example, flows that use TCP port 21 are placed within the same
PRG group; however, it is not assumed that the use of TCP port 21 signifies FTP control
traffic.

2. Contents-relation grouping (CRG) measures the similarity between different PR groups. The
CRG process is based on the payload content and communication patterns of each PR group.
Depending on payload contents, a common byte pattern for each application protocol is
determined. Communication patterns are also examined in terms of the number of
source/destination ports used. By using the CRG process, unnecessary flow comparison
overhead in content examination can be reduced.

3. Contents-relation decomposition (CRD) also involves dividing contents-relation groups
based on content similarity. In the PRG step, flows are assorted according to port numbers
instead of actual application protocol contents. By chance, it is possible that the original
port-relation group might allocate the same port number to different functional flows.

Our proposed method for functional separation normally works on both the TCP and the UDP
flows. For the functional separation step, we do not consider unintentional packet drops in
manipulating flows. In the case of a general traffic monitoring and measurement system located
in the middle of a specific network link, unintentional packet drops occur when the system is
Figure 3. Overall process of functional separation
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exposed to an asymmetric routing environment or when the system has limited capacity for
capturing packets. However, the offline processes (data collection, functional separation and
classification filter extraction) of the fine-grained traffic classification function on an end host.
The following subsections explain each functional separation step in detail.
4.1. Port-relation grouping

PRG classifies individual flows according to their dependencies on port numbers. PRG begins with the
following assumptions:

1. Packets occurring close to each other in time and sharing the same 5-tuple (source IP address,
destination IP address, source port, destination port, protocol) originated from the same
functionality.

2. Reverse packets (in which the 5-tuple elements have been reversed, but the protocol
remains the same) occurring within a small time interval (≤1 min) belong to the same
functionality.
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2013; 23: 350–381
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Algorithm 1 describes the PRG process. A flow, f(sip,dip,sport,dport,proto), is a sequence of packets
with the same 5-tuple header values. One TCP or UDP connection consists of two different
flows. Therefore, flow fa and its reverse flow fb belong to the same bidirectional flow and the
same PR group (lines 4–10). Because the input data are collected from a host, a bidirectional
flow can be described as F(localip,localport,remoteport,remoteip,proto).
In a single execution of an application, different functionalities create multiple flows concurrently.

Even though a port number that is to be allocated is determined at run time, flows that allocate the
same port (either local or remote) simultaneously belong to the same PR group (lines 11–21). The best
illustration of this lies in the behavior of a P2P client. A P2P client is required to allocate a port in order
to upload data when the client joins a P2P network. Although the port number is not predictable, once
the client allocates a port each flow established using the port will be designated for uploading data.
Figure 4 depicts an example of the application of PRG on BitTorrent traffic. The sample shows

traffic captured when a BitTorrent client downloads a file, though only a part of the total traffic is
shown. As detailed in the figure, a BitTorrent client uses both TCP and UDP flows in downloading
a)

b)

Figure 4. Example of port-relation grouping on BitTorrent traffic: (a) bidirectional flows; (b) port-
relation groups
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a file. The TCP flows are used for obtaining the hash value of the file from trackers, whereas UDP
flows are used for actual downloading. Figure 4(a) illustrates bidirectional flows (the aggregation of
a flow and its reverse flow), and Figure 4(b) illustrates the PR groups created after the flows have been
sorted based on either their local or remote port numbers. Connected graphs indicate PR groups. In this
example, the output of PRG is two PR groups.
4.2. Contents-relation grouping

If different flows allocate different port numbers, PRG cannot classify them as belonging to the same
functional group, even if they actually do. For example, since a P2P client connects to different peers
at the same time, each flow might allocate to a random port. Thus it would be impossible to place all
flows into one functional group using PRG, even if the flows are established for the same reason (e.g.
for searching or downloading). To overcome this shortcoming of the PRG algorithm, we have
developed a method called contents-relation grouping (CRG). The main objective of CRG is to
connect preliminary PR groups according to content similarity interdependencies. To combine
interrelated PR groups, we measure the degree of content similarity between the groups. If the
similarity metric exceeds a certain threshold value, then the PR groups are merged into one CR group.
In order to compare content similarity, we have adopted a technique which is one of the main

natural language-processing areas of research, i.e. document retrieval [48]. A key concept underlying
document retrieval is that the degree of similarity of documents can be measured by the frequencies of
keywords common to these documents. We define the following key terms for applying document
similarity to traffic classification.

1. Payload vector conversion. To represent network traffic as text documents, vector space
modeling (VSM) is used. VSM is an algebraic model that represents text documents as vectors.
The objective of document retrieval is to find a subset of documents from a set of stored text
documents D, which satisfies an information request or query Q. In a document space consisting
of documents Di, each can be identified by one or more index terms Tj that can be weighted
according to importance [49].

A typical method for determining the significance of a term is to measure its occurrence. If t
different index terms are present in document Di, then Di can be represented by a t-dimensional
term-frequency vector Di= (di1,di2,…,dij), where dij represents the frequency of the jth term. Although
text documents are composed of terms (words) that are the units of language that function as principal
carriers of meaning, a packet does not have basic units with such definite meanings. To address this,
we define the term of a payload as follows.

Definition 1: A term is n bytes of payload data within an i-byte sliding window, where the position of the
sliding window can be 1, 2,…, n� i+ 1. The size of the term set is 28× i and the length of a term is i.

If the length of a term is too short, that term cannot reflect the sequence of byte patterns in the
payload. In this case, differences between byte pattern permutations, e.g. ‘0x01 0x02 0x03’ and
‘0x03 0x01 0x02’, cannot be recognized. On the otherhand, increasing the term length will cause
the number of whole representative words to increase exponentially. A packet can be represented as
a term-frequency vector called the payload vector.

Definition 2: If wi is the ith occurrence of a term appearing repeatedly in a payload, the payload vector
is defined as payload vector = [w1w2…wn]

T, where n is the size of the whole representative term set.

The sliding window size i is set to 2 because this is the simplest way to represent the order of content
in payloads. If the term size is 2 bytes, the size of the term set will be 216. Therefore, the payload vector
can be represented as a 216-dimensional term-frequency vector.

2. Payload vector comparison. Once packets are converted into vectors, the degree of similarity
between packets can be calculated by measuring the distances between vectors. Here, we use
Jaccard similarity as a distance metric. In our previous work [50], we compared three different
similarity metrics: Jaccard similarity, cosine similarity and RBF, and Jaccard similarity showed
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2013; 23: 350–381
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the best performance. The Jaccard similarity J(X,Y) draws word sets from comparison instances
and uses them to evaluate similarity. J(X,Y) is defined as the size of the intersection of the sam-
ple sets X and Y divided by the size of the union of the sets:

J X; Yð Þ ¼ X∩Yj j
X∪Yj j

One of the advantages of using Jaccard similarity instead of the Euclidean distance is that the similarity
value can be normalized, enabling calculation using the dot (scalar) product, with the Jaccard
similarity ranging from zero, for complete dissimilarity, to one, for complete vector similarity. As
the payload vectors have very high dimensionality, they are statistically very sensitive. If two payload
vectors are generated by different functionalities, then the contents of each payload will consist of
distinct term (or binary) sequences and their vectors will also be very different. Because most
signatures of application traffic represent a small portion of payload data, the other part of the
payload’s signature may be ignored as arbitrary binary data.

3. Flow similarity comparison. The payload flow matrix (PFM) is defined as a matrix in which the
ith row represents the payload vector of the ith packet in the flow. The PFM is a k× n matrix,
where k is the number of packets and nis the dimension of the payload vectors.

Definition 3: PFM= [p1,p2,…,pk]
T, where pi is the payload vector from Definition 2.

The similarity score between PFMs can be calculated by simply adding packet similarity values.

Definition 4: Similarity score ¼ ∑k
i¼1 J(pi; p

′
i ), where pi and p′i are the ith packets of the first and

second flows, respectively.
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2013; 23: 350–381
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Algorithm 2 describes the grouping process used by CRG. CRG reads bidirectional flows and
groups them into CR groups based on similarity scores. If the CR group set is empty, the first flow
F1 creates a new flow group FG[0] (lines 4–5). Otherwise, the input flow is compared with the existing
CR groups and inserted into the CR group with the maximum flow similarity score (lines 11–12).
When the maximum similarity score is less than a certain threshold value, a new CR group is created
and the bidirectional flow Fi becomes a member of the new flow group (line 16).
Along with content similarity, two other factors are considered in the CRG process for

efficiency. When two different PR groups are compared, the connection patterns of these groups
are taken into consideration. We define the connection pattern of a PR group as {1:# of local
ports:# of remote ports:# of destinations}. The first element will alwaysbe 1, as it indicates the
number of source hosts, and functional separation data are collected from one selected host.
Figure 5 shows an example of connection patterns of PR groups. PRG1 and PRG2 have a
1:3:1:1 pattern; PRG3, PRG4 and PRG5 all have a 1:1:1:1 pattern.
If different PR groups are generated by the same functionality, they are likely to have common

connection patterns. Thus the content similarity of PR groups that have the same connection patterns
(i.e. {PRG1,PRG2}, {tPRG3,PRG4,PRG5}) is measured.
In addition to connection patterns, we also consider the relationship between local and remote port

numbers in bidirectional flows. In PRG, bidirectional flows are grouped according to the common
local or remote port number.
In Figure 6(a) Host A operates as a server. Peers connect to Host A through A’s listening port,

a. The bidirectional flows FAB, FAC, and FAD form a PR group, and their common local port
number is a. If Host A operates as a client (Figure 6b), a bidirectional flow FAB forms a PR
group. If the protocol used in both cases is identical, then these PR groups should be merged.
However, the PRG cannot group them because they have different port numbers. To solve this
problem, CRG compares two different PR groups to see whether their local and remote port
numbers are identical.
4.3. Contents-relation decomposition

In the CRG step, only PR groups with the same connection patterns or same representative ports
are compared for possible merging into CR groups. Otherwise, PR groups will form independent
CR groups of their own without content examination.
The PRG procedure classifies flows according to dependencies on the assigned port numbers.

Such a grouping process works most effectively where a functionality is mapped to a single port
number. However, the PRG cannot perceive differing functional traffic generated by a single port
Figure 5. Example of connection patterns
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number. Thus the PR group representing TCP port 1863 may have different functionalities, such
as retrieval of buddy lists or messaging. The contents-relation decomposition (CRD) process can
compensate for this shortcoming of PRG processing.
Based on content similarity, CRD can differentiate functionalities within the CR group made

up of PR groups. The method of calculation used to measure content similarity, shown in Section
4.2, can be used again, only in the opposite direction. In contrast to CRG, if the similarity metric
between two flows in the CR group does not exceed a certain threshold value, then the CR group
can be partitioned. Algorithm 3 describes the decomposition process of the CRD. First, the pro-
cedure examines each CR group to check whether or not a CR group is a single PR group. If so,
it is disassembled into individual bidirectional flows (lines 4–6). If a CRD group set is empty, the
first flow F1 creates a new CRD group CRD[0] (lines 11–12). Otherwise, an input flow is com-
pared with the existing CRD groups and inserted into the CRD group with the maximum flow
similarity score (lines 18–19).
Figure 7 illustrates an example of functional separation processes, including RPG, CRG and CRD,

operating on the MSN traffic. As mentioned above, MSN messenger uses port TCP 1863 to
communicate with its server. Bidirectional flows F1, F2, F3, and F4 use TCP 1863 as their common
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2013; 23: 350–381
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Figure 6. Connection behavior of P2P host A: (a) server mode; (b) client mode
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remote port number. Based on PRG, these flows are all grouped into a PR group (PR1), with a 1:4:1:1
connection pattern and representative port number TCP 1863. If an MSN server changes its port to 80
(we added this assumption to make it easier to understand the functional separation processes), bidi-
rectional flows F5, F6, F7 and F8 form a different PR group (PR2) likewise. If there is no other PR
group with a 1:4:1:1 connection pattern or TCP 1863 as its representative port, PR1 is not examined
and simply forms a CR group without change. However, PR2 has the same connection pattern. The
similarity between these two PR groups is measured by CRG and a CR group (CR1) is created.
If F1 and F2 are generated by the same functionality and all other bidirectional flows are gener-
ated by another functionality, theresults of CRD are two different CRD groups, namely, CRD1

{F3, F4, F5, F6, F7, F8} and CRD2{F1, F2}.
5. EVALUATION

In this section, we present our evaluation results and summarize a comparative analysis with other
DPI-oriented methods.
5.1. Target applications

We selected 15 network applications based on their popularity as network and application types.
The selected applications included both Internet and mobile applications. Application types
included P2P (file sharing), messenger, Web storage (file hosting service), video/music streaming
and online games.
Table 1 lists the selected applications and the amount of input traffic used by the functional

separation process. The dataset was collected from the end host using the dump agent described in
Section 3.2. Note that the functional separation process is a distinct process from the online traffic
classification process in Figure 2. This process is for building a knowledge structure for the online
traffic classification system. Therefore, the amount of the traffic data for the functional separation is
not to be huge.
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2013; 23: 350–381
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Table 1. List of selected applications

Operation Dataset

Application type Name P2P SC Bytes # of flow

Wired Internet applications P2P (file sharing) BitTorrent ∘ 789 588K 372
LimeWire ∘ 76 296K 5 071
Fileguri ∘ ∘ 78 768K 11 044

Messenger MSN ∘ ∘ 81 420K 224
NateOn ∘ ∘ 306 388K 140

Web storage DropBox ∘ 12 228K 64
(file hosting service) uCloud ∘ 95 176K 32
Video streaming Gom ∘ ∘ 176 192K 1 044

PotPlayer ∘ ∘ 64 320K 240
Online game Starcraft ∘ ∘ 4 118K 584

Starcraft 2 ∘ 48 815K 98
Mobile applications Web storage DropBox ∘ 16 898K 44

(file hosting service)
Video streaming TVPot ∘ 82 502K 422
Music streaming Bugs ∘ 23 523K 51
Messenger NateOn ∘ 1 690K 154

SC, server–client.

Figure 7. Example of functional separation on MSN traffic: (a) port-relation grouping; (b) contents-
relation grouping; (c) contents-relation decomposition
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5.2. Functional separation results

For each application, functional separation was carried out in order to generate arbitrary
classifiers (e.g. application signature, connection behavior model, statistical model), with each
classifier corresponding to a distinct function within the application.
We determined the threshold values for measuring the similarity experimentally. In our previous

work [50], we examined three different similarity metrics—Jaccard similarity, cosine similarity and
RBF—for the traffic classification per application (not per functionality). For each application, we
tried many threshold values to find the one which maximized the accuracy against the ground truth.
By trial and error, we could obtain threshold values for each application, but we used a fixed threshold
value (0.7) in this paper for every application for the ease of experiment.
Table 2 shows the results of the functional separations. Since there was no ‘ground truth’ from the

perspective of an application’s functionality, we manually analyzed flows in each CRD group, labeling
these by functionality. Further on, in the traffic classification step, this labeling process was used for
analyzing the application usage pattern.
The ‘# of CRD group’ field in the table counts only labeled groups; other groups are considered

misclassified. We also considered CRD groups as misclassified if we could not label their exact func-
tionalities. For example, we could not label passive FTPsessions without protocol semantics analysis.
Thus, although the FTP sessions were grouped together, the passive FTP group was regarded as
misclassified. Table 2’s ‘grouping ratios’ entries indicate the proportion of labeled traffic to the entire
traffictrace in terms of total bytes and number of flows, respectively.
Some misclassified flows did not carry application-level packet payloads aside from TCP/IP

headers; additionally, some flows consisted of only one packet carrying the TCP SYN flag. As our
CRG algorithm uses application-level packet payloads for grouping, the flow generated by applica-
tions exchanging only packets for TCP connection contained only TCP flags and thus could not be
grouped with other PR groups owing to lack of payload data.
Classification accuracy can be measured in terms of either flow or byte accuracy. Flow accuracy de-

notes the proportion of correctly classified flow counts within the entire traffic dataset, whereas byte
accuracy is a measure of the absolute number of bytes of traffic correctly classified by the classification
algorithm. Erman et al. [51] argue that it is necessary to use byte accuracy to correctly evaluate the
accuracy of traffic classification algorithms. This follows from the ‘elephants andmice phenomenon’
[28], in which the bulk of traffic byte data on the Internet is carried within a small number large flows,
whereas the majority of flows transmit only a small percentage of total traffic in terms of bytes and
packets. The authors analyzed the traffic dataset over a six-month-period; in terms of the number of
bytes, the top 1% of flows accounted for over 73% of the traffic, with the top 5% accounting for
83% of traffic. When their classifier was applied, the traffic trace resulted in 99.9% flow accuracy,
but with only 54% byte accuracy. The imbalanced accuracy results show the importance of using byte
accuracy as a flow measure. Byte accuracy must also be used when evaluating the accuracy of traffic
classification algorithms. With this in mind, we measured the grouping ratios in terms of both bytes
and flow. These grouping ratios indicated how well functional separation distinguished each function-
ality. Even though the flow grouping ratios of LimeWire and uCloud were measured as 56.18% and
75%, respectively, the byte-grouping ratio for each of these applications was higher than 94%. In some
applications, low flow grouping ratios were caused mainly by flows lacking payload content. How-
ever, these constitute a relatively small portion to the total byte flow and thus have a small effect on
the byte-grouping ratio. Although the test cases were simple and limited, we could confirm that func-
tional separation has a reasonable accuracy.
5.3. Traffic classification results

For the classification filter extraction, we used the LASER algorithm [6], which can generate an appli-
cation signature automatically. This filter extraction (or signature generation) and traffic classification
process, which uses extracted traffic classification filters, is based on DPI. We selected a DPI-based
approach for a clear reason, as most previous studies demonstrate that, in terms of accuracy, the
signature-based approach was the most reliable. Even some statistical (machine-learning) approaches
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2013; 23: 350–381
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367FINE-GRAINED TRAFFIC CLASSIFICATION
used signature (or manual payload) inspection to generate the ground truths for validation
[4,31,45,52,53].
For the dataset, we collected full packet traces from our campus backbone on two occasions: 3 h on

16 August 2007 (450 Gbytes) and 3 h on 7 October 2011 (37 Gbytes). For the latter dataset we capture
the first 10 packets of each flow to save some storage. No port blocking or filtering policy was in effect
at the time of measurement. The ground truth was verified by traffic measurement agent (TMA) [6].
This collects process and traffic information in allocation from the host OS directly; thus, the informa-
tion is the closest possible ground truth available.
Classification filter extraction was also applied to some CRD groups that could not be labeled in the

functional separation step (as shown under the ‘Grouping ratio’ heading in Table 2). Although concrete
signatures could not be obtained for these CRDgroups, simple heuristics based on flow statistics and rela-
tionships, as well as on subnet information generated according to CRD group, were used as an alternative
classifier for their function groups. A test of classification filter extraction was performed using BitTorrent,
which has changed its protocol to allow downloading with UDP (for backward compatibility, BitTorrent
still supports the TCP downloading protocol). BitTorrent sends only one UDP downloading request, and
if a corresponding peer does not reply to this request the client connects again to the peer via TCP.
However, the download request is not reissued. Based on this, we examined BitTorrent’s download traffic
in terms of the TCP connections established within the small time frame following the UDP download.
Table 3 shows the traffic identified by the proposed method. The classification accuracy in this table

shows the ratio of correctly identified application traffic against the ground truth by TMA. It assesses how
much of the traffic can be identified by multiple signatures of functional separation and the LASER
algorithm. Owing to the lack of ground truth from the perspective of the application’s functionality, the clas-
sification accuracy in functional level could not measured. Except for MSN (78.87%) and Starcraft
(75.05%), the byte accuracy of all applications was higher than 91.39%, with the highest byte accuracy
reaching 100%.Aswith the functional separation test, each application had lower flow accuracy thanthe byte
accuracy. This can also be explained in terms of the ‘elephants andmice phenomenon’ described previously.
Figure 8 shows the cumulative probability distributions, in flow size (bytes), of three different

applications—for BitTorrent and LimeWire, flows less than 1 kbyte in size constituted approximately
80% of the total number of flows. However, thecontribution of such flows to the total volume of traffic
was very low, as shown in Figure 9. This is a good illustration of how a considerable portion of total traffic
is generated by large flows, as more than 90% of the total traffic is caused by the largest 1% of flows. Such
large flows usually correspond to file downloads. Therefore, even if our method cannot detect some
‘mouse’ flows, byte accuracy is rarely affected.
By manually analyzing traffic not identified by our method, we were able to make further conclusions.

As part of their protocol operations, some applications use well-known protocols. BitTorrent clients, for
Table 3. Classification results: accuracy of the proposed method

Type Name

Classification accuracy

Byte Flow

Wired Internet application BitTorrent 91.39% 65.78%
LimeWire 99.78% 89.15%
Fileguri 99.84% 99.49%
MSN 78.87% 87.50%
NateOn 100% 100%
DropBox 100% 100%
uCloud 100% 100%
Gom 99.79% 97.31%
PotPlayer 99.90% 81.36%
Starcraft 75.05% 91.84%
Starcraft 2 99.98% 88.23%

Mobile application DropBox 99.97% 54.55%
TVPot 100% 100%
Bugs 100% 100%
NateOn 99.90% 60.87%

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2013; 23: 350–381
DOI: 10.1002/nem



Figure 8. CDFs of flows generated by three different applications
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example, use the SSDP protocol for service discovery, even though SSDP traffic payloads lack
BitTorrent-specific features.
Another cause of non-identification was the fact that flows not having payload data were not included in

the ‘# of CRD groups’ tally in Table 2. Although this lack of traffic data degraded the flow identification
ratio, the byte identification ratio was barely affected owing to the small byte size of the unrecorded flow.
The main cause of the low byte accuracy of MSN was that the session initiation protocol (SIP)-based flow
used in voice chat carries no MSN-specific contents as payload. Although MSN creates only one SIP
session for voice chat, the size of this flow is relatively large. Therefore, the misclassified large flows
degraded byte accuracy but not flow accuracy.

5.4. Comparison with conventional DPI solutions

We compared our method with two different conventional DPI-based traffic classification methods:
L7-filter and OpenDPI:

• L7-filter [54] uses regular expression to match application signatures with packet payload
application layer data. The current version supports 113 application protocols.

• OpenDPI [55] is a software library designed to classify Internet traffic. It is derived from the
commercial PACE product [56]. In addition to signature matching, OpenDPI incorporates
connection behavior and statistical analysis. The current version supports 101 protocols.

Table 4 shows the traffic identified by our method, L7-filter, and OpenDPI. Fine-grained traffic
classification produced the highest identification ratio among the three approaches. L7-filter and
OpenDPI showed comparatively poorer results in terms of both byte accuracy and flow accuracy. Even
though the difference between L7-filter and OpenDPI in terms of accuracy was negligible, of the two,
OpenDPI performed better.
To determine performance variance in the application of the fine-grained traffic classification

method, we analyzed the classification results of applying OpenDPI to BitTorrent, LimeWire and
MSN, as shown in Table 5. For each application, traffic was classified into different application
protocol groups. Except in the case of unknown traffic, these classifications were correctly carried
out. For example, our scheme confirmed that BitTorrent actually uses the HTTP protocol for
discovering content, whereas LimeWire uses the MDNS protocol for discovering peers. However,
our method would provide no means for matching these protocols to their originating applications.
Newer generations of applications tend to adopt multiple application protocols and support various

functions (Figure 10). OpenDPI does not classify application traffic into layers higher than the
application protocol, resulting in a low classificationratio for application layers. Based on functional
separation, fine-grained traffic classification can detect application traffic regardless of its protocol.
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2013; 23: 350–381
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Figure 9. Contribution of the top n% of flows in traffic volume: (a) BitTorrent; (b) LimeWire

Table 4. Accuracy of fine-grained traffic classification vs. L7-filter and OpenDPI

Application

Identification ratio (accuracy)

Fine-grained traffic classification L7-filter OpenDPI

Byte Flow Byte Flow Byte Flow

BitTorrent 91.39% 65.78% 16.57% 19.02% 16.44% 9.01%
LimeWire 99.78% 89.15% 97.85% 9.98% 99.73% 46.39%
MSN 78.87% 87.50% 17.64% 4.69% 17.64% 7.81%
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Additionally, our proposed method classifies application traffic into functional layers, enriching the
quality of information obtained from traffic classification results in the process.
Figure 11 illustrates a functional decomposition of traffic. Each color indicates a function within

a single application. As demonstrated previously, fine-grained traffic classification can classify
different traffic types within a single application according to their functionalities. A network
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2013; 23: 350–381
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Table 5. Classification results of OpenDPI

Application
Classified
protocol

Proportion (%)

Byte Flow

BitTorrent Unknown 83.54 90.50
HTTP 0.02 0.60
BitTorrent 16.44 8.89

LimeWire Unknown 1.38 52.95
HTTP 0.01 0.51
MDNS 0.00 0.07
SSDP 0.00 0.07
Gnutella 98.60 46.39

MSN Unknown 0.63 6.76
HTTP 0.45 45.95
Flash 2.29 9.46
MSN 17.64 6.76
STUN 0.02 5.41
RTP 18.77 1.35
RDP 59.41 1.35
SSL 0.78 22.97

Figure 10. Application broken into layers

Figure 11. Traffic composition of each functionality
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operator could use this information to perform quality-of-service (QoS) control for different traffic
classes within an application.
The comparisons described here show that fine-grained traffic classification generally outperforms con-

ventional signature-based classification methods. As discussed in Section 3.1, many traffic classification
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2013; 23: 350–381
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Figure 12. BitTorrent’s workloads according to functionality
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studies have focused on classifying major functions (such as file transfer in P2P) that generate high traffic
volume. Thus signature-based classification misses a large portion of the application traffic data generated
by other functions. Based on our manual analysis of classification results, both L7-filter and OpenDPI can
only detect MSN file transfers and chat traffic, along with a portion of BitTorrent signaling traffic. Com-
parison of these results with the results of fine-grained traffic classification confirms that the proposed
method can increase accuracy and completeness.
5.5. Use cases of fine-grained traffic classification

5.5.1. User behavior analysis
As a test, we analyzed average search counts used in initializing downloading P2P applications. The resulting
transaction ratio of searches to downloads was 56 392:1. Empirically, we confirmed that the Fileguri client
generated approximately 6000 TCP transactions with a single keyword search. This led us to conclude that
a Fileguri user performs about 9.398 searches on an average before downloading from a P2P network.

5.5.2. Workload analysis
Most wired Internet access plans involve flat-rate billing. However, Internet access for smartphones
often involves usage-based billing. As of March 2011, there are more than 200 000 Android and
approximately 300 000 iPhone applications available, with these numbers continuously increasing
[57]. From a billing perspective, the amount of traffic generated by such applications is crucial. As
a test, we analyzed BitTorrent workloads owing to file downloading. Figure 12 illustrates the
results, broken down by functionalities. From 10% to 15% of the traffic was generated by
functionalities other than downloading. Such traffic, though essential to downloading, is
undesirable from a user’s standpoint. Analyzing and comparing workload structures of different
applications could thus prove useful to users, by enabling them to obtain a breakdown by
application of the relative proportion of unwanted traffic; this, in turn, could provide insight into
optimizing application use based on data plans or billing schemes.
6. CONCLUSION

Many variations of traffic classification have been proposed to obtain better classification accuracy and
traffic composition information. To overcome known difficulties, we proposed the fine-grained traffic
classification scheme which allowedseparation of traffic with respect to application functionalities. As a
part of this, we developed the function separation method and compared its performance with the existing
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2013; 23: 350–381
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DPI-oriented frameworks. Overall, our scheme showed an increase in accuracy of 1–75% and identified
the traffic portions of newly discovered functionalities which proved for completeness (Figure 11).
For future work, we consider enhancing the functional separation method’s labeling process. As the

immediate identification and classification of all network flow still remain impossible, there is still
much room for improvement. We also plan to analyzeuser behavior, an area which has received under
considerable attention recently.

APPENDIX
VALIDITY OF ML ALGORITHMS ON FINE-GRAINED TRAFFIC

CLASSIFICATION

The signature-based approach has several drawbacks on handling encrypted traffic. We compare the
functional separation and ML approaches to show any superiority of the functional separation. We
applied a clustering algorithm to Fileguri and NateOn, which have the most complex functionalities
among the selected applications.
As briefly mentioned in Section 2, ML approaches can be categorized into supervised learning (or

classification) and unsupervised learning (or clustering). Supervised learning requires a training phase
to grasp the interrelationship between various features and classes. Training acquires a pre-labeled
dataset. For example, flows should be labeled with their original application for traffic classification.
Conversely, unsupervised learning automatically discovers the nature of different classes (clusters)
in the dataset without any prior guidance.
Considering the functional separation problem, classifying different traffic generated by different

functionalities within an single application, functional separation is close to unsupervised learning
because the prior knowledge of functionalities is notavailable. The number of functionalities is not
predefined and it is impossible to characterize different functional traffic groups.

Feature selection

Candidate features

For feature selection, we relied on previous traffic classification research using unsupervised learning.
Table A.1 describes a selection of research and their feature set. The feature set includes flow statistics
such as packet length, packetinter-arrival time, flow duration, etc. Bernaille et al. [58] used packet
length and showed that more than 80% of total flows were correctly identified and the highest accuracy
reached 99%. Table A.2 illustrates the candidate features.

Feature selection algorithm

Feature selection is a crucial process for building robust learning models [59,60]. There has been much atten-
tion on finding an effective feature selection for traffic classification [60,61].Wemeasured the impact of each
candidate feature by applying the Relief algorithm and selected the final features for functional separation.

Relief algorithm

Relief is an instance-based feature-ranking algorithm introduced by Kira et al. [62] and improved by
Kononenko [63]. The Relief algorithm has been known as the most successful feature selection
method for classification [64]. The Relief family of algorithms identifies the importance of features
based on the distance of nearest hits and nearest misses. Nearest hits denote data points within the
same class and nearest misses refer to data points from different classes. It is suitable for high-
dimensional data. It also works when there is no linear relationship among features.
The Relief weights can be calculated as follows:

wi ¼ wi þ dist x ið Þ;NM ið Þ →xð Þ
� �

� dist x ið Þ;NH ið Þ →xð Þ
� �

(1)

where x(i) denotes the ith feature of a data point→x. NM ið Þ →xð Þ andNH ið Þ →xð Þ indicate the ith feature
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Table A.1. Traffic classification research using clustering and their feature set

Title ML algorithms Features Traffic composition

Flow clustering using
machine learning
techniques [15]

Expectation Packet length statistics HTTP, SMTP, FTP,
NTP, IMAP, DNS, etc.Maximization Inter-arrival statistics

Byte counts
Connection duration
Idle time

Automated traffic
classification and
application identification
using machine learning [65]

AutoClass
(Bayesian clustering)

Packet length statistics Half-Life, Napster, AOL,
HTTP, DNS, SMTP,
Telnet, FTP

Inter-arrival statistics
Flow size (bytes)
Flow duration

Traffic classification on the
fly [58]

SimpleKMeans Packet length of the
first few packets

eDonkey, FTP, HTTP,
KaZaA, NTP, SMTP,
SSH, HTTPS, POP3

Identifying and
discriminating between web
and peer-to-peer traffic
in the network core [32]

K-Means Total number of packets Web, P2P, FTP, others
Mean packet length
Mean payload length
Flow duration
Flow size (bytes)
Mean inter-arrival time

Traffic classification using
clustering algorithms [18]

K-Means Total number of packets HTTP, P2P, SMTP,
IMAP, POP3, MSSQL, others

DBSCAN Mean packet length
AutoClass Mean payload length

Flow size (bytes)
Mean inter-arrival time

Statistics include mean/min./max./SD.
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Table A.2. List of candidate features

Index Feature

1 Protocol
2 Number of packets
3 Flow size in bytes
4 Flow duration
5 Average packet size
6 Minimum packet size
7 Maximum packet size
8 Average packet inter-arrival time
9 Minimum packet inter-arrival time
10 Maximum packet inter-arrival time
11 Average payload size
12 Minimum payload size
13 Maximum payload size
14 Size of 1st packet in the flow
15 Size of 2nd packet in the flow
16 Size of 3rd packet in the flow
17 Size of 4th packet in the flow
18 Size of 5th packet in the flow
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of nearest hit and nearest miss respectively. Algorithm A.1 shows the Relief algorithm. The
function dist computes the difference between the values of feature for two instances. For
discrete attributes, the difference is either 1 (the values are different) or 0 (the values are the
same), while for continuous attributes the difference is the actual difference normalized to
the interval [0,1].
Selected feature set

Table A.3 shows the final feature set. The weight of each feature fluctuates significantly from
application to application. For example, protocol has the lowest weight (0) when identifying
functionalities of Fileguri. It has the highest weight (0.351) when identifying functionalities of
NateOn. Figure A.1 shows the feature weights of two different applications. Thus it is difficult
to select features which are commonly efficient for all application traffic. We selected a different
Table A.3. Weights of features by the Relief algorithm

Fileguri NateOn

Protocol 0.000 ± 0.000 0.351 ± 0.004
Number of packets 0.085 ± 0.007 0.015 ± 0.003
Flow size in bytes 0.050 ± 0.009 0.003 ± 0.003
Flow duration 0.242 ± 0.031 0.115 ± 0.013
Average packet size 0.152 ± 0.011 0.018 ± 0.006
Minimum packet size 0.193 ± 0.010 0.253 ± 0.007
Maximum packet size 0.305 ± 0.008 0.030 ± 0.010
Average packet inter-arrival time 0.129 ± 0.019 0.027 ± 0.015
Minimum packet inter-arrival time 0.085 ± 0.027 0.042 ± 0.009
Maximum packet inter-arrival time 0.180 ± 0.023 0.038 ± 0.015
Average payload size 0.152 ± 0.010 0.018 ± 0.006
Minimum payload size 0.000 ± 0.000 0.351 ± 0.004
Maximum payload size 0.304 ± 0.008 0.029 ± 0.010
Size of 1st packet in the flow 0.128 ± 0.028 0.248 ± 0.011
Size of 2nd packet in the flow 0.086 ± 0.011 0.003 ± 0.001
Size of 3rd packet in the flow 0.332 ± 0.016 0.108 ± 0.012
Size of 4th packet in the flow 0.301 ± 0.018 0.242 ± 0.018
Size of 5th packet in the flow 0.317 ± 0.019 0.248 ± 0.017
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Table A.4. Final feature set of each application

Fileguri NateOn

Protocol ∘
Number of packets
Flow size in bytes
Flow duration ∘ ∘
Average packet size ∘ ∘
Minimum packet size ∘ ∘
Maximum packet size ∘
Average packet inter-arrival time ∘
Minimum packet inter-arrival time ∘
Maximum packet inter-arrival time ∘
Average payload size ∘
Minimum payload size ∘
Maximum payload size ∘
Size of 1st packet in the flow ∘ ∘
Size of 2nd packet in the flow
Size of 3rd packet in the flow ∘ ∘
Size of 4th packet in the flow ∘ ∘
Size of 5th packet in the flow ∘ ∘

a)

b)

Figure A.1. Average weight of each feature: (a) Fileguri; (b) NateOn
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a)

b)

Figure A.2. Number of clusters using DBSCAN: (a) Fileguri; (b) NateOn
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feature set for each application to resolve this problem. We removed the features with a weight
value of less than 0.1 (Table A.4).
Clustering algorithms

Previous traffic classification studies using clustering utilized the following algorithms:
Expectation Maximization (EM), AutoClass, SimpleKMeans, K-Means and DBSCAN (Table A.1).
DBSCAN was used in clustering for functional separation amongthese algorithms owing to the
characteristics of the clustering algorithms and the functional separation problem. The other
algorithms require the number of clusters as an input parameter. However, the functional
separation starts without any prior information on the number of clusters (functionalities in
application). Therefore, we compared our method to DBSCAN.
DBSCAN algorithm

DBSCAN [66] is a density-based clustering algorithm. It finds a number of clusters starting from the
estimated density distribution of corresponding nodes. An object p is directly density-reachable
from an object q if both objects are located within a given distance ò. If p is surrounded by
sufficient number of points, objects which are closer than ò in terms of distance, p and those
objects are considered as a cluster.
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Figure A.3. Clustering accuracy of clustered data instances: (a) Fileguri; (b) NateOn
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Clustering results

DBSCAN has two input parameters: ò and minPts. Each parameter denotes the radius of the ϵ distance
and minimum number of data objects required in an ϵ distance range, respectively.
We first examined the number of clusters before analyzing traditional accuracy metrics such

as precision and recall. Figure A.2 shows the results of DBSCAN in the number of output
clusters. The numbers of labeled classes in the input data are seven for both applications.
Because multiple clusters can be mapped to a functional group, the number of clusters may
be more than that of the original classes, which is still acceptable considering the
characteristics of the functional separation problem. DBSCAN determines the number of
clusters automatically; however, it does not work well on discriminating different types of
traffic within a single application. The number of output clusters is less than the original
number of classes in every execution with different parameters. Such observation implies that
the clustering algorithms cannot detect a clear boundary between different traffic characteristics
using statistical features.
In the case of NateOn, we can get close to the original number of classes by adjusting the

parameters. However, the overall accuracy is not acceptable.
Figure A.3 shows the overall accuracy of clustering. The unclustered data instances is

considered as mis-clustered. The highest accuracy is about 80% in both applications. The cause
of such low accuracy is the unclustered data instances described in Figure A.4. DBSCAN can
label noise data. This is one of the strengths of DBSCAN when applied to general clustering
problems. However, noise data instances can be considered as mis-clustered in functional
separation. In the worst case, the unclustered ratios reach 61.22% and 67.21% for each. This
implies that the accuracy of clustering results is less than 40%.
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a)

b)

Figure A.4. Unclustered data ratios: (a) Fileguri; (b) NateOn
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We need to maximize the number of clusters close to the real number of classes and minimize the
mis-clustered ratio to apply clustering algorithms to the functional separation problem. However, we
could not get any proper result. Our experiment here showed that the traditional clustering algorithms
are not suitable for identifying different traffic characteristics of a single application.
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